Please use this identifier to cite or link to this item: http://www.monografias.ufop.br/handle/35400000/6146
Title: Redes Neurais LSTM e Google Trends aplicados para previsão de séries temporais do mercado financeiro no contexto de criptomoedas.
Authors: Braga, Rosabel Vieira
metadata.dc.contributor.advisor: Oliveira, Fernando Bernardes de
Alves, Marcos Antônio
metadata.dc.contributor.referee: Oliveira, Fernando Bernardes de
Alves, Marcos Antônio
Medeiros, Elias Silva de
Silva, Petrônio Cândido de Lima e
Keywords: Análise de séries temporais
Bitcoin
Inteligência computacional
Mercado financeiro - moedas
Redes neurais - computação
Issue Date: 2023
Citation: BRAGA, Rosabel Vieira. Redes Neurais LSTM e Google Trends aplicados para previsão de séries temporais do mercado financeiro no contexto de criptomoedas. 2023. 64 f. Monografia (Graduação em Sistemas de Informação) - Instituto de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto, João Monelvade, 2023.
Abstract: O Bitcoin foi originado com o objetivo de criar uma moeda única, sem encargos e independente de bancos. Porém, o seu crescente valor de mercado fez com que se popularizasse também como alternativa de investimento. Para obter lucro, os investidores devem, em um cenário ideal, comprar o ativo quando o seu preço estiver baixo e revendê-lo quando os preços aumentarem. Mas a extrema volatilidade da moeda, que sofre influência de diversos fatores e experimenta grandes flutuações de preço em curtos períodos de tempo, torna sua predição um desafio para pesquisadores em todo o mundo. Partindo disso, o presente trabalho busca identificar se a agregação de índices com a frequência de busca por palavras-chaves, ligadas ao Bitcoin, no Google, junto ao modelo de Recurrent neural networks ( RNN), o Long Short-Term Memory (LSTM), pode contribuir para a predição do valor futuro do ativo. Para isso, foram utilizados dados do período de 2014 a 2022, divididos em três distribuições distintas dos dados, definidas como cenários de estabilidade, tendência de alta e tendência de queda do preço da moeda. As janelas de tempo definidas foram de 90 e 10 dias, e em cada um dos experimentos foi adotada a abordagem de modelo univariado, e multivariado. Considerando o contexto experimental estabelecido, os resultados sugerem que a agregação do sentimento, em uma janela de tempo de 10 dias no cenário de queda, apresentou uma maior capacidade de generalização do preço futuro da criptomoeda, quando observado as métricas de avaliação utilizadas.
metadata.dc.description.abstracten: Bitcoin was originally conceived with the intention of creating a singular currency, free from charges and independent of banks. However, its burgeoning market value has propelled it to become a viable investment alternative. In an ideal scenario, investors aim to purchase the asset when its price is low and sell it when prices escalate, thus generating profit. Nevertheless, the substantial volatility of the currency, influenced by a myriad of factors and experiencing substantial price fluctuations within brief time intervals, bestows upon its prediction a challenge for researchers globally. From this premise, the current study endeavors to ascertain whether the amalgamation of indices alongside the frequency of keyword searches associated with Bitcoin on Google, combined with the Recurrent Neural Network (RNN) model - specifically, the Long Short-Term Memory (LSTM) architecture - can contribute to forecasting the future value of the asset. To this end, data spanning from 2014 to 2022 were employed, partitioned into three distinct data distributions that delineate scenarios of stability, upward trends, and downward trends in the currency’s price. The designated time windows encompassed 90 and 10 days, and each experiment embraced both univariate and multivariate modeling approaches. Within the established experimental context, the results suggest that the aggregation of sentiment, within a 10-day time frame during a downturn scenario, exhibited a greater capacity for generalizing the cryptocurrency’s future price, as observed through the employed evaluation metrics.
URI: http://www.monografias.ufop.br/handle/35400000/6146
metadata.dc.rights.license: Este trabalho está sob uma licença Creative Commons BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/?ref=chooser-v1).
Appears in Collections:Sistema de Informação - JMV

Files in This Item:
File Description SizeFormat 
MONOGRAFIA_RedesNeuraisLSTM.pdf3,58 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.