Universidade Federal de Ouro Preto
Escola de Minas

Departamento de Engenharia de Producgao, Administragao e Economia

JoAo ViINicius FRUGENCIO DE SOUZA

Template Estrutural Open-Source para Chatbots
Conversacionais via WhatsApp Cloud API

Ouro Preto
2025

Joao Vinicius Frugencio de Souza

Template Estrutural Open-Source para Chatbots
Conversacionais via WhatsApp Cloud API

Monografia apresentada ao Curso de Enge-
nharia de Produgao da Universidade Federal
de Ouro Preto como parte dos requisitos para
a obtencao do Grau de Engenheiro de Pro-
ducgao.

Orientador: Prof. Me. Cristiano Luis Turbino de Franca e Silva

Ouro Preto
2025

MINISTERIO DA EDUCACAO
UNIVERSIDADE FEDERAL DE OURO PRETO
REITORIA
ESCOLA DE MINAS
DEPARTAMENTO DE ENGENHARIA DE PRODUCAO,
ADMINISTRACAO E ECON

FOLHA DE APROVACAO

Jodo Vinicius Frugencio de Souza
Template Estrutural Open-Source para Chatbots Conversacionais via WhatsApp Cloud API

Monografia apresentada ao Curso de Engenharia de Produgdo da Universidade Federal
de Ouro Preto como requisito parcial para obtencdo do titulo de Engenheiro de Producdo

Aprovada em 18 de Dezembro de 2025

Membros da banca

Mestre - Cristiano Luis Turbino de Franca e Silva - Orientador(a) Universidade Federal de Ouro Preto
Doutor - Helton Cristiano Gomes - Universidade Federal de Ouro Preto
Doutor - Ya Grossi Andrade - Universidade Federal de Ouro Preto

Cristiano Luis Turbino de Franca e Silva, orientador do trabalho, aprovou a versao final e autorizou seu depésito na
Biblioteca Digital de Trabalhos de Conclusdo de Curso da UFOP em 18/12/2025.

m——y
eil Documento assinado eletronicamente por Cristiano Luis Turbino de Franca e Silva, PROFESSOR DE
o] * flly MAGISTERIO SUPERIOR, em 18/12/2025, as 19:51, conforme horario oficial de Brasilia, com

assinatura

| eletrénica fundamento no art. 62, § 12, do Decreto n2 8.539, de 8 de outubro de 2015.

m—y
eil Documento assinado eletronicamente por Ya Grossi Andrade, PROFESSOR DE MAGISTERIO
2 - L‘ﬁy SUPERIOR, em 24/12/2025, as 17:49, conforme horario oficial de Brasilia, com fundamento no art.

assinatura

| eletrénica 69, § 12, do Decreto n? 8.539, de 8 de outubro de 2015.

Referéncia: Caso responda este documento, indicar expressamente o Processo n2 23109.016427/2025-83 SEIn? 1035101

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163
Telefone: 3135591540 - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Dedico este trabalho a minha avé que foi total exemplo de forga, sabedoria e amor
incondicional, cuja presenca e palavras sempre me inspiraram a seguir com fé e determi-

nacao.

Agradecimentos

Agradeco primeiramente a Deus, pela forca, sabedoria e oportunidades concedidas ao
longo desta caminhada.

Ao Professor Cristiano Luis, meu orientador, por ter acreditado em meu potencial
desde o inicio, por me conceder meu primeiro projeto e por ter me apresentado a progra-
macao e ciencia de dados — dreas que transformaram completamente minha trajetoria
académica e profissional. Sem sua orientacao e paciéncia, este trabalho e todos os meus
atuais projetos, de fato, nao existiriam.

Ao Professor Helton Gomes, pela constante dedicacao a criagao de projetos inovadores
e por incentivar os alunos a explorarem novas ideias e tecnologias com proposito.

Ao Professor Gustavo Nikolaus, pela amizade, apoio e por sempre estar disposto a
ajudar dentro e fora da sala de aula.

Ao Professor Ya Grossi, pela amizade e pelas parcerias em projetos que tanto contri-
buiram para meu crescimento técnico e pessoal.

Ao Professor André Luis, por compartilhar ensinamentos valiosos sobre empreende-
dorismo e por inspirar caminhos que sigo até hoje.

Estendo meus agradecimentos ao amigo Luciano Lages Torres, que acreditou no meu
trabalho e confiou em sua aplicacao pratica, possibilitando a concretizacao e validacao de
meus conhecimentos academicos.

A Republica Tabor, meu lar durante a graduacao, onde encontrei amizade, compa-
nheirismo e apoio.

Aos amigos que caminharam comigo ao longo desta trajetéria: Thiago, parceiro de
trabalho e de tantas realizacoes em conjunto; Talles Francisco, meu amigo e colega de
graduacao, por sua amizade leal e incentivo constante; Fernando Alzamora e Matheus
Rezende, pela parceria e pelos momentos de aprendizado compartilhado; e a Marielly
Aratjo e Pedro Augusto, por sua amizade e presenca constante.

A todos os professores do Departamento de Engenharia de Produgao da Escola de
Minas (DEPRO), que contribuiram de forma direta ou indireta para minha formagcao
académica e profissional, deixo meu sincero reconhecimento e gratidao.

Por fim, a todos que, de alguma forma, estiveram presentes nesta caminhada — ofere-

cendo apoio, amizade, conhecimento ou inspiracao —, meu mais profundo muito obrigado.

“Nada é mais poderoso do que uma ideia cujo tempo chegou.”

Victor Hugo

Resumo

Este trabalho apresenta um template estrutural open-source para o desenvolvimento de
chatbots conversacionais integrados a WhatsApp Cloud API, com foco em arquitetura
modular, reutilizacao e escalabilidade. A pesquisa é de natureza aplicada, com aborda-
gem qualitativa e carater experimental. A proposta é disponibilizar ao leitor uma base
de cddigo que abstrai camadas de servidor (Node.js/Express), controle de mensagens e
cddigos utilitarios, de modo que o desenvolvedor concentre seus esforcos apenas na 16-
gica de negocio do bot. A validacao experimental empregou Ngrok para homologacao de
webhooks e testes de desempenho, estabilidade e tratamento de falhas, incluindo o envi-
o/recebimento de texto, imagens e botdes interativos. Como aplicacao pratica, o template
foi utilizado em uma empresa de engenharia em Belo Horizonte para vistorias veiculares
via WhatsApp: o motorista responde a um checklist guiado (placa obrigatdria, itens de
seguranca e integridade, fotos e observagoes), e as respostas sao armazenadas em banco
de dados, no caso deste projeto, optou-se pelo PostgreSQL. Uma API REST desenvol-
vida em Python, abastece um dashboard web que permite consultar vistorias por placa,
visualizar fichas, gerar relatérios e baixar PDFs. Os resultados indicam que a solugao é
estavel, escalavel e extensivel, confirmando sua adequacao como infraestrutura base para

projetos de automacao conversacional e como contribuicao reutilizavel a comunidade.

Palavras-chave: chatbot; WhatsApp Cloud API; arquitetura modular; open-source; Node.js;

PostgreSQL; FastAPI; automacao conversacional; checklist de vistoria.

Abstract

This work presents an open-source structural template for developing conversational chat-
bots integrated with the WhatsApp Cloud API, with emphasis on modular architecture,
reuse, and scalability. The research is applied in nature, with a qualitative and experi-
mental approach. The proposal is to provide a codebase that abstracts the server layer
(Node.js/Express), message handling, and utility modules so that developers can focus
primarily on the bot’s business logic. Experimental validation used Ngrok for webhook
homologation and for testing performance, stability, and failure handling, including the
sending and receiving of text, images, and interactive buttons. As a practical applica-
tion, the template was deployed in an engineering company in Belo Horizonte to support
vehicle inspections via WhatsApp: drivers answer a guided checklist (mandatory license
plate, safety and integrity items, photos, and comments), and the responses are stored
in a PostgreSQL database. A REST API developed in Python feeds a web dashboard
that allows users to query inspections by license plate, view records, generate reports, and
download PDFs. The results indicate that the solution is stable, scalable, and extensible,
confirming its suitability as a base infrastructure for conversational automation projects

and as a reusable contribution to the community.

Keywords: chatbot; WhatsApp Cloud API; modular architecture; open-source; Node.js;

PostgreSQL; FastAPI; conversational automation; vehicle inspection.

