Por favor, use este identificador para citar o enlazar este ítem:
http://www.monografias.ufop.br/handle/35400000/5519
Título : | Exploring the use of machine learning for body fat prediction. |
Otros títulos : | Explorando o uso de aprendizado de máquina para previsão da gordura corporal. |
Autor : | Castellar, Sávio Reis |
metadata.dc.contributor.advisor: | Silva, Rodrigo César Pedrosa Reis, Agnaldo José da Rocha |
metadata.dc.contributor.referee: | Santana, Adrielle de Carvalho Silva, Guilherme Augusto Lopes Silva, Rodrigo César Pedrosa Reis, Agnaldo José da Rocha |
Palabras clave : | Aprendizado de máquina Gordura corporal Medidas antropométricas |
Fecha de publicación : | 2023 |
Citación : | CASTELLAR, Sávio Reis. Exploring the use of machine learning for body fat prediction. 2023. 40 f. Monografia (Graduação em Engenharia de Controle e Automação) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2023. |
Resumen : | Este estudo investiga a aplicação de algoritmos de aprendizado de máquina para estimar o percentual de gordura corporal. Um conjunto de dados público de indivíduos com seus respectivos percentuais de gordura corporal e medidas antropométricas foi utilizado para treinar os vários modelos. O conjunto de dados foi dividido em seis categorias com base na faixa de peso. Cinco técnicas de aprendizado de máquina, incluindo regressão linear, árvore de decisão e floresta aleatória, foram utilizadas para analisar os dados e prever o percentual de gordura corporal. Os resultados indicaram que o modelo de regressão linear demonstrou a maior precisão e que as previsões foram mais precisas para o grupo com peso maior que 90 kg. Além disso, observou-se que apenas a medida da circunferência abdominal era suficiente para uma previsão adequada. Em conclusão, este estudo sugere que o aprendizado de máquina pode ser uma ferramenta valiosa para estimar o percentual de gordura corporal. Mais investigações são necessárias para confirmar estas conclusões em uma amostra mais ampla e diversificada. |
metadata.dc.description.abstracten: | The present study investigates the application of machine learning algorithms to estimate body fat percentage. A publicly accessible sample consisting of adult males with their corresponding body fat percentage and anthropometric measurements was utilized to train the various models. The dataset was divided into six categories based on weight range. Five machine learning techniques, including linear regression, decision tree, and random forest, were employed to analyze the data and predict body fat percentage. The results indicated that the linear regression model demonstrated the highest accuracy and that the predictions were more accurate for the group with weight greater than 90 kg. Additionally, it was observed that the measurement of abdominal circumference alone was sufficient for an adequate prediction. In conclusion, this study suggests that machine learning can be a valuable tool for estimating body fat percentage. Further investigation is required to confirm these findings in a larger and more diverse sample population. |
URI : | http://www.monografias.ufop.br/handle/35400000/5519 |
Aparece en las colecciones: | Engenharia de Controle e Automação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
MONOGRAFIA_ExploringUseMachine.pdf | 1,65 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.