Please use this identifier to cite or link to this item:
http://www.monografias.ufop.br/handle/35400000/4743
Title: | Compressão de redes neurais artificiais com restrições de acurácia utilizando otimização multiobjetivo baseada em modelos substitutos. |
Authors: | Ferreira, Gabriel Bicalho |
metadata.dc.contributor.advisor: | Silva, Rodrigo César Pedrosa |
metadata.dc.contributor.referee: | Gertrudes, Jadson Castro Silva, Guilherme Augusto Lopes Silva, Rodrigo César Pedrosa |
Keywords: | Compressão de redes neurais Aprendizado profundo Redes neurais convolucionais Otimização multiobjetivo Problemas substitutos |
Issue Date: | 2022 |
Citation: | FERREIRA, Gabriel Bicalho. Compressão de redes neurais artificiais com restrições de acurácia utilizando otimização multiobjetivo baseada em modelos substitutos. 2022. 50 f. Monografia (Graduação em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2022. |
Abstract: | Dentre os diferentes métodos de aprendizado de máquina, as redes neurais vem se destacando nos últimos anos, devido a sua alta precisão na resolução de diversos tipos de problemas. O aumento de camadas e neurônios de uma rede neural é diretamente proporcional a sua eficiência, visto que permite às redes neurais artificiais (RNA) o reconhecimento de mais detalhes sobre o dado de entrada. No enatando, redes complexas resultam em grandes dificuldades na implantação em dispositivos com restrições de processamento e memória. Sendo assim, técnicas de compressão que visam a redução da complexidade da rede neural sem perda significativa na eficiência, estão ganhando cada vez mais notoriedade na literatura. Neste contexto, o presente trabalho visa parametrizar técnicas de compressão por poda e quantização, verificando os efeitos dos parâmetros escolhidos nos objetivos propostos. |
metadata.dc.description.abstracten: | Among the different methods of machine learning, neural networks have been standing out in recent years, due to their high precision in solving different types of problems. The increase in layers and neurons of a neural network is directly proportional to its efficiency, since it allows artificial neural networks (ANN) to recognize more details about the input data. However, complex networks result in great difficulties in deploying them on devices with processing and memory restrictions. Thus, compression techniques that aim to reduce the neural network complexity without significant loss in efficiency are gaining more and more notoriety in the literature. In this context, the present work aims to parameterize compression techniques by pruning and quantization, verifying the effects of the chosen parameters on the proposed objectives. |
URI: | http://www.monografias.ufop.br/handle/35400000/4743 |
Appears in Collections: | Ciência da Computação |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
MONOGRAFIA_CompressãoRedesNeurais.pdf | 4,48 MB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License