Use este identificador para citar ou linkar para este item:
http://www.monografias.ufop.br/handle/35400000/7081
Registro completo de metadados
Campo Dublin Core | Valor | Idioma |
---|---|---|
dc.contributor.advisor | Silva, Joney Justo da | pt_BR |
dc.contributor.author | Senra, Gabriel Sanglard | - |
dc.date.accessioned | 2024-10-21T15:04:59Z | - |
dc.date.available | 2024-10-21T15:04:59Z | - |
dc.date.issued | 2024 | pt_BR |
dc.identifier.citation | SENRA, Gabriel Sanglard. Utilização do algoritmo Random Forest para geração de perfis sônicos sintéticos por meio de registros convencionais. 2024. 65 f. Monografia(Graduação em Engenharia de Produção) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2024. | pt_BR |
dc.identifier.uri | http://www.monografias.ufop.br/handle/35400000/7081 | - |
dc.description.abstract | Este estudo explora o uso de aprendizado de máquina, focando no modelo Random Forest, para inferir o perfil sônico a partir de registros geofísicos convencionais, como ILD, RHOB, GR e NPHI, escolhidos por sua relevância na caracterização geológica e forte correlação com as velocidades sônicas. Os resultados mostram que o Random Forest supera a Equação de Faust, referência empírica tradicional, com maior precisão e coeficiente de determinação (R²), capturando melhor as complexidades geológicas do campo Lagoa Parda Sul. O estudo sugere melhorias, como otimização de hiperparâmetros, segmentação geológica e testes com outros algoritmos, como redes neurais e gradiente boosting. | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.subject | Registros sonoros | pt_BR |
dc.subject | Prospecção - métodos geofísicos | pt_BR |
dc.subject | Bacias - Geologia | pt_BR |
dc.subject | Reservatórios subterrâneos | pt_BR |
dc.title | Utilização do algoritmo Random Forest para geração de perfis sônicos sintéticos por meio de registros convencionais. | pt_BR |
dc.type | TCC-Graduação | pt_BR |
dc.contributor.referee | Silva, Joney Justo da | pt_BR |
dc.contributor.referee | Campos, Magno Silvério | pt_BR |
dc.contributor.referee | Gertrudes, Jadson Castro | pt_BR |
dc.description.abstracten | This study explores the use of machine learning, focusing on the Random Forest model, to infer the sonic log from conventional geophysical logs such as ILD, RHOB, GR, and NPHI, selected for their relevance in geological characterization and strong correlation with sonic velocities. The results show that Random Forest outperforms the Faust Equation, a traditional empirical reference, with higher accuracy and coefficient of determination (R²), better capturing the geological complexities of the Lagoa Parda Sul field. The study suggests improvements, such as hyperparameter optimization, geological segmentation, and testing with other algorithms like neural networks and gradient boosting. | pt_BR |
dc.contributor.authorID | 17.1.1350 | pt_BR |
Aparece nas coleções: | Engenharia de Produção - OP |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
MONOGRAFIA_UtilizacaoAlgoritmoRandom.pdf | 2,98 MB | Adobe PDF | Visualizar/Abrir |
Os itens na BDTCC estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.