Use este identificador para citar ou linkar para este item: http://www.monografias.ufop.br/handle/35400000/3239
Registro completo de metadados
Campo Dublin CoreValorIdioma
dc.contributor.advisorRibeiro, Marcelo Carlospt_BR
dc.contributor.authorCotta, Pedro Augusto Alves Viana-
dc.date.accessioned2021-07-22T22:55:52Z-
dc.date.available2021-07-22T22:55:52Z-
dc.date.issued2021pt_BR
dc.identifier.citationCOTTA, Pedro Augusto Alves Viana. Utilização de técnicas de inteligência artificial para classificação do comportamento sedentário de egressos universitários em base de dados desbalanceadas. 2021. 50 f. Monografia (Graduação em Estatística) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2021.pt_BR
dc.identifier.urihttp://www.monografias.ufop.br/handle/35400000/3239-
dc.description.abstractOs recentes avanços nas áreas científicas e tecnológicas possibilitaram o crescimento e armazenamento de grandes volumes de dados. Com a finalidade de se extrair informações, vem surgindo diversas formas de análises, sendo aprimoradas através de ferramentas computacionais apropriadas. O Aprendizado de Máquina vem sendo muito utilizado como ferramenta para análise, mas percebe-se a necessidade de se trabalhar nos dados antes da entrada no algoritmo, pois os algoritmos possuem limitações que podem ser prejudiciais aos resultados, gerando uma predição incorreta, a título de exemplo, dados com classes desbalanceadas podem criar viés para uma determinada classe. Para solucionar esse tipo de problema muitos pesquisadores tem apresentado propostas aos quais nos baseamos e definimos o objetivo desse trabalho.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectInteligência artificialpt_BR
dc.subjectBig datapt_BR
dc.subjectAlgoritmopt_BR
dc.subjectAprendizagem de máquinapt_BR
dc.titleUtilização de técnicas de inteligência artificial para classificação do comportamento sedentário de egressos universitários em base de dados desbalanceadas.pt_BR
dc.typeTCC-Graduaçãopt_BR
dc.contributor.refereeRibeiro, Marcelo Carlospt_BR
dc.contributor.refereePereira, Tiago Martinspt_BR
dc.contributor.refereeOliveira, Fernando Luiz Pereira dept_BR
dc.description.abstractenRecent advances in science and technology have made it possible growing and storing big data. In order to extract information of it, several forms of analysis are emerging and are improved, through appropriate computational tools. Machine learning has been widely used as a tool for analysis, but it is necessary to work the data even before entering'em the algorithm. The algorithms have limitations that could be detrimental to the results, as an example, unbalanced classes could create bias for a especific class. Trying to solve this type of problem, many researchers have presented some answers, witch define the objective of this work.pt_BR
dc.contributor.authorID15.2.4085pt_BR
Aparece nas coleções:Estatística

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MONOGRAFIA_UtilizaçãoTécnicasInteligência.pdf3,06 MBAdobe PDFVisualizar/Abrir


Este item está licenciado sob uma Licença Creative Commons Creative Commons