Use este identificador para citar ou linkar para este item: http://www.monografias.ufop.br/handle/35400000/2394
Registro completo de metadados
Campo Dublin CoreValorIdioma
dc.contributor.advisorLuz, Eduardo José da Silvapt_BR
dc.contributor.advisorSilva Junior, Júlio César Araújo dapt_BR
dc.contributor.authorAlmeida, Charllon Lobo-
dc.date.accessioned2020-01-08T13:35:01Z-
dc.date.available2020-01-08T13:35:01Z-
dc.date.issued2019-
dc.identifier.citationALMEIDA, Charllon Lobo. Predição de séries temporais aplicada ao mercado de criptomoedas. 2019. 32 f. Monografia (Graduação em Ciência da Computação) - Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, 2019.pt_BR
dc.identifier.urihttp://www.monografias.ufop.br/handle/35400000/2394-
dc.description.abstractO Bitcoin é uma moeda digital descentralizada, que surgiu com a finalidade de substituir os meios de pagamento atuais, porém ele enfrenta grandes desconfianças dos investidores e usuários devido à volatilidade de seus valores. Uma forma de mitigar essa volatilidade é aplicar inteligência computacional baseada em algoritmos de aprendizado de máquina, com o intuito de predizer os valores de sua cotação. Este trabalho busca aplicar uma Rede Neural Recorrente (RNN) utilizando-se da série histórica do Bitcoin para realizar a predição da curva relativa ao valor de fechamento diário. Para realizar o treinamento do algoritmo, foi utilizada a base de dados Bitstamp da CryptoDataDownload. Os dados utilizados são relativos à paridade BTCUSD no período de 28/11/2014 até 29/11/2019. Diversos indicadores foram avaliados e combinados para verificar a qualidade da geração do modelo, porém o melhor resultado obtido utilizou apenas o indicador de curva (valor de fechamento diário) com uma raiz quadrada do erro quadrático médio (do Inglês root mean square error - RMSE) de 260.137, sendo esse valor um parâmetro para pesquisas futuras.pt_BR
dc.language.isopt_BRpt_BR
dc.rightsopen accesspt_BR
dc.subjectTransferência eletrônica de fundospt_BR
dc.subjectBitcoinpt_BR
dc.subjectAprendizagempt_BR
dc.subjectMercado financeiropt_BR
dc.titlePredição de séries temporais aplicada ao mercado de criptomoedas.pt_BR
dc.typeTCC-Graduaçãopt_BR
dc.contributor.refereeGertrudes, Jadson Castropt_BR
dc.contributor.refereeSantos, Valéria de Carvalhopt_BR
dc.contributor.refereeLuz, Eduardo José da Silvapt_BR
dc.contributor.refereeSilva Junior, Júlio César Araújo dapt_BR
dc.description.abstractenBitcoin is a decentralized digital currency that has emerged to replace current payment methods. However it faces distrust from investors and users due to the volatility of its values. One way to mitigate this volatility is to apply computational intelligence based on machine learning algorithms to predict their quotation values. Thus, this work aims to apply a Recurrent Neural Network (RNN), using Bitcoin's historical series, to predict the curve relative to the daily closing value. This work uses the Bitstamp database of the CryptoDataDownload webpage for training the algorithm. The data used are for BTCUSD parity from 11/28/2014 to 11/29/2019. Several indicators were evaluated and combined to verify the quality of the solution, however, the best result obtained was only the curve indicator (daily closing value) with a square root of the mean square error root mean square error (RMSE) of 260,137, being a parameter value for future researches.pt_BR
dc.contributor.authorID14.1.4285pt_BR
Aparece nas coleções:Ciência da Computação

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
MONOGRAFIA_PrediçãoSériesTemporais.pdf1,74 MBAdobe PDFVisualizar/Abrir


Este item está licenciado sob uma Licença Creative Commons Creative Commons