Lista de figuras

[Figura 1 — Fluxograma de comunicacao sistema-usuario.| 20
[Figura 2 — Captura de tela do aplicativo WhatsApp.| 27
[Figura 3 — Esquema entidade-relacionamento do Banco de Dados.| 28

[Figura 4 — Captura de tela do website.| 30

Lista de tabelas

[lTabela 1 — Funcao em JavaScript para envio de mensagem do bot para o usuario.| 23
[labela 2 — Exemplo de requisicao a WhatsApp Business Plattorm.|. 24
[labela 3 — Exemplo de retorno da platatorma apos envio da mensagem.|. 25

[labela 4 — Exemplo de endpoint da API desenvolvida em FastAPL| 29

Lista de abreviaturas e siglas

API Application Programming Interface

DELETE Método HTTP DELETE (remocao de recurso)

GET Método HTTP GET (leitura de recurso)
Git Sistema de controle de versao distribuido
HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

POST Método HTTP POST (envio/cria¢ao de recurso)
PUT Método HTTP PUT (atualizagao de recurso)
REST Representational State Transfer

SI Sistema de Informacao

TI Tecnologia da Informacao

URL Uniform Resource Locator

Sumario

il INTRODUGAOQ|o e e e e e e e e e e e e 11
2 REFERENCIAL TEORICO!| vttt 12
2.1 Sistemas de Informacao e Automacao de Processos|. 12
(2.2 Chatbots e Comunicacao Automatizadal 12
2.3 Arquitetura de Software Modular] 13
(2.4 Integracao de Sistemas, APIs e WhatsApp Cloud API}. 14
2.5 Engenharia de Software e Desenvolvimento do Template[. 15
2.6 Computacao em Nuvem e Disponibilidade. 16
2.7 Software Livre e Colaboracao|. 16

17
3 METODOLOGIA 18
4 APRESENTACAO E DISCUSSAO DOS RESULTADOS| 19
4.1 Concepcao daidela] 19
(4.2 Estrutura e Arquitetura do Sistemal00 0L 20
4.3 Exemplo de Implementacao|. 22
4.4 Validacao Experimental 00000000 25
[4.5 Aplicacao Pratical 0o 26
5 CONCLUSOES E CONSIDERACOES FINAIS|. 31

11

1 Introducao

A comunicacao online faz parte do dia a dia das pessoas, empresas e 6rgaos publicos,
e uma grande parte dessas interagoes acontece por aplicativos de mensagem, em especial
o WhatsApp. Nesse sentido, os chatbots surgem como uma forma simples de automatizar
atendimentos, coletar dados e oferecer servigos sem exigir que o usuario instale novos apli-
cativos ou acesse websites no navegador. Porém, por tras dessa conversa aparentemente
“natural”, existe toda uma estrutura técnica que precisa ser planejada, desenvolvida e
mantida. Este trabalho apresenta uma visao geral dessa estrutura e propoe um template
estrutural open-source para criacao de chatbots conversacionais integrados a WhatsApp
Cloud API.

A motivacao central desta pesquisa esta no fato de que muitos desenvolvedores re-
petem, em cada novo projeto, as mesmas etapas de configuragao de servidor, integracao
com a API da Meta, tratamento de mensagens e conexao com banco de dados, em vez
de reutilizar uma base comum e bem organizada. Ao mesmo tempo, 6rgaos publicos e
empresas precisam de solucgoes confidveis para automatizar fluxos como pesquisas de opi-
niao e vistorias veiculares, usando um canal ja conhecido pela populacao. Nesse contexto,
O’Brien e Marakas| (2013) destacam que iniciativas de automacao e uso de canais digitais
sO geram resultados consistentes quando apoiadas em processos bem definidos e bases de
dados confiaveis.

O objetivo deste trabalho é propor e implementar um template estrutural open-source
para o desenvolvimento de chatbots conversacionais integrados a WhatsApp Cloud APL.
Para isso, tém-se os seguintes objetivos especificos: mapear os requisitos minimos de
infraestrutura e de légica de negdcio para esse tipo de solugao; definir uma arquitetura
modular em camadas, separando servidor, integracao com a API, controle de mensagens
e acesso a dados; implementar e documentar esse template em codigo aberto, de forma
organizada e reutilizavel; e validar sua aplicacao em um caso real de vistoria veicular,
avaliando sua estabilidade, seu comportamento sob multiplas requisicoes e a facilidade de
adaptacgao a novas logicas de conversacao.

A metodologia de pesquisa é de natureza aplicada, com abordagem qualitativa e cara-
ter descritivo e exploratério. O estudo é conduzido como pesquisa-acao, na qual o autor
desenvolve, testa e ajusta o template em ciclos sucessivos de implementacao e validacao,

utilizando tecnologias de desenvolvimento web, banco de dados e controle de versao.

12

2 Referencial teorico

Este capitulo apresenta os conceitos que sustentam o desenvolvimento deste trabalho,
abordando sistemas de informacao, comunicacao automatizada, arquitetura modular, in-
tegragao entre aplicagoes, computacao em nuvem e fundamentos relacionados ao uso de

software livre.

2.1 Sistemas de Informacgao e Automacgao de Processos

Laudon| (2022)) trata os sistemas de informagdo como arranjos coordenados de pes-
soas, processos e tecnologia, responsaveis por coletar, processar, armazenar e distribuir
informagcoes para apoiar as operacoes rotineiras e a tomada de decisao nas organizagoes.
Seguindo a mesma linha de pensamento, M.Stair e W.Reynolds (2015) definem os siste-
mas de informacao como uma combinacao organizada de pessoas, software, hardware e
dados, ressaltando que o valor do sistema nao estd apenas na tecnologia em si, mas na
capacidade de transformar dados em informacao 1til para quem toma decisoes. Ja |[Pot-
ter| (2007) chamam atencao para a dimensao gerencial desses sistemas, ao defender que
eles devem ser pensados como instrumentos para apoiar a estratégia e nao apenas como
ferramentas operacionais, aproximando a linguagem da TI da linguagem do negocio.

Na mesma diregao, Prado e Souza| (2014) reforca a ideia de que os sistemas de in-
formacao sao sistemas sociotécnicos, resultantes da interacao entre tecnologia, pessoas e
processos organizacionais, e s6 fazem sentido quando conectados a objetivos concretos
da organizacdo. Da mesma forma, Rezende (2011) enfatiza que o planejamento de TI
deve estar integrado ao planejamento estratégico, de modo que a informagao circule entre
areas distintas e dé suporte as decisoes. |Audy| (2005|) destacam que, a medida que cresce
a necessidade de integrar dados e servigos, aumenta também o espaco para automacao de
rotinas e para o uso de canais digitais de atendimento.

Nesse cenério, (O’Brien e Marakas| (2013) lembram que iniciativas de automacao sé
geram resultados consistentes quando estao acopladas a processos bem definidos e a bases
de dados confiaveis, estrutura que, segundo os autores, permite que canais automatizados
respondam de forma padronizada, registrem o histérico das interagoes e alimentem os

demais sistemas corporativos com informacoes atualizadas.

2.2 Chatbots e Comunicacao Automatizada

Raj (2019) mostra que um chatbot pode ser estruturado como uma aplicacdo que
combina processamento de linguagem natural, regras de negécio e um canal de entrega
(mensageiro, web ou aplicativo), de modo que o usuério interaja em linguagem natural e

o sistema responda de forma programaéatica. Nessa mesma linha, |Cruz, Alencar e Schmitz

Capitulo 2. Referencial teorico 13

(2019) destacam que assistentes virtuais inteligentes e chatbots articulam essa camada
técnica com preocupacoes de experiéncia do cliente, desenhando didlogos e fluxos de aten-
dimento consistentes ao longo do tempo. De forma mais pratica, [Frizzarin e Frizzarin
(2023)) evidenciam como bots em mensageiros podem ser construidos para executar ta-
refas especificas, como consultas, notificacoes, apoio ao comércio eletronico e pesquisas
de opiniao, reforcando a ideia de chatbots como servigos automatizados acoplados a um
canal de comunicacao.

No contexto dos aplicativos de mensagem, (Gongalez| (2020) apontam que o canal de
comunicag¢ao passa a desempenhar papel central na jornada do usuario, influenciando di-
retamente o desenho dos fluxos conversacionais, as formas de interacao e os requisitos
de integracao com sistemas legados. Os autores destacam que, em plataformas ampla-
mente utilizadas, como mensageiros méveis, aspectos como tipos de mensagem suporta-
dos, mecanismos de autenticacao e politicas de uso definidos pelo provedor da plataforma
condicionam a forma como os chatbots sao projetados e implantados.

