Use este identificador para citar ou linkar para este item: http://www.monografias.ufop.br/handle/35400000/257
Registro completo de metadados
Campo Dublin CoreValorIdioma
dc.contributor.advisorAraújo, Janniele Aparecida Soarespt_BR
dc.contributor.authorRodrigues, Thayse Cristina Araújo-
dc.date.accessioned2016-10-25T14:27:50Z-
dc.date.available2016-10-25T14:27:50Z-
dc.date.issued2016-
dc.identifier.citationRODRIGUES, Thayse Cristina Araújo. Uso de técnicas de mineração de dados para encontrar tendências em mercados financeiros. 2016. 81 f. Monografia (Graduação em Engenharia de Computação) – Instituto de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto, João Monlevade, 2016.pt_BR
dc.identifier.urihttp://www.monografias.ufop.br/handle/35400000/257-
dc.description.abstractO presente trabalho apresenta um estudo resultante da aplicação de mineração de dados na base de dados de resultados de empresas que atuam na bolsa de valores BM&FBovespa. Empresas de capital aberto divulgam indicadores que são usados pelos investidores para a avaliação das ações no mercado financeiro. Foram realizados experimentos com os demonstrativos de resultados, balanço patrimonial e informações de cotação dos papéis das empresas. De posse destas informações foram calculados alguns indicadores e utilizados algoritmos de classificação para analisar os resultados obtidos sobre a base de dados que foi montada. As empresas foram classificadas como investimento "Fraco", "Bom"ou "Muito Bom"comparando seus rendimentos com a taxa Selic no período pesquisado. São apresentadas ao leitor os algoritmos de classificação usados, os atributos gerados na base de dados, gráficos e tabelas para comparar o desempenho dos algoritmos. Com os indicadores fundamentalistas e os algoritmos de mineração de dados usados no trabalho foi obtida uma taxa alta de acertos para a classe "Fraco", mas poucas empresas da classe "Bom"e "Muito Bom"foram classificadas corretamente.pt_BR
dc.language.isopt_BRpt_BR
dc.rightsopen accesspt_BR
dc.subjectMineração de dados - computaçãopt_BR
dc.subjectMercados financeirospt_BR
dc.subjectTratamento de dadospt_BR
dc.subjectAdministração de dadospt_BR
dc.titleUso de técnicas de mineração de dados para encontrar tendências em mercados financeiros.pt_BR
dc.typeTCC-Graduaçãopt_BR
dc.rights.licenseAutorização concedida à Biblioteca Digital de TCC da UFOP pelo autor(a), 11/08/2016, com as seguintes condições: disponível sob Licença Creative Commons 4.0, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Permite o uso para fins comerciais e a adaptação desta, desde que outros compartilhem pela mesma licença.pt_BR
dc.contributor.refereeFernandes, June Marquespt_BR
dc.contributor.refereeMedeiros, Talles Henrique dept_BR
dc.contributor.refereeAraújo, Janniele Aparecida Soarespt_BR
dc.description.abstractenThis work introduce a study resulting from application of data mining in an BM&FBovespa database with companies’ results. Companies disclose their indicators into stock market and are used for investors evaluate stocks. Experiments were performed with income statements, balance sheets and price informations. Were used classification algorithms to analize the data generated on the database. The companies were classified as "Weak", "Good"or "Very Good"comparing your incomes with the Selic rate during the studied period. This work presents the classification algorithms used, the attributes generated in the database, graphics and spreadsheets to compare the algorithms performance. With the fundamentalists indicators and data mining algorithms used in the study, was obtained a high rate of correct answers to the "Weak"class, but just a few companies of "Good"class and "Very Good"were classified correctly.pt_BR
Aparece nas coleções:Engenharia de Computação - JMV

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MONOGRAFIA_UsoTécnicasMineração.pdf2,87 MBAdobe PDFVisualizar/Abrir


Este item está licenciado sob uma Licença Creative Commons Creative Commons