Use este identificador para citar ou linkar para este item: http://www.monografias.ufop.br/handle/35400000/6339
Registro completo de metadados
Campo Dublin CoreValorIdioma
dc.contributor.advisorMartins, Helgem de Souza Ribeiropt_BR
dc.contributor.advisorDuarte, Anderson Ribeiropt_BR
dc.contributor.authorDias, Ana Júlia Guimarães-
dc.date.accessioned2024-01-09T10:24:14Z-
dc.date.available2024-01-09T10:24:14Z-
dc.date.issued2023pt_BR
dc.identifier.citationDIAS, Ana Júlia Guimarães. Análise de padrões de evasão em programas de pós-graduação da UFOP. 2023. 44 f. Monografia (Graduação em Estatística) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2023.pt_BR
dc.identifier.urihttp://www.monografias.ufop.br/handle/35400000/6339-
dc.description.abstractNas últimas duas décadas, a pós-graduação no Brasil, incluindo a Universidade Federal de Ouro Preto (UFOP), testemunhou um crescimento notável. Na UFOP, o número de programas e cursos de pós-graduação mais do que dobrou nos últimos 10 anos. Esse aumento em programas também trouxe desafios administrativos e acadêmicos, incluindo um aumento na taxa de evasão de estudantes de pós-graduação. Este projeto de pesquisa tem como objetivo analisar o comportamento da evasão de alunos de pós-graduação na UFOP, utilizando modelos de machine learning para prever o risco de evasão no momento da matrícula. A intenção é fornecer insights que permitam a adoção de medidas para reduzir a evasão. A primeira etapa do projeto envolverá a análise de padrões e normalização dos dados, que servirão como base para a modelagem subsequente.pt_BR
dc.language.isopt_BRpt_BR
dc.subjectEvasãopt_BR
dc.subjectPós-graduaçãopt_BR
dc.subjectEstatística descritivapt_BR
dc.subjectCiência de dadospt_BR
dc.subjectVisualização de dadospt_BR
dc.titleAnálise de padrões de evasão em programas de pós-graduação da UFOP.pt_BR
dc.typeTCC-Graduaçãopt_BR
dc.contributor.refereeCastro, Arlem Daniel Pena dept_BR
dc.contributor.refereePena, Carolina Silvapt_BR
dc.contributor.refereeMoura, Flávio dos Reispt_BR
dc.description.abstractenIn the past two decades, graduate education in Brazil, including at the Universidade Federal de Ouro Preto (UFOP), has witnessed remarkable growth. At UFOP, the number of graduate programs and courses has more than doubled in the last 10 years. This increase in programs has also brought about administrative and academic challenges, including a rise in the attrition rate among graduate students. This research project aims to analyze the attrition behavior of graduate students at UFOP, using machine learning models to predict attrition risk at the time of enrollment. The goal is to provide insights that enable the implementation of measures to reduce attrition. The first phase of the project will involve data pattern analysis and normalization, serving as the foundation for subsequent modeling.pt_BR
dc.contributor.authorID19.2.4151pt_BR
Aparece nas coleções:Estatística

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MONOGRAFIA_AnálisePadrõesEvasão.pdf1,48 MBAdobe PDFVisualizar/Abrir


Os itens na BDTCC estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.