Please use this identifier to cite or link to this item: http://www.monografias.ufop.br/handle/35400000/7067
Title: Aplicação de aprendizado por reforço para solução do problema dinâmico de gestão de estoque de medicamentos em hospitais com seleção de fornecedores e descontos no frete.
Authors: Resende, Louis Guilherme Marinho de
metadata.dc.contributor.advisor: Silva, Thiago Augusto de Oliveira
metadata.dc.contributor.referee: Silva, Thiago Augusto de Oliveira
Teixeira, Matheus Correia
Amaral, Mônica do
Oliveira, Paganini Barcellos de
Keywords: Aprendizado do computador
Controle de estoque - medicamentos
Hospitais - custo operacional
Logística - saúde
Otimização matemática
Issue Date: 2024
Citation: RESENDE, Louis Guilherme Marinho de. Aplicação de aprendizado por reforço para solução do problema dinâmico de gestão de estoque de medicamentos em hospitais com seleção de fornecedores e descontos no frete. 2024. 40 f. Monografia (Graduação em Engenharia de Produção) - Instituto de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto, João Monlevade, 2024.
Abstract: Este trabalho foca na otimização da gestão de estoques de medicamentos em ambientes hospitala- res, reconhecendo a importância vital dos serviços de saúde e as complexas demandas logísticas associadas. O objetivo é desenvolver um modelo que melhore a eficiência na gestão de estoques, levando em consideração a variabilidade e incertezas típicas desse ambiente. Foi proposto um modelo de otimização que combina técnicas de aprendizado por reforço, especificamente o algo- ritmo Proximal Policy Optimization (PPO), com um problema clássico de controle de estoque. O modelo foi avaliado em cenários simulados com diferentes configurações de parâmetros que influenciam os custos operacionais. Os resultados demonstraram que o uso de aprendizado por reforço superou a política determinística — uma abordagem que toma decisões baseadas apenas no estado atual, sem considerar impactos futuros — ao reduzir significativamente os custos totais e melhorar o controle de estoque em condições de incerteza.
metadata.dc.description.abstracten: This work focuses on the optimization of medication inventory management in hospital envi- ronments, recognizing the critical importance of healthcare services and the complex logistical demands associated with them. The objective is to develop a model that improves inventory management efficiency, considering the variability and uncertainties typical of such environments. An optimization model was proposed, combining reinforcement learning techniques, specifically the Proximal Policy Optimization (PPO) algorithm, with a classical inventory control problem. The model was evaluated in simulated scenarios with different parameter configurations that influence operational costs. The results demonstrated that the use of reinforcement learning outperformed the deterministic policy — an approach that makes decisions based solely on the current state, without considering future impacts — by significantly reducing total costs and improving inventory control under uncertain conditions.
URI: http://www.monografias.ufop.br/handle/35400000/7067
metadata.dc.rights.license: Este trabalho está sob uma licença Creative Commons BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/?ref=chooser-v1).
Appears in Collections:Engenharia de Produção - JMV

Files in This Item:
File Description SizeFormat 
MONOGRAFIA_AplicaçãoAprendizadoReforço.pdf968,67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.