Por favor, use este identificador para citar o enlazar este ítem:
http://www.monografias.ufop.br/handle/35400000/7138
Título : | Aplicação da rede neural recorrente gated recurrent unit na classificação multirrótulo de relações entre estrutura química e atividade biológica. |
Autor : | Miranda, Luís Gustavo de Oliveira |
metadata.dc.contributor.advisor: | Gertrudes, Jadson Castro Santana, Adrielle de Carvalho |
metadata.dc.contributor.referee: | Silva, Erick Vinicius de Araújo Martins, Geovani Lopes Gertrudes, Jadson Castro Santana, Adrielle de Carvalho |
Palabras clave : | Inteligência artificial Processamento de linguagem natural Análise entre estrutura química e atividade biológica Aprendizado de máquina Gated recurrent unit |
Fecha de publicación : | 2024 |
Citación : | MIRANDA, Luis Gustavo de Oliveira. Aplicação da rede neural recorrente gated recurrent unit na classificação multirrótulo de relações entre estrutura química e atividade biológica. 2024. 45 f. Monografia (Graduação em Engenharia de Controle e Automação) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2024. |
Resumen : | O uso de técnicas computacionais tornou-se vital na descoberta de reagentes e medicamentos, especialmente quando alinhado a métodos modernos como o aprendizado de máquina. Este estudo explora a aplicação do aprendizado profundo, utilizando o modelo Gated Recurrent Unit (GRU), na previsão da atividade química de compostos biológicos de múltiplos alvos por meio da modelagem entre estrutura química e atividade biológica. A pesquisa envolve um extenso pré-processamento de dados, incluindo a limpeza e tokenização de sequências SMILES, seguido da transformação em formatos adequados para entrada no modelo GRU. Os resultados demonstram que o modelo GRU, apesar de sua arquitetura simplificada, pode prever efetivamente interações moleculares. Embora não atinja a mesma precisão de modelos mais complexos e com uso intensivo de dados, ele abre possibilidades para processos de descoberta mais rápida e econômica de medicamentos. Este estudo não só destaca o potencial das redes GRU em quimioinformática, mas também defende a exploração de modelos mais simples e eficientes em campos tradicionalmente dominados por abordagens mais complexas. |
metadata.dc.description.abstracten: | The use of computational techniques has become vital in reagent and drug discovery, especially when combined with modern methods such as machine learning. This study explores the application of deep learning, using the Gated Recurrent Unit (GRU) model, to predict the chemical activity of multi-target biological compounds by modeling chemical structure and biological activity. The research involves extensive data preprocessing, including cleaning and tokenizing SMILES sequences, followed by transformation into formats suitable for input to the GRU model. The results demonstrate that the GRU model, despite its simplified architecture, can effectively predict molecular interactions. Although it does not achieve the same accuracy as more complex and data-intensive models, it opens up possibilities for faster and more cost-effective drug discovery processes. This study not only highlights the potential of GRU networks in chemoinformatics, but also advocates the exploration of simpler and more efficient models in fields traditionally dominated by more complex approaches. |
URI : | http://www.monografias.ufop.br/handle/35400000/7138 |
Aparece en las colecciones: | Engenharia de Controle e Automação |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
MONOGRAFIA_AplicaçãoRedeNeural .pdf | Monografia do Luís | 1,23 MB | Adobe PDF | Visualizar/Abrir |
Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.