
Universidade Federal de Ouro Preto

Escola de Minas

Departamento de Engenharia de Produção, Administração e Economia

João Vińıcius Frugencio de Souza

Template Estrutural Open-Source para Chatbots
Conversacionais via WhatsApp Cloud API

Ouro Preto
2025

João Vinícius Frugencio de Souza

Template Estrutural Open-Source para Chatbots
Conversacionais via WhatsApp Cloud API

Monografia apresentada ao Curso de Enge-
nharia de Produção da Universidade Federal
de Ouro Preto como parte dos requisitos para
a obtenção do Grau de Engenheiro de Pro-
dução.

Orientador: Prof. Me. Cristiano Lúıs Turbino de França e Silva

Ouro Preto
2025

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA
ESCOLA DE MINAS

DEPARTAMENTO DE ENGENHARIA DE PRODUCAO,
ADMINISTRACAO E ECON

FOLHA DE APROVAÇÃO

João Vinícius Frugencio de Souza

Template Estrutural Open-Source para Chatbots Conversacionais via WhatsApp Cloud API

Monografia apresentada ao Curso de Engenharia de Produção da Universidade Federal
de Ouro Preto como requisito parcial para obtenção do título de Engenheiro de Produção

Aprovada em 18 de Dezembro de 2025

Membros da banca

Mestre - Cristiano Luís Turbino de França e Silva - Orientador(a) Universidade Federal de Ouro Preto
Doutor - Helton Cristiano Gomes - Universidade Federal de Ouro Preto

Doutor - Yã Grossi Andrade - Universidade Federal de Ouro Preto

Cristiano Luís Turbino de França e Silva, orientador do trabalho, aprovou a versão final e autorizou seu depósito na
Biblioteca Digital de Trabalhos de Conclusão de Curso da UFOP em 18/12/2025.

Documento assinado eletronicamente por Cristiano Luis Turbino de Franca e Silva, PROFESSOR DE
MAGISTERIO SUPERIOR, em 18/12/2025, às 19:51, conforme horário oficial de Brasília, com
fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Yã Grossi Andrade, PROFESSOR DE MAGISTERIO
SUPERIOR, em 24/12/2025, às 17:49, conforme horário oficial de Brasília, com fundamento no art.
6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
http://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 1035101 e
o código CRC 301DA2D2.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.016427/2025-83 SEI nº 1035101

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163
Telefone: 3135591540 - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Dedico este trabalho à minha avó que foi total exemplo de força, sabedoria e amor

incondicional, cuja presença e palavras sempre me inspiraram a seguir com fé e determi-

nação.

Agradecimentos

Agradeço primeiramente a Deus, pela força, sabedoria e oportunidades concedidas ao

longo desta caminhada.

Ao Professor Cristiano Lúıs, meu orientador, por ter acreditado em meu potencial

desde o ińıcio, por me conceder meu primeiro projeto e por ter me apresentado a progra-

mação e ciencia de dados — áreas que transformaram completamente minha trajetória

acadêmica e profissional. Sem sua orientação e paciência, este trabalho e todos os meus

atuais projetos, de fato, não existiriam.

Ao Professor Helton Gomes, pela constante dedicação à criação de projetos inovadores

e por incentivar os alunos a explorarem novas ideias e tecnologias com propósito.

Ao Professor Gustavo Nikolaus, pela amizade, apoio e por sempre estar disposto a

ajudar dentro e fora da sala de aula.

Ao Professor Yã Grossi, pela amizade e pelas parcerias em projetos que tanto contri-

búıram para meu crescimento técnico e pessoal.

Ao Professor André Lúıs, por compartilhar ensinamentos valiosos sobre empreende-

dorismo e por inspirar caminhos que sigo até hoje.

Estendo meus agradecimentos ao amigo Luciano Lages Torres, que acreditou no meu

trabalho e confiou em sua aplicação prática, possibilitando a concretização e validação de

meus conhecimentos academicos.

À República Tabor, meu lar durante a graduação, onde encontrei amizade, compa-

nheirismo e apoio.

Aos amigos que caminharam comigo ao longo desta trajetória: Thiago, parceiro de

trabalho e de tantas realizações em conjunto; Talles Francisco, meu amigo e colega de

graduação, por sua amizade leal e incentivo constante; Fernando Alzamora e Matheus

Rezende, pela parceria e pelos momentos de aprendizado compartilhado; e à Marielly

Araújo e Pedro Augusto, por sua amizade e presença constante.

A todos os professores do Departamento de Engenharia de Produção da Escola de

Minas (DEPRO), que contribúıram de forma direta ou indireta para minha formação

acadêmica e profissional, deixo meu sincero reconhecimento e gratidão.

Por fim, a todos que, de alguma forma, estiveram presentes nesta caminhada — ofere-

cendo apoio, amizade, conhecimento ou inspiração —, meu mais profundomuito obrigado.

“Nada é mais poderoso do que uma ideia cujo tempo chegou.”

Victor Hugo

Resumo

Este trabalho apresenta um template estrutural open-source para o desenvolvimento de

chatbots conversacionais integrados à WhatsApp Cloud API, com foco em arquitetura

modular, reutilização e escalabilidade. A pesquisa é de natureza aplicada, com aborda-

gem qualitativa e caráter experimental. A proposta é disponibilizar ao leitor uma base

de código que abstrai camadas de servidor (Node.js/Express), controle de mensagens e

códigos utilitários, de modo que o desenvolvedor concentre seus esforços apenas na ló-

gica de negócio do bot. A validação experimental empregou Ngrok para homologação de

webhooks e testes de desempenho, estabilidade e tratamento de falhas, incluindo o envi-

o/recebimento de texto, imagens e botões interativos. Como aplicação prática, o template

foi utilizado em uma empresa de engenharia em Belo Horizonte para vistorias veiculares

via WhatsApp: o motorista responde a um checklist guiado (placa obrigatória, itens de

segurança e integridade, fotos e observações), e as respostas são armazenadas em banco

de dados, no caso deste projeto, optou-se pelo PostgreSQL. Uma API REST desenvol-

vida em Python, abastece um dashboard web que permite consultar vistorias por placa,

visualizar fichas, gerar relatórios e baixar PDFs. Os resultados indicam que a solução é

estável, escalável e extenśıvel, confirmando sua adequação como infraestrutura base para

projetos de automação conversacional e como contribuição reutilizável à comunidade.

Palavras-chave: chatbot; WhatsApp Cloud API; arquitetura modular; open-source; Node.js;

PostgreSQL; FastAPI; automação conversacional; checklist de vistoria.

Abstract

This work presents an open-source structural template for developing conversational chat-

bots integrated with the WhatsApp Cloud API, with emphasis on modular architecture,

reuse, and scalability. The research is applied in nature, with a qualitative and experi-

mental approach. The proposal is to provide a codebase that abstracts the server layer

(Node.js/Express), message handling, and utility modules so that developers can focus

primarily on the bot’s business logic. Experimental validation used Ngrok for webhook

homologation and for testing performance, stability, and failure handling, including the

sending and receiving of text, images, and interactive buttons. As a practical applica-

tion, the template was deployed in an engineering company in Belo Horizonte to support

vehicle inspections via WhatsApp: drivers answer a guided checklist (mandatory license

plate, safety and integrity items, photos, and comments), and the responses are stored

in a PostgreSQL database. A REST API developed in Python feeds a web dashboard

that allows users to query inspections by license plate, view records, generate reports, and

download PDFs. The results indicate that the solution is stable, scalable, and extensible,

confirming its suitability as a base infrastructure for conversational automation projects

and as a reusable contribution to the community.

Keywords: chatbot; WhatsApp Cloud API; modular architecture; open-source; Node.js;

PostgreSQL; FastAPI; conversational automation; vehicle inspection.

Lista de figuras

Figura 1 – Fluxograma de comunicação sistema-usuário. 20

Figura 2 – Captura de tela do aplicativo WhatsApp. 27

Figura 3 – Esquema entidade-relacionamento do Banco de Dados. 28

Figura 4 – Captura de tela do website. 30

Lista de tabelas

Tabela 1 – Função em JavaScript para envio de mensagem do bot para o usuário. 23

Tabela 2 – Exemplo de requisição à WhatsApp Business Platform. 24

Tabela 3 – Exemplo de retorno da plataforma após envio da mensagem. 25

Tabela 4 – Exemplo de endpoint da API desenvolvida em FastAPI. 29

Lista de abreviaturas e siglas

API Application Programming Interface

DELETE Método HTTP DELETE (remoção de recurso)

GET Método HTTP GET (leitura de recurso)

Git Sistema de controle de versão distribúıdo

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

JSON JavaScript Object Notation

POST Método HTTP POST (envio/criação de recurso)

PUT Método HTTP PUT (atualização de recurso)

REST Representational State Transfer

SI Sistema de Informação

TI Tecnologia da Informação

URL Uniform Resource Locator

Sumário

1 INTRODUÇÃO . 11

2 REFERENCIAL TEÓRICO . 12
2.1 Sistemas de Informação e Automação de Processos 12
2.2 Chatbots e Comunicação Automatizada 12
2.3 Arquitetura de Software Modular . 13
2.4 Integração de Sistemas, APIs e WhatsApp Cloud API 14
2.5 Engenharia de Software e Desenvolvimento do Template 15
2.6 Computação em Nuvem e Disponibilidade 16
2.7 Software Livre e Colaboração . 16
2.7.1 Uso do Git . 17

3 METODOLOGIA . 18

4 APRESENTAÇÃO E DISCUSSÃO DOS RESULTADOS 19
4.1 Concepção da ideia . 19
4.2 Estrutura e Arquitetura do Sistema . 20
4.3 Exemplo de Implementação . 22
4.4 Validação Experimental . 25
4.5 Aplicação Prática . 26

5 CONCLUSÕES E CONSIDERAÇÕES FINAIS 31

REFERÊNCIAS . 32

11

1 Introdução

A comunicação online faz parte do dia a dia das pessoas, empresas e órgãos públicos,

e uma grande parte dessas interações acontece por aplicativos de mensagem, em especial

o WhatsApp. Nesse sentido, os chatbots surgem como uma forma simples de automatizar

atendimentos, coletar dados e oferecer serviços sem exigir que o usuário instale novos apli-

cativos ou acesse websites no navegador. Porém, por trás dessa conversa aparentemente

“natural”, existe toda uma estrutura técnica que precisa ser planejada, desenvolvida e

mantida. Este trabalho apresenta uma visão geral dessa estrutura e propõe um template

estrutural open-source para criação de chatbots conversacionais integrados à WhatsApp

Cloud API.

A motivação central desta pesquisa está no fato de que muitos desenvolvedores re-