Sob a perspectiva dos sistemas de informagao, |[Laudon| (2022) ressalta que iniciativas
de automacao em canais digitais de atendimento dependem da integragao entre processos
organizacionais, recursos tecnolégicos e bases de dados, de modo que as interacoes reali-
zadas nesses canais possam ser registradas, recuperadas e utilizadas para apoiar a tomada
de decisao. Essa integragao, segundo o autor, é fundamental para que aplicagoes conver-
sacionais operem de forma continua, mantenham o historico das interagoes e garantam

disponibilidade e consisténcia na prestacao do servico.

2.3 Arquitetura de Software Modular

Pressman (2011) aponta que a modularizagdo reduz a complexidade e aumenta a
manutenibilidade do software, na medida em que diminui a dificuldade de entendimento
do cédigo. |[Sommerville| (2011) refor¢ca que médulos bem definidos permitem ciclos de
desenvolvimento em paralelo e que a arquitetura deve deixar claras as dependéncias entre
componentes. Na mesma linha, Wazlawick! (2019) destaca que a modularidade s6 é efetiva
quando combinada com forte coesao interna entre as fungoes e baixo acoplamento entre
modulos, de forma que cada parte tenha uma responsabilidade bem definida e possa
evoluir sem provocar efeitos imprevisiveis no restante do sistema.

Bass, Clements e Kazman| (2021)) trata a arquitetura como uma decomposi¢ao do
sistema em componentes e conectores orientada por atributos de qualidade, como desem-
penho, disponibilidade e modificabilidade, mostrando que a escolha dos médulos nao é
apenas técnica, mas estratégica para a evolugao da solucao e a insercao de novos recur-
sos. De forma complementar, Richards e Ford| (2024) discute a importancia de pensar em
modulos como unidades que combinam coesao, granularidade adequada e contratos bem
definidos, permitindo que alteracoes estruturais sejam feitas de modo incremental, sem

reescrever o sistema inteiro.

Capitulo 2. Referencial teorico 14

No contexto brasileiro, ha também uma preocupagao pratica em conectar modulari-
dade com cenérios reais de desenvolvimento. |Santanal (2024) argumenta que uma arqui-
tetura modular bem desenhada facilita atacar requisitos nao funcionais, como escalabili-
dade, seguranca e confiabilidade, porque cada mdédulo pode ser dimensionado e protegido
de forma especifica. Em termos de organizacao do cédigo, isso implica, segundo o autor,
separar claramente partes voltadas a infraestrutura, a integracao com servicos externos e

a légica de negocio, evitando estruturas muito rigidas e pouco flexiveis.

2.4 Integracao de Sistemas, APIs e WhatsApp Cloud API

Segundo Alves| (2014) e |Audy| (2005)), uma APT (Application Programming Interface)
pode ser entendida como um “contrato” de software que define quais operagoes podem ser
realizadas, como devem ser chamadas e em qual formato os dados serao trocados. Em
geral, ela especifica endpoints, métodos HTTP, formatos de envio (geralmente em JSON),
cddigos de retorno e mecanismos de autenticacao. Na pratica, é essa camada que permite
que dois sistemas — muitas vezes desenvolvidos em linguagens diferentes, hospedados em
infraestruturas distintas e pertencentes a organizagoes diferentes — consigam “conversar”
de forma previsivel e segura. Grande parte das APIs contemporaneas segue o estilo
REST (Representational State Transfer), em que cada recurso é identificado por uma
URL, operacoes como GET, POST, PUT e DELETE sao utilizadas de forma consistente
e o servidor nao precisa manter o estado da interagao entre uma requisicao e outra.

Richardson, Amundsen e Ruby| (2013) destacam que, quando os endpoints estao bem
documentados e seguem o modelo RESTful, a comunicacao entre clientes e servigos é
facilitada, podendo ser complementada por fluxos de notificacao baseados em webhooks.
Nesse arranjo, em vez de o cliente consultar continuamente a API para saber se ha novi-
dades, o préprio provedor envia requisicoes HT'TP a uma URL publica sempre que ocorre
um evento relevante, como o recebimento de uma nova mensagem ou a alteracao de status
de um recurso. Segundo o autor, essa abordagem reduz o acoplamento entre os sistemas,
melhora a escalabilidade e permite o processamento de eventos em tempo quase real.

Além desses principios, [Fowler| (2018]) apontam que integragoes distribuidas tendem
a ser mais estaveis quando os limites entre servicos sao bem definidos e a comunicacao
entre eles segue padroes claros. Em arquiteturas orientadas a servicos, cada componente
deve assumir responsabilidades especificas e expor interfaces bem projetadas, de forma
que mudancas internas nao quebrem o funcionamento do restante do sistema. Nessa
mesma diregao, [Filho (2009) ressalta que a definicao de interfaces estaveis e o uso de
especificacoes bem estabelecidas sao fundamentais para reduzir riscos em sistemas que
dependem de integracao entre diferentes componentes.

No caso da WhatsApp Cloud API, a Meta fornece um servigo backend em nuvem res-
ponsavel por receber e encaminhar mensagens ao nimero de WhatsApp do negdcio, dis-

ponibilizar endpoints REST para envio de mensagens, disparar webhooks HTTPS quando

Capitulo 2. Referencial teorico 15

o usuario interage e aplicar regras de seguranca baseadas em tokens de acesso. Do ponto
de vista arquitetural, as aplicagbes que consomem essa API assumem o papel de cliente,
enquanto a infraestrutura da Meta atua como servidor, configurando um arranjo tipico
de arquitetura cliente—servidor em que as comunicacoes ocorrem por meio de requisicoes
e respostas HTTP de forma assincrona Tanenbaum, Feamster e Wetherall (2021). As-
sim, a automagao conversacional ocorre por meio de uma API oficial que intermedeia, de

maneira segura, 0 mensageiro e as aplicagoes que consomem esses Servicos.

2.5 Engenharia de Software e Desenvolvimento do Template

Pressmanl (2011)) destaca que processos de engenharia de software conduzidos em ciclos
iterativos, envolvendo andlise, projeto, implementacao e testes, tendem a produzir siste-
mas mais estaveis, pois permitem revisar requisitos e corrigir falhas em estagios iniciais
do desenvolvimento. Na mesma diregao, [Sommerville (2011)) refor¢a que a clareza na se-
paracao de etapas e na definicao de atividades reduz a complexidade do trabalho e facilita
a manutencao de solucoes que serao evoluidas ou reutilizadas por diferentes equipes ao
longo do tempo.

Essa perspectiva é complementada por [Bezerral (2014]), ao apontar que a engenharia de
software contemporanea exige nao apenas processos bem definidos, mas também a capa-
cidade de estruturar sistemas de maneira a favorecer extensoes futuras. O autor observa
que projetos que dependem de integracao com APIs externas se beneficiam de arquitetu-
ras modulares que isolam componentes e reduzem o impacto de mudancas inevitaveis ao
longo do ciclo de vida do software, principalmente em contextos distribuidos e sujeitos a
evolucao tecnologica constante.

Além disso, |Larman| (2007)) destaca que o desenvolvimento orientado a objetos, quando
associado a boas praticas de anélise de requisitos e a iteracoes curtas, contribui para maior
flexibilidade na evolucao de sistemas. Essa abordagem favorece a identificagao de respon-
sabilidades e a divisao do software em unidades menores e coesas, estratégia considerada
fundamental para aplicagoes que precisam lidar com diferentes fluxos de mensagens, mul-
tiplos tipos de eventos e regras de negdcio especificas. Nessa mesma linha, [Martin| (2020)
argumenta que a manutencao de um cédigo limpo, com funcoes claras, modularizacao
adequada e eliminagao de dependéncias desnecessérias, ¢ um fator determinante para a
longevidade de solugoes de software e para sua possibilidade de reutilizacao por outros
desenvolvedores.

Por fim, [Valente| (2020) ressalta que projetos de software que pretendem ser ampla-
mente adotados devem considerar, desde o inicio, a escolha de tecnologias com ecossis-
temas maduros, documentacao acessivel e forte apoio comunitario. Segundo o autor, a
combinagao entre uma arquitetura bem modularizada, boas praticas de engenharia de
software e o uso de plataformas consolidadas aumenta a probabilidade de que o cédigo

possa ser compreendido, mantido e estendido em diferentes contextos de uso.

Capitulo 2. Referencial teorico 16

2.6 Computagao em Nuvem e Disponibilidade

Taurion (2009) explica que a computagao em nuvem fornece recursos de forma eléstica
e sob demanda, permitindo que aplicacoes voltadas a internet fiquem sempre disponiveis e
escalem quando o volume de acesso cresce. Da mesma forma, Veras| (2015)) aponta que esse
modelo de provisao remota favorece sistemas que precisam expor endpoints publicos para
receber notificagoes (como webhooks), porque a prépria infraestrutura de nuvem jé oferece
disponibilidade, endere¢o ptiblico e mecanismos de seguranca necessarios para esse tipo de
integragao. Nessa linha, |Velte (2012) destaca que a nuvem permite ajustar dinamicamente
capacidade de processamento e armazenamento conforme a carga do sistema, o que é
essencial para manter desempenho aceitavel mesmo em periodos de pico de acesso.

