Por favor, use este identificador para citar o enlazar este ítem:
http://www.monografias.ufop.br/handle/35400000/2872
Título : | Redes neurais convolucionais e segmentação de imagens : uma revisão bibliográfica. |
Autor : | Cunha, Leonardo Cardoso da |
metadata.dc.contributor.advisor: | Castanheira, Luciana Gomes |
metadata.dc.contributor.referee: | Castanheira, Luciana Gomes Reis, Agnaldo José da Rocha Santos, André Almeida |
Palabras clave : | Redes neurais - computação Deep Learning Imagens - segmentação de imagens Imagens - segmentação semântica Redes neurais - convolucionais |
Fecha de publicación : | 2020 |
Citación : | CUNHA, Leonardo Cardoso da. Redes neurais convolucionais e segmentação de imagens: uma revisão bibliográfica. 2020. 51 f. Monografia (Graduação em Engenharia de Controle e Automação) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2020. |
Resumen : | No mundo atual, o uso de redes neurais para interpretar dados é cada vez mais comum. Redes Convolucionais são um tipo especializado de rede neural, capaz de interpretar imagens como dados de entrada. Essa poderosa ferramenta, é tradicionalmente aplicada em problemas de classificação, sendo utilizada por grandes empresas. Sua existência é devida entre outros à uma série de contribuições feitas pela comunidade científica ao longo das últimas décadas. Hoje, através de pesquisa bibliográfica, é possível conhecer a sua história e compreender a função das diferentes camadas que compõem essas redes: camadas de convolução, ReLU, pooling e as camadas totalmente conectadas. Essas últimas, num passado recente, ao serem substituídas por outra camada de convolução, deram origem às Redes Totalmente Convolucionais, capazes de segmentar imagens no estado da arte, possibilitando novas aplicações, como na visão de carros autônomos. |
metadata.dc.description.abstracten: | The usage of neural networks to interpret data has become increasingly common in the past years. Convolutional Neural Network is a particular class of neural network capable of interpreting visual imagery. This powerful tool, traditionally applied to classification events, has been adopted by large corporations as a result of contributions from the scientific community. Through bibliographic research, it is possible to comprehend its history and understand the function of the different layers that compose these networks: convolution, ReLU, pooling and fully connected layers. Recently, researchers have identified a new structure called Fully Convolutional Networks by replacing fully connected layers by another layer of convolution. This new architecture provides the means for state-of-the-art image segmentation, enabling new applications such as machine vision for driverless cars. |
URI : | http://www.monografias.ufop.br/handle/35400000/2872 |
Aparece en las colecciones: | Engenharia de Controle e Automação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
MONOGRAFIA_RedesNeuraisConvolucionais.pdf | 2,3 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons