Use este identificador para citar ou linkar para este item: http://www.monografias.ufop.br/handle/35400000/279
Registro completo de metadados
Campo Dublin CoreValorIdioma
dc.contributor.advisorMoreira, Gladston Juliano Pratespt_BR
dc.contributor.authorGarcia, Gabriel Carvalho-
dc.date.accessioned2017-02-13T12:30:29Z-
dc.date.available2017-02-13T12:30:29Z-
dc.date.issued2016-
dc.identifier.citationGARCIA, Gabriel Carvalho. Seleção de características e otimização de parâmetros via PSO para um classificador de arritmias cardíacas. 2016. 42 f. Monografia (Graduação em Engenharia de Controle e Automação) - Escola de Minas, Universidade Federal de Ouro Preto, Ouro Preto, 2016.pt_BR
dc.identifier.urihttp://www.monografias.ufop.br/handle/35400000/279-
dc.description.abstractAs doenças cardíacas são a principal causa de morte no Brasil e no mundo, tornando os esforços para uma detecção precoce desses males uma prioridade nas pesquisas da área biomédica. Apesar das arritmias cardíacas não serem uma doença fatal em todas as suas formas, elas podem indicar problemas mais sérios e podem, inclusive, levar a morte. Por isso, a classificação automática de arritmias cardíacas pode vir a ser uma importante ferramenta para as análises clínicas. Neste trabalho é proposto um método para evoluir um classificador de arritmias cardíacas desenvolvido a partir de técnicas propostas em trabalhos que apresentaram bons resultados na área. Com esse intuito é aplicada a otimização por enxame de partículas (PSO), que apresentou um ótimo comportamento para buscar os melhores parâmetros e selecionar as características mais importantes para o problema. Técnicas de filtragem digital, estudos sobre a morfologia da curva do ECG, redes complexas, wavelet, função de autocorrelação e máquina de vetores suporte (SVM), são algumas das ferramentas utilizadas neste trabalho. Também é apresentada uma nova representação para os sinais do ECG, chamada de vectocardiograma temporal. Seguindo as recomendações da AMMI e um protocolo bem utilizado na literatura, o método proposto apresentou uma acurácia global de 92,4%, superior a de muitos trabalhos da área. Novas características devem ser extraídas do vectocardiograma temporal, já que este aportou uma importante colaboração para os resultados finais.pt_BR
dc.language.isopt_BRpt_BR
dc.rightsopen accesspt_BR
dc.subjectArritmiaspt_BR
dc.subjectEletrocardiografiapt_BR
dc.subjectInteligência artificialpt_BR
dc.titleSeleção de características e otimização de parâmetros via PSO para um classificador de arritmias cardíacas.pt_BR
dc.typeTCC-Graduaçãopt_BR
dc.rights.licenseAutorização concedida à Biblioteca Digital de TCC da UFOP pelo autor, 18/08/2016, com as seguintes condições: disponível sob Licença Creative Commons 4.3, que permite copiar, distribuir e transmitir o trabalho, desde que sejam citados o autor e o licenciante.pt_BR
dc.contributor.refereeReis, Agnaldo José da Rochapt_BR
dc.contributor.refereeSantana, Adrielle de Carvalhopt_BR
dc.description.abstractenHeart diseases are the principal cause of death in Brazil, and in the world. Therefore, e_orts for early detection of this diseases is a prority in biomedical researches. Although cardiac arrhythmia is not fatal in all cases, it can indicate more serious problems, and could lead to death. Because of this, automatic classification of cardiac arrhythmia could be an important tool for clinical analysis. This paper is proposing a method to develop an arrhythmia classifier based in works representing the best results in the area. For this purpose, optimization is applied by particle swarm optimization (PSO) that yielded a great performance to find the best parameters and select the best features for the problem. Digital filtering techniques, studies on the ECG morphology, complex networks, wavelet, autocorrelation function and support vector machines (SVM) are some of the tools used in this work. Also shown is a new representation for ECG signals, called temporal vectocardiograms. Following the recommendation of AMMI and the most widely used protocols in literature, the proposed method showed an overall accuracy of 92.4%, higher than that of many works in the area. New features must be extracted from temporal vectocardiograms, as this contributed an important collaboration for the final results.pt_BR
Aparece nas coleções:Engenharia de Controle e Automação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MONOGRAFIA_SeleçãoDeCaracteristicas.pdf3,28 MBAdobe PDFVisualizar/Abrir


Este item está licenciado sob uma Licença Creative Commons Creative Commons