De forma complementar, [Erl e Monroy (2024) destacam que a computagao em nuvem
¢ uma infraestrutura fundamental para sistemas modernos, pois permite alocar recursos
computacionais conforme a demanda, com mecanismos nativos de redundancia, recupera-
¢ao automatica e balanceamento de carga. Essas caracteristicas tornam a nuvem especi-
almente adequada para aplicacoes que exigem operacao continua e baixa laténcia, ja que
o provedor entrega servigos de processamento, armazenamento e rede de forma integrada,

reduzindo as chances de interrupcoes mesmo em cendrios de alto uso simultaneo.

2.7 Software Livre e Colaboracgao

Raymond| (1998)) apresenta uma visao de desenvolvimento colaborativo em que o soft-
ware é produzido de forma aberta e incremental, com participagao ativa de uma comuni-
dade distribuida. Nesse modelo, o cédigo-fonte é disponibilizado sob licencas que garan-
tem ao usuario liberdades como executar, estudar, modificar e redistribuir o software, o
que o diferencia de solugoes proprietarias, nas quais o cédigo permanece fechado. Uma
base ampla de usudrios, desenvolvedores, pesquisadores e estudantes, distribuida e ativa,
consegue encontrar erros com mais rapidez, propor melhorias e adaptar o sistema a dife-
rentes contextos, sintese que o autor descreve como o “modelo bazar” de desenvolvimento
colaborativo.

No contexto brasileiro, |Silveira, (2004)) destaca que o software livre também assume
um papel politico e social, ao favorecer a democratizacao do acesso ao conhecimento e
a reducao da dependéncia tecnologica de grandes empresas. Ao tratar o cdédigo como
bem comum, o autor argumenta que comunidades de desenvolvedores e instituigoes pu-
blicas podem adaptar e compartilhar solugoes tecnoldgicas de acordo com suas préprias
necessidades, fortalecendo aquilo que denomina soberania informacional e a circulacao de
conhecimento na sociedade.

Do ponto de vista economico, Taurion| (2004) mostra que o software livre viabiliza dife-
rentes modelos de negdcio baseados na prestagao de servigos, na customizacgao de solugoes,

em treinamentos e em suporte técnico especializado, em vez de uma simples venda de li-

Capitulo 2. Referencial teorico 17

cencas de uso. Esses modelos permitem que empresas e organizacoes publicas reduzam
custos com licencas ao mesmo tempo em que apoiam um ecossistema local de desenvolvi-
mento de software, criando oportunidades de inovacao e especializagao tecnoldgica.

Subramanian e Jude| (2020) apresentam uma introdugao sistemética aos fundamentos
do software livre e de cédigo aberto, abordando conceitos, licencas, comunidades de de-
senvolvimento e implicagoes para organizagoes que pretendem adotar esse tipo de solucao.
Os autores ressaltam que a adocao de software livre envolve uma cultura de comparti-
lhamento, revisao e melhoria continua, em que o codigo é constantemente inspecionado,
corrigido e ampliado pela propria comunidade usuaria.

Por fim, Guesser| (2006]) analisa o software livre como um fenémeno social que envolve
disputas sobre propriedade intelectual, politicas publicas de tecnologia e estratégias de
desenvolvimento nacional. No caso brasileiro, o autor mostra que sua ado¢ao por Or-
gaos publicos influencia nao apenas a infraestrutura técnica, mas também politicas de
transparéencia e abertura de codigo. Nesse contexto, o uso de componentes livres em ar-
quiteturas de software favorece a criacao de solucoes reutilizaveis e alinhadas a principios

de colaboracao e compartilhamento de conhecimento.

2.7.1 Uso do Git

O Git é um sistema de controle de versao distribuido utilizado para registrar alteragoes
em arquivos de cédigo-fonte e gerenciar diferentes estados de um repositério ao longo
do tempo. Sua arquitetura permite a manutencao de um historico de mudancas em
repositorios locais e remotos.

De acordo com |Chacon e Straub (2014), o Git foi projetado para ser rapido, efici-
ente e seguro, oferecendo recursos como branches, merges e um modelo distribuido que
reduz riscos de perda de dados e de inconsisténcias. |Aquiles (2014) mostram como o uso
disciplinado de branches, tags e repositorios remotos facilita o trabalho em equipe e a
rastreabilidade das alteragoes em projetos reais, permitindo acompanhar quem fez cada
modificagao, quando e com qual propésito. De forma complementar, |Silverman| (2013])
ressalta que o modelo distribuido do Git possibilita que cada desenvolvedor experimente
localmente e s6 compartilhe suas mudangas quando estiverem estaveis, o que contribui

para reduzir conflitos e erros de compilacao durante o processo de integracao.

18

3 Metodologia

De acordo com (VENAZI et al., 2016)) , a metodologia de pesquisa deve ser classificada
quanto a natureza, abordagem, objetivos e procedimentos técnicos adotados. Assim, este

trabalho segue esse modelo de categorizacao metodoldgica, conforme descrito a seguir.

e natureza: A pesquisa é de natureza aplicada, pois busca gerar um produto pratico
capaz de solucionar uma necessidade real. O estudo visa desenvolver uma infraestru-
tura de cédigo aberto (open-source) voltada a criagdo de chatbots conversacionais
integrados a WhatsApp Cloud API. O resultado é um template modular e reutili-
zavel, que reduz o esforco técnico na integracao com a API e promove o reuso de

c6digo e arquitetura entre diferentes projetos.

e abordagem: A abordagem adotada é qualitativa, uma vez que se atuou diretamente
em todas as etapas do desenvolvimento, interpretando e analisando os resultados
obtidos. A observacao do comportamento do chatbot, dos fluxos de mensagens e da
estrutura modular foi essencial para compreender os fendmenos técnicos envolvidos
na integracao entre o servidor Node.js e a WhatsApp Cloud API, permitindo o

aprimoramento continuo da solugao.

e objetivos: A pesquisa possui carater descritivo e exploratorio. E descritiva por
apresentar detalhadamente a estrutura da arquitetura proposta — suas camadas,
modulos e funcoes de integracao. E também exploratéria, pois busca investigar
novas formas de projetar uma base genérica e flexivel para chatbots, permitindo sua

aplicacao em diferentes contextos de automacgao conversacional.

e procedimentos técnicos: Quanto aos procedimentos técnicos, trata-se de uma pesquisa-
acao, pois o autor participou diretamente do processo de desenvolvimento e vali-
dacao do sistema. Foram utilizadas ferramentas como Node.js, Express.js, Post-
greSQL, Visual Studio Code, GitLab e Ngrok. Durante a implementacao, o pesqui-
sador criou e testou modulos independentes de envio e recebimento de mensagens,
controle de tokens, webhooks e gerenciamento de respostas, intervindo de forma

pratica para aprimorar e validar a estrutura desenvolvida.

19

4 Apresentacao e discussao dos resultados

O presente capitulo apresenta a aplicagao pratica da metodologia proposta no capi-
tulo anterior, detalhando as etapas de construcao, estruturagao e validacao do template

estrutural para chatbots conversacionais.

4.1 Concepgao da ideia

A criacao de chatbots surgiu como resposta a um problema que se tornou cada vez
mais comum na atualidade: a resisténcia dos usuarios de smartphones em instalar novos
aplicativos. E frequente que a exigéncia de instalacao de aplicativos empresariais, apenas
para a execugao de uma tarefa simples, iniba o usuario de realizé-la, devido a necessidade
de realizar diversas etapas, como download, cadastro, login e aprendizado sobre o uso da
interface. Esse processo torna-se repetitivo e cansativo, mesmo quando os aplicativos sao
considerados intuitivos.

Nesse contexto, o problema apresentado pelo cliente estava diretamente relacionado
a essa dificuldade: como criar uma aplicacao de pesquisa de opiniao que fosse de réapida
disseminacao e que exigisse o minimo de esfor¢o do usuério?

A solucao encontrada foi o desenvolvimento de chatbots de pesquisa integrados ao
WhatsApp, plataforma amplamente popular e acessivel. Atualmente, o WhatsApp é o
aplicativo de mensagens mais utilizado do Brasil e um dos mais populares do mundo, com
cerca de 148 milhoes de usudrios brasileiros ativos em 2024, o que representa aproxima-
damente 98% dos usuérios de smartphones do pais (World Population Review, 2024).

A simples divulgagao de um numero de telefone, que ao ser acessado abre automa-
ticamente uma conversa no aplicativo e inicia o didlogo com o usuario, mostrou-se uma
alternativa muito mais acessivel e menos onerosa do que a obrigatoriedade de instalar um
aplicativo préprio ou acessar um site, por exemplo.

Apés a implementacao de outros chatbots, como o de vistoria de veiculos (criado a
partir de novas demandas do mesmo cliente), foi possivel observar que a estrutura basica
desses sistemas se repete. As fungoes e a estruturacao interna dos chatbots apresentavam
padroes semelhantes, compostos por médulos de envio de mensagens, controle de servidor
e utilitarios bésicos, variando apenas na logica especifica de cada aplicagao, de acordo
com sua finalidade.

Dessa forma, surgiu a ideia central deste trabalho: disseminar essa estrutura-base,
transformando-a em um template open-source que permita a outros desenvolvedores reu-
tilizar essa infraestrutura pronta, concentrando seus esfor¢os apenas na criacao da logica

e das regras de negdcio de cada chatbot, conforme suas necessidades especificas.

Capitulo 4. Apresentac¢do e discussdo dos resultados 20

4.2 Estrutura e Arquitetura do Sistema

A estrutura proposta neste trabalho foi desenvolvida a partir de uma arquitetura mo-
dular em camadas, com foco em reutilizacao, baixo acoplamento e independéncia logica
entre os componentes. O template open-source foi projetado para permitir que o desenvol-
vedor concentre seus esforcos apenas na légica de negdcio de cada chatbot, enquanto toda
a infraestrutura de comunicacao e integracao com a WhatsApp Cloud API permanece
pronta e padronizada.

A Figura [I] apresenta o fluxograma geral da arquitetura do sistema, que ilustra o
fluxo completo de comunicagao entre o usudrio final, a API da Meta e o servidor do
programador. O diagrama foi dividido em duas grandes 4reas de responsabilidade: o
Aplicativo da Meta e o Sistema do Programador, representadas visualmente por cores

distintas no fundo.

Figura 1 — Fluxograma de comunicagao sistema-usuario.

PSnare = A APLICATIVO DA META
Usuario (Aplicativo

Whatsapp)

N

A

Whatsapp Cloud API
(Meta Developer) SISTEMA DO PROGRAMADOR

'y
Mensagem recebida Resquisitar autorizacao da meta para enviar a mensagem de retorno

o}

Servidor Node.js

Mensagem processada T Devolucao do resultado através de mensagem
A

Controladores de
Mensagem

[
Mensagem tratada na légica Devolucdo do resultado através de mensagem
N

Logica de negdcio

b

Consulta/ registro dos dados [T Banco de Dados

Utilitarios base //
Consulta/ registro dos dados

D Logica de cada chatbot I:I Légica compartilhada I:I Interface da Meta

Fonte: Pesquisa direta, 2025.

Na parte superior, localizada na regiao amarela, encontra-se o Aplicativo da Meta,

Capitulo 4. Apresentac¢do e discussdo dos resultados 21

que engloba o Usudrio (aplicativo WhatsApp) e a WhatsApp Cloud API (Meta Deve-
loper). Essa camada é responsavel por receber as mensagens enviadas pelos usudrios e
encaminhé-las aos servidores configurados pelo desenvolvedor. O WhatsApp atua como
interface de comunicagao, enquanto a API da Meta funciona como um intermediario oficial
entre a plataforma de mensagens e o sistema externo, garantindo autenticacao, entrega e
seguranca das requisigoes.

O bloco da WhatsApp Cloud API encontra-se propositalmente posicionado entre as
duas dreas (meio amarelo e meio rosado), simbolizando sua dupla natureza operacional.
Isso ocorre porque, embora a API seja hospedada e mantida pela Meta, toda a implemen-
tagao pratica — como o tratamento de erros, o gerenciamento de tokens, a configuracao de
endpoints e o recebimento das requisi¢oes via webhook — ¢ realizada pelo desenvolvedor
dentro do seu proprio sistema. Assim, a API funciona como um ponto de transicao entre
o dominio da Meta e o ambiente controlado pelo programador.

Na sequéncia, na area rosada, inicia-se o Sistema do Programador, composto por moé-
dulos interligados que estruturam o template proposto. De forma geral, toda a arquitetura
pode ser entendida como um conjunto de blocos bem separados: (i) uma camada de ser-
vidor, responsével por receber as requisigoes HT'TP; (ii) uma camada de integra¢ao com a
WhatsApp Cloud API, que concentra tudo o que diz respeito a tokens, endpoints e deta-
lhes do protocolo; (iii) uma camada de tratamento de mensagens e eventos, que interpreta
o que chegou e encaminha para o lugar certo; e (iv) uma camada de 16gica conversacional,
onde ficam as regras especificas de cada chatbot. Essa decomposicao ajuda a manter o
c6digo organizado e facilita tanto a manutencao quanto o reuso em outros projetos.

O primeiro médulo é o Servidor Node.js, desenvolvido com o framework Express.js,
responsavel por receber as mensagens encaminhadas pelo webhook da Meta, validar as
credenciais e direcionar o contetido para o médulo apropriado.

A escolha pelo uso de Node.js com Express.js nao foi aleatéria. Por ser uma plataforma
orientada a operacoes de entrada e saida assincronas, o Node.js lida bem com cenérios em
que ha muitas conexoes simultaneas e diversas requisicoes leves acontecendo ao mesmo
tempo, que é justamente o caso de um chatbot exposto na internet. Além disso, trata-se
de uma tecnologia com amplo ecossistema de bibliotecas e uma comunidade ativa, o que
facilita a resolugao de problemas praticos e a evolucao do template no futuro.

Em seguida, o fluxo segue para o Controlador de Mensagens, que representa a camada
de orquestracao das requisicoes. Essa camada atua como um roteador logico, identificando
o tipo de mensagem recebida (texto, imagem, botdo, lista, etc.) e encaminhando-a para
a Logica de Negdécio correspondente. A Logica de Negocio, representada por um bloco
branco, simboliza o nucleo variavel de cada chatbot — é a parte do sistema que muda
conforme a finalidade da aplicacao. Enquanto as demais camadas do template perma-
necem fixas e compartilhadas entre diferentes projetos, a logica é onde o desenvolvedor

define as regras de decisao, os didlogos e os comportamentos personalizados do bot.

Capitulo 4. Apresentac¢do e discussdo dos resultados 22

Essa separacao entre logica e infraestrutura é o que garante a modularidade e reuti-
lizagao do cédigo. Abaixo da légica, o sistema conta com o mdédulo de Utilitarios Base,
que fornece fungoes genéricas, como formatacao de mensagens, templates de resposta,
tratamento de erros e logs. Esse modulo também realiza a ponte de comunicacao com o
Banco de Dados, responsavel por registrar informacgoes, armazenar respostas simuladas e
processar dados necessarios ao fluxo da conversa.

A interacao entre os utilitarios e o banco é representada por setas bidirecionais, sim-
bolizando que ha tanto consulta quanto registro de informacgoes. Por fim, o fluxo retorna
ao topo do diagrama, seguindo o caminho inverso até o usudrio. A mensagem processada
percorre novamente as camadas — Controlador, Servidor Node.js e WhatsApp Cloud
API — até chegar ao aplicativo do usudrio, que recebe a resposta de forma automatica e
continua, fechando o ciclo de interacao.

Em resumo, a arquitetura do template proposto foi estruturada de modo a isolar
responsabilidades: a Meta mantém o ambiente de hospedagem e autenticacao; o desen-
volvedor controla o tratamento, a légica e o envio das respostas; e o usuario final interage
por meio de uma interface ja familiar, o WhatsApp. Essa divisao clara, representada
visualmente no fluxograma, reflete a proposta central do trabalho: oferecer uma base es-
trutural genérica, aberta e reutilizavel, capaz de suportar a criacao de diferentes tipos de

chatbots conversacionais de forma agil e padronizada.

4.3 Exemplo de Implementacao

O c6digo exposto na Tabela [I] exemplifica o funcionamento bésico de envio de men-
sagens via WhatsApp Cloud API, utilizando o médulo Axios para comunicacao HTTP.
Vale ressaltar que o cédigo contido neste trabalho se encontra disponivel em sua integra
e documentado na plataforma GitLab.

Na prética, o fluxo de desenvolvimento adotado neste trabalho pode ser resumido em

quatro etapas principais:

a) modelar o fluxo de mensagens que o bot deve tratar, definindo quais informacoes

serao solicitadas e em qual ordem;

b) projetar as interfaces de comunicac¢ao com a API do WhatsApp, especificando end-

points, formatos de mensagem e parametros de autenticacao;

¢) implementar os handlers de webhook responséveis por receber os eventos enviados

pela Meta e repassar o contetido para a logica de negdcio;

d) testar o endpoint real, validando assinatura, token de acesso e formatos de requisigao

e resposta, até garantir o funcionamento estavel da integracao.

Capitulo 4. Apresentac¢do e discussdo dos resultados 23

Esse encadeamento ajuda a transformar o template em uma base reaproveitavel de fato,
e nao apenas em um exemplo isolado de cédigo.

Nesse contexto, o uso do Git se torna fundamental em praticas recentes de engenharia
de software, como desenvolvimento colaborativo, integracao continua e metodologias ageis,
permitindo que equipes controlem versoes de cédigo de forma organizada. Ao manter
o template versionado e publicado em um repositério GitLab, o projeto passa a estar
disponivel para estudo, cépia, adaptagao e melhoria por outros desenvolvedores. Neste
contexto de colaboracao, o Git se torna um requisito béasico para a difusao da ideia de

software livre proposta neste trabalho.

Tabela 1 — Funcao em JavaScript para envio de mensagem do bot para o usuario.

Trecho de cédigo em JavaScript:

export async function sendMessage(
number: string,
message: string,
wmaid?: string
): Promise<any | null> {
const ctx = "sendTextMessage",
const body = (message || "").trim(O) || " ";
const payload: any = {
messaging_product: "whatsapp",
to: number,
type: "text",
text: {
preview_url: false,
body,
3,
I
try {
const { data } = await api.post(‘/messages‘, payload);
console.log(‘ [WA:${ctx}] 0K, JSON.stringify(data));
return data;
} catch (e) {
logAxiosError(ctx, e);
return null;

Fonte: Pesquisa direta, 2025.

Do ponto de vista da comunicagao, toda a sessao do WhatsApp fica sob responsabili-
dade da Meta, e a aplicacao desenvolvida neste trabalho conversa com a plataforma exclu-
sivamente por meio de requisicoes HTTP direcionadas a WhatsApp Business Platform.

Esse é exatamente o modelo descrito na documentagao oficial da WhatsApp Business

Capitulo 4. Apresentac¢do e discussdo dos resultados 24

Platform, que apresenta endpoints como os ilustrados nas Tabelas 2 e [3]

No contexto deste trabalho, o servidor desenvolvido faz o papel de cliente e a infraes-
trutura da Meta faz o papel de servidor, em um modelo clédssico cliente-servidor descrito
por [Tanenbaum, Feamster e Wetherall (2021)), em que as trocas se dao por requisigoes
e respostas HTTP de forma assincrona — requisito importante para suportar multiplas
conversas simultaneas. Para garantir autenticidade e integridade, utiliza-se aquilo que a
propria Meta exige: tokens de acesso validos e webhooks expostos em HTTPS com ve-
rificacao. Assim, a automacao conversacional s6 ocorre porque hda uma API oficial que

intermedeia, de maneira segura, o mensageiro e a aplicacao desenvolvida.

Tabela 2 — Exemplo de requisicao a WhatsApp Business Platform.

Exemplo de solicitagao para enviar uma mensagem de texto com visualizagoes de
links ativadas e uma string de texto do corpo que contém um link.

curl ’https://graph.facebook.com/v24.0/106540352242922/messages’ \
-H ’Content-Type: application/json’ \

-H ’Authorization: Bearer EAAJB...’ \
_d)

{
"messaging_product": "whatsapp",
"recipient_type": "individual",

"to": "+16505551234",
thpen: "teXt"
"text": {
"preview_url": true,
"body": "As requested, here’’’s the link to our latest product:
https://www.meta.com/quest/quest-3/"
b
})

Fonte: Pesquisa direta, 2025.

Capitulo 4. Apresentac¢do e discussdo dos resultados 25

Tabela 3 — Exemplo de retorno da plataforma apoés envio da mensagem.

Trecho de resposta JSON retornada pela API.

{
"messaging_product": "whatsapp",
"contacts": [
{
"input": "+16505551234"
"wa_id": "16505551234"
}
1,
"messages": [
{
"id": "wamid.HBgLMTYONjcwNDM10TUVAgARGBI1R jQyNUE3NEYxMzAzMz(5MKEA"
}
]
}

Fonte: Pesquisa direta, 2025.

Esses exemplos reforgam que o cédigo JavaScript apresentado na Tabela [I] atua como
uma camada de conveniéncia sobre os endpoints oficiais: o desenvolvedor constréi o pay-
load, envia a requisicao HTTP e trata o retorno JSON, enquanto toda a manutencao da

sessao, entrega de mensagens e disponibilidade da infraestrutura permanece sob respon-
sabilidade da Meta.

4.4 Validagao Experimental

Apés a implementagao do template, o sistema foi submetido a uma fase de validacao
experimental com o objetivo de testar seu desempenho, estabilidade e comportamento em
situacoes reais de uso. Durante os testes, foi utilizada a ferramenta Ngrok, responsavel
por criar tuneis seguros entre o servidor local e a internet, permitindo que o webhook do
WhatsApp Cloud API fosse acessado publicamente durante o processo de homologacao.
Essa abordagem possibilitou simular requisicoes reais de usuarios, observando o compor-
tamento do sistema em um ambiente controlado, porém representativo de uma operacao
real.

Os testes contemplaram a andlise de diferentes aspectos técnicos, como:
e tempo médio de resposta do servidor as requisicoes da API;
e estabilidade do webhook sob diferentes cargas e volumes de mensagens;

e tratamento automatico de falhas, reconexoes e reenvios;

Capitulo 4. Apresentac¢do e discussdo dos resultados 26

e envio e recebimento de diferentes tipos de conteudo, incluindo texto, imagem e

botoes interativos.

Os resultados demonstraram que o template é estavel, modular e compativel com
diversos contextos de aplicacao, apresentando baixo tempo de resposta e comportamento
previsivel mesmo em situagoes de miultiplas requisicoes simultaneas. Ressalta-se que o
Ngrok ¢ utilizado apenas para fins de homologacao da aplica¢ao, nao sendo o servidor que
sera utilizado em produgao.

Ademais, os testes confirmaram a viabilidade técnica da estrutura proposta, validando

sua utilizacao como base genérica para o desenvolvimento de chatbots personalizados.

4.5 Aplicagao Pratica

Como parte da validagao técnica e da demonstragao do uso pratico do template desen-
volvido, foi realizada uma aplicacao real do sistema em um cliente corporativo do setor
de engenharia, sediado em Belo Horizonte. Essa implementacao foi configurada como um
estudo de campo técnico e o objetivo principal foi validar o comportamento do template
em um fluxo conversacional real, com dados concretos sendo processados, armazenados e
exibidos por uma aplicacao web integrada.

O caso de uso escolhido foi o de vistoria veicular automatizada, no qual motoristas
interagem com o chatbot via WhatsApp para responder a uma sequéncia de perguntas
configuradas previamente no servidor. As mensagens sao trocadas de forma dinamica: o
bot inicia solicitando a placa do veiculo (campo obrigatério) e, em seguida, envia perguntas
sobre condi¢oes do automédvel, como funcionamento de freios, existéncia de arranhoes,
irregularidades externas e outros itens do checklist de inspecao.

Cada resposta enviada pelo motorista é capturada pela WhatsApp Cloud API, tratada
no servidor Node.js e posteriormente armazenada em um banco de dados PostgreSQL. A
Figura [2] apresenta um exemplo real da conversa realizada no WhatsApp, mostrando o
fluxo entre o bot e o motorista. Na imagem é possivel observar as perguntas e respos-
tas registradas durante uma vistoria, incluindo a placa “HPM3905”, que corresponde ao
mesmo veiculo exibido nos demais registros. O bot conduz a interacao de maneira ori-
entada, utilizando botoes interativos, listas e mensagens de confirmacao, oferecendo uma

experiéncia conversacional fluida e intuitiva.

Capitulo 4. Apresentac¢do e discussdo dos resultados 27

Figura 2 — Captura de tela do aplicativo WhatsApp.

BOT Veicular

Enquetes
Selecionar

escolha uma pesquisa por gentileza

BO'
Enquetes
Selecionar...

Vistoria Diaria
Checklist de vistoria de exemplo T
Informe a placa do veiculo 177
Hpm3905 ...
Luz de freio funcionando?

Sim

la

freio funcionando?
77
Liste avarias externas (uma por mensagem) ...,

Neoltem 717,

Ha mais alguma resposta?

Fonte: Pesquisa direta, 2025.

O armazenamento e a estrutura légica dos dados coletados sao realizados por meio
de um banco de dados relacional PostgreSQL, cujo modelo é apresentado na Figura [3]
O diagrama exibe as principais tabelas envolvidas no processo de vistoria: Motoristas
(dados pessoais e CNH); Veiculos (identifica¢ao, modelo, ano, status); ChecklistModelos,
ChecklistItens e ChecklistSecoes (estrutura das perguntas e segoes de vistoria); Inspecoes
(dados das vistorias realizadas, incluindo coordenadas GPS e status); RespostasChecklist
(armazenamento das respostas individuais de cada item); e Irregularidades (controle de
nao conformidades identificadas). Essa estrutura relacional garante integridade referen-
cial, escalabilidade e rastreabilidade, permitindo que cada resposta no WhatsApp seja

vinculada diretamente a vistoria correspondente.

Capitulo 4. Apresentac¢do e discussdo dos resultados 28

Figura 3 — Esquema entidade-relacionamento do Banco de Dados.

[respostaschecklist = motoristas
123 inspecao_id 123id
2 item_id ER inspecoes AZ telefone
AZ valor_texto 125 id AZ nome
123 valor_numero A7 placa e AZ enh
valor_bool . 125 checklist_id T () validade_cnh
A2 valor_apcao \\\\; 123 checklist_versao P— ’
A2 foto_url 123 motorista_id
A2 observacao AZ telefone_motorista -
@ criado_sm e F=) veiculos
F irregularidades O ﬂn-a\izadc_s.m o ", A placa
- 125 latitude o AZ renavam
123id 125 longitude A7 modelo
125 inspecao_id Of 7 localizacao : 123 ano
f; gz:‘c—r::ao A7 status . ::'v:'m—'“ £ checklistmadelos
A7 gravidade R — 123 id
resolvida -| AZ nome
@) resolvida_em | A2 descricao
FH checklistitens 193 versao
123 id e ativo
123 checklist_id o
F chatsessoes 123 secao_id _— 5 e
3id AZ texto o [==] .check\lstsecoes
A7 telefone Az tipo 21
A7 placa o | [] obrigatorio T 125 checklist_id
125 inspecao_id &4 opcoes .. AZ titulo
123 proximo_item_id 123 ordem 125 ordem
A% estado ativo
{ } contexto 123 tipo_bot
@ atualizado_em 123 pergunta_anterior
AZ resposta_condicional

Fonte: Pesquisa direta, 2025.

Além do armazenamento e andlise dos dados, foi desenvolvida uma API REST em
Python, utilizando o framework FastAPI, responsavel por fornecer os dados do sistema
ao painel web administrativo. Essa API permite consultas por placa, data, checklist e
status, além de gerar resumos automadticos e relatérios de vistoria. A Tabela [ilustra

parte do codigo da API que fornece os dados de resumo por placa:

Capitulo 4. Apresentac¢do e discussdo dos resultados 29

Tabela 4 — Exemplo de endpoint da API desenvolvida em FastAPI.

Trecho de codigo em Python:

Qapp.get("/placa/{placa}/resumo")

def resumo_por_placa(placa: str):
Retorna um resumo agregado por placa:
- total_inspecoes

ultima_inspecao

- itens_reprovados
- irregularidades_abertas

nnn

p = _sanitize_placa(placa)

sql = """

SELECT v.placa, COUNT(i.id) AS total_inspecoes,
MAX(i.finalizado_em) AS ultima_inspecao

FROM Veiculos v

LEFT JOIN Inspecoes i ON i.placa = v.placa
WHERE v.placa = %s

GROUP BY v.placa;

nnn

return _exec(sql, (p,))

Fonte: Pesquisa direta, 2025.

O painel web, desenvolvido com React, consome essa API e exibe visualmente as
informagoes de cada veiculo. A Figura[lmostra a interface completa do painel de vistorias,
na qual o administrador pode consultar o historico por placa, visualizar o resumo da
vistoria (no exemplo, da placa HPM3905), acessar o checklist com todas as respostas
enviadas pelo bot e exportar o relatorio em formato PDF. O sistema também apresenta
métricas consolidadas, como o total de inspecoes, a data da ultima vistoria e indicadores

de irregularidades.

Capitulo 4. Apresentac¢do e discussdo dos resultados 30

Figura 4 — Captura de tela do website.

Painel de Vistorias &' Atualizar
€D Fitros sutintopce: (§) (CIEEED
b Placa & Periodo De
HPM3905 v Ultimos 30 Dias v
Até
° Resumo Da Placa
Total De Inspegdes Utima Inspegdo Reprovados Irregularidades
16 22/10/2025, 17:18 0 0
e Lista De Inspegdes @ Ficha Da Vistoria (HPM3905 - #20) [imegemins) QU000

D Status Finalizado Item Valor

@ 20 concluida 22/10/2025, 17:18 Informe a placa do veiculo Hpm3905
o119 concluida 22/10/2025, 17:15 Selecione o tipo de veiculo

018 concluida 22/10/2025, 17:14 Liste avarias externas (uma por mensagem) N&o tem

[ek:] concluida 16/10/2025, 15:22 Luz de freio funcionando? sim

e Veiculos Cadastrados

Somente
Ativos

Q Buscar por Placa, Modelo ou
Selecione Uma Placa

Placa Modelo Ano
ABC1234 Carro 2022
AWD9037 Moto 1999

HAH1234 Carro 2006

HPM3905 EIEEXT Carro 2003
JFR6326 moto 2005
MYP1100 Moto 2021
MZT0996 Carro 1920
NAL4513 Onibus 2023

QPU5424 Carro 2020

Fonte: Pesquisa direta, 2025.

Com a integracao entre o chatbot, o banco de dados e o painel de controle, o sistema
completo demonstra a viabilidade e a aplicabilidade do template proposto. A infraestru-
tura mostrou-se robusta, reutilizavel e escalavel, atendendo aos requisitos de modularidade
e independéncia entre camadas. A correspondéncia direta entre as mensagens registradas
no WhatsApp (Figura , os dados gravados no banco (Figura [3)) e os resultados exibi-
dos no painel (Figura {4 evidencia o funcionamento completo e validado da arquitetura
desenvolvida.

Vale ressaltar que, no momento em que foi documentado este trabalho, ainda nao
haviam sido desenvolvidos métodos de autenticacao de usuario, o que se faz necessério
neste tipo de aplicagao para garantir confidencialidade e privacidade dos dados. Essa
aplicagao pratica consolida o template como uma ferramenta open-source aplicavel em
ambientes corporativos, reduzindo custos de desenvolvimento e acelerando a implantacao

de chatbots integrados a WhatsApp Cloud API.

31

5 Conclusoes e consideracoes finais

Este trabalho teve como objetivo propor e implementar um template estrutural open
source para o desenvolvimento de chatbots conversacionais integrados a WhatsApp Cloud
API. Ao longo do texto, mostrou-se que é viavel organizar essa solucao em camadas bem
definidas, separando a infraestrutura de comunicacao da logica de negdcio. Com isso,
o desenvolvedor deixa de se preocupar com detalhes repetitivos de integracao e pode
concentrar esforcos naquilo que o chatbot precisa, de fato, realizar em cada contexto.

Na pratica, a implementacao evidenciou que o template é capaz de sustentar um fluxo
completo: o usuario interage com o bot pelo WhatsApp, as mensagens passam pela API
da Meta, sao tratadas em um servidor Node.js, registradas em um banco PostgreSQL e,
posteriormente, exibidas em um painel web construido em React e abastecido por uma
APIL. O caso de uso de vistoria veicular permitiu demonstrar esse percurso de ponta a
ponta, desde a coleta das respostas até a geragao de relatorios e a visualizacao de historicos
de inspecao.

Os testes de validacao indicaram que a estrutura proposta é estéavel e previsivel, apre-
sentando bom desempenho e comportamento consistente mesmo diante de multiplas requi-
sigoes simultaneas. A divisao em mddulos — servidor, controlador de mensagens, logica
de negécio, utilitarios e banco de dados — também se mostrou vantajosa para a manu-
tencao e evolucao do codigo. Ainda assim, ficaram evidentes alguns pontos de melhoria,
como a auséncia de mecanismos completos de autenticagao de usudrios e a necessidade de
uma avaliacao mais aprofundada da experiéncia de uso do chatbot em diferentes cenarios.

Como trabalhos futuros, espera-se que esse template sirva de base para que outros
desenvolvedores possam reutilizar o codigo, adaptar a solucao as suas proprias demandas
e aprimorar o desempenho do bot, especialmente em termos de seguranca. A partir dessa
infraestrutura ja consolidada, é possivel incluir autenticacao, fortalecer o tratamento de
dados sensiveis, adicionar camadas adicionais de logs e monitoramento, integrar modelos
de inteligéncia artificial para processar a intencao do usudrio e adequar a légica conversa-
cional a outros dominios além de vistorias. A perspectiva futura é de que o projeto evolua
como um ponto de partida flexivel, sobre o qual cada desenvolvedor possa construir seus

proprios chatbots, aproveitando a o cédigo fonte base disponibilidado neste trabalho.

Referéncias

ALVES, W. P. Projetos de sistemas Web: Conceitos, estruturas, criagao de banco de
dados e ferramentas de desenvolvimento. 1. ed. Sao Paulo: Editora Erica, 2014.

AQUILES, A. Controlando Versoes com Git e GitHub. Sao Paulo: Casa do Cédigo, 2014.
ISBN 8566250532.

AUDY, G. K. d. A. e. A. C. J. L. N. Fundamentos de Sistemas de Informacao. 1. ed.
Porto Alegre, RS: Bookman, 2005.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. 4. ed. [S.L]:
Addison-Wesley, 2021.

BEZERRA, E. Principios de Andlise e Projeto de Sistemas com UML. Rio de Janeiro:
GEN LTC, 2014. ISBN 9788535226263.

CHACON, S.; STRAUB, B. Pro Git. 2. ed. [S.1.]: Apress, 2014. ISBN 9781484200773.
CRUZ, L. T.; ALENCAR, A. J.; SCHMITZ, E. A. Assistentes Virtuais Inteligentes e

Chatbots: Um guia pratico e tedrico sobre como criar erperiéncias e recordagoes encan-
tadoras para os clientes da sua empresa. Rio de Janeiro: Brasport, 2019.

ERL, T.; MONROY, E. B. Computacao em Nuvem: Conceitos, Tecnologia, Sequranca e
Arquitetura. Porto Alegre: Bookman, 2024. ISBN 8582606583.

FILHO, W. de P. P. Engenharia de Software: Fundamentos, Métodos e Padroes. Rio de
Janeiro: LTC, 2009. ISBN 9788521616504.

FOWLER, M. Padrées de Arquitetura de Aplicacoes Corporativas. Porto Alegre: Book-
man, 2018. ISBN 978-8577800643.

FRIZZARIN, P. K. L. P.; FRIZZARIN, F. B. Chatbots para Telegram: programe seus
primeiros bots usando Python. Sao Paulo: Casa do Cédigo, 2023.

GONGALEZ, F. F. Chatbot para atendimento automatizado. Dissertagao (Dissertagao de
Mestrado) — Universidade Fernando Pessoa, Porto, 2020.

GUESSER, A. H. Software Livre & Controvérsias Tecnocientificas: Uma andlise socio-
técnica no Brasil e em Portugal. 1. ed. Curitiba: [s.n.], 2006. ISBN 8536212330.

LARMAN, C. Utilizando UML e Padrées: Uma Introducdo a Andlise e ao Projeto Ori-
entados a Objetos e ao Desenvolvimento Iterativo. Porto Alegre: Bookman, 2007. ISBN
8560031529.

LAUDON, K. C. L. e J. P. Sistemas de Informacao Gerenciais: administrando a empresa
digital. 17. ed. Porto Alegre, RS: Bookman, 2022.

MARTIN, R. C. Codigo Limpo: Habilidades Prdticas do Agile Software. Rio de Janeiro:
Alta Books, 2020. ISBN 978-8550811482.

M.STAIR, R.; W.REYNOLDS, G. Principios de Sistemas de Informacdao. 3. ed. Sao
Paulo: Cengage Learning, 2015. ISBN 8522118620.

O’BRIEN, J. A.; MARAKAS, G. M. Administracao de Sistemas de Informacado. 15. ed.
Sao Paulo: McGraw-Hill, 2013. ISBN 8580551102.

POTTER, E. T. e R. E. Introdu¢ao a Sistemas de Informacao: Uma Abordagem Gerencial.
Rio de Janeiro: Campus, 2007. ISBN 9788535222067

PRADO, E. P. V.; SOUZA, C. A. de. Fundamentos de Sistemas de Informacao. Rio de
Janeiro: LTC, 2014. ISBN 8535274359.

PRESSMAN, R. S. Engenharia de Software: Uma Abordagem Profissional. 7. ed. Porto
Alegre, RS: AMGH Editora, 2011.

RAJ, S. Construindo Chatbots Com Python. Sao Paulo: Novatec, 2019.
RAYMOND, E. S. A Catedral e o Bazar. [S.1.: s.n.], 1998.

REZENDE, D. A. Planejamento Estratégico Publico ou Privado. 1. ed. Sao Paulo,SP:
Atlas, 2011.

RICHARDS, M.; FORD, N. Fundamentos da Arquitetura de Software: Uma Abordagem
de Engenharia. Rio de Janeiro: Alta Books, 2024.

RICHARDSON, L.; AMUNDSEN, M.; RUBY, S. RESTful Web APIs: Services for a
Changing World. 1. ed. Sebastopol: O’Reilly Media, 2013.

SANTANA, E. F. Z. Caiza de ferramentas da Arquitetura de Software: Como tornar suas
aplicagoes mais escaldveis, confidveis e sequras. [S.1.]: Casa do Cédigo, 2024.

SILVEIRA, S. A. da. Software livre: a luta pela liberdade do conhecimento. Sao Paulo:
Fundagao Perseu Abramo, 2004. ISBN 8576430037.

SILVERMAN, R. E. Git. Guia Prdtico. Sao Paulo: Novatec Editora, 2013. ISBN
8575223798.

SOMMERVILLE, 1. Engenharia de Software. 9. ed. Sao Paulo: Pearson Education, 2011.

SUBRAMANTIAN, B.; JUDE, J. Introdu¢ao ao Software Livre e de Cédigo Aberto. [S.1.]:
Edigoes Nosso Conhecimento, 2020. ISBN 6200968675.

TANENBAUM, A.; FEAMSTER, N.; WETHERALL, D. Redes de Computadores. 6. ed.
Porto Alegre, RS: Bookman, 2021.

TAURION, C. Software livre: potencialidades e modelos de negocio. Rio de Janeiro: Bras-
port, 2004. ISBN 8574521736.

TAURION, C. Cloud Computing. Computacdo em Nuvem. Rio de Janeiro: Brasport,
20009.

VALENTE, M. T. Engenharia de Software Moderna: principios e praticas para desenvol-
vimento de software com produtividade. Belo Horizonte: [s.n.], 2020.

VELTE, A. T. Cloud Computing. Computacao em Nuvem: uma Abordagem Prdtica. Rio
de Janeiro: Alta Books, 2012. ISBN 8576085364.

VENAZI, D. et al. Introducao a engenharia de producao: conceitos e casos prdticos. Rio
de Janeiro: LTC, 2016.

VERAS, M. Computacao em nuvem. 1. ed. Rio de Janeiro: Brasport, 2015.

WAZLAWICK, R. S. Engenharia de Software: Conceitos e Prdticas. 2. ed. Rio de Janeiro:
LTC, 2019.

World Population Review. WhatsApp Users by Country 2024. 2024. |<https://
worldpopulationreview.com /country-rankings /whatsapp-users-by-country>. Acesso em:
30 out. 2025.

https://worldpopulationreview.com/country-rankings/whatsapp-users-by-country
https://worldpopulationreview.com/country-rankings/whatsapp-users-by-country

	5782e9ee5213940cf1b1d894e1fce1bb00fe0da115374a6cf3dff7699573fe9b.pdf
	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract

	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	Lista de abreviaturas e siglas

	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	Sumário
	Introdução
	Referencial teórico
	Sistemas de Informação e Automação de Processos
	Chatbots e Comunicação Automatizada
	Arquitetura de Software Modular
	Integração de Sistemas, APIs e WhatsApp Cloud API
	Engenharia de Software e Desenvolvimento do Template
	Computação em Nuvem e Disponibilidade
	Software Livre e Colaboração
	Uso do Git

	Metodologia
	Apresentação e discussão dos resultados
	Concepção da ideia
	Estrutura e Arquitetura do Sistema
	Exemplo de Implementação
	Validação Experimental
	Aplicação Prática

	Conclusões e considerações finais
	Referências

	5782e9ee5213940cf1b1d894e1fce1bb00fe0da115374a6cf3dff7699573fe9b.pdf
	5782e9ee5213940cf1b1d894e1fce1bb00fe0da115374a6cf3dff7699573fe9b.pdf

