Use este identificador para citar ou linkar para este item:
http://www.monografias.ufop.br/handle/35400000/2628
Registro completo de metadados
Campo Dublin Core | Valor | Idioma |
---|---|---|
dc.contributor.advisor | Brito, Samuel Souza | pt_BR |
dc.contributor.advisor | Oliveira, Fernando Bernardes de | pt_BR |
dc.contributor.author | Pêgo, Bruno Lacerda | - |
dc.date.accessioned | 2020-07-06T13:59:44Z | - |
dc.date.available | 2020-07-06T13:59:44Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | PÊGO, Bruno Lacerda. Meta-heurísticas aplicadas ao problema de sequenciamento em uma máquina com penalidade por antecipação e atraso da produção. 2019. 56 f. Monografia (Graduação em Sistemas de Informação) - Instituto de Ciências Exatas e Aplicadas, Universidade Federal de Ouro Preto, João Monlevade, 2019. | pt_BR |
dc.identifier.uri | http://www.monografias.ufop.br/handle/35400000/2628 | - |
dc.description.abstract | Este trabalho trata do problema de sequenciamento de tarefas em uma máquina com tempo de preparação dependente da sequência de produção, onde cada tarefa possui uma janela de entrega na qual deve ser preferencialmente concluída. O objetivo é minimizar a soma das penalidades por atraso e antecipação da produção, determinando a sequência de execução e a data de início de processamento das tarefas. É proposto um algoritmo de busca populacional baseado em computação evolutiva de duas etapas, denominado GEVITIA. A primeira etapa consiste da construção da população inicial baseada em GRASP, enquanto a segunda combina os procedimentos de Estratégia Evolutiva, VND e um algoritmo para determinar a data ótima de início de processamento (ITIA). O algoritmo proposto se mostrou competitivo quando comparado com os trabalhos presentes na literatura, sendo capaz de gerar soluções de qualidade semelhante e, em alguns casos, superiores. | pt_BR |
dc.language.iso | pt_BR | pt_BR |
dc.rights | open access | pt_BR |
dc.rights.uri | An error occurred getting the license - uri. | * |
dc.subject | Programação heurística | pt_BR |
dc.subject | Algoritmos | pt_BR |
dc.subject | GRASP - sistema operacional de computador | pt_BR |
dc.subject | Programação evolutiva - computação | pt_BR |
dc.title | Meta-heurísticas aplicadas ao problema de sequenciamento em uma máquina com penalidade por antecipação e atraso da produção. | pt_BR |
dc.type | TCC-Graduação | pt_BR |
dc.contributor.referee | Fonseca, George Henrique Godim da | pt_BR |
dc.contributor.referee | Alexandre, Rafael Frederico | pt_BR |
dc.contributor.referee | Brito, Samuel Souza | pt_BR |
dc.contributor.referee | Oliveira, Fernando Bernardes de | pt_BR |
dc.description.abstracten | This work addresses the single machine scheduling problem with sequence-dependent setup times, where each job has a distinct time window within which it should preferably be completed. The goal is to minimize the value of penalties for tardiness and earliness by determining the execution sequence and the time to start processing the jobs. A population search algorithm based on two-step evolutionary computation called GEVITIA is proposed. The first step is the initial population construction phase based on GRASP, while the second step combines Evolution Strategy, VND and an algorithm for determining the optimal time for completion of each job in a given sequence (ITIA). The proposed algorithm proved to be competitive when compared to the other approaches in the literature, being able to generate solutions of similar and, in some cases, superior quality. | pt_BR |
dc.contributor.authorID | 13.2.8300 | pt_BR |
Aparece nas coleções: | Sistema de Informação - JMV |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
MONOGRAFIA_MetaAplicadasProblema.pdf | 1,49 MB | Adobe PDF | Visualizar/Abrir |
Os itens na BDTCC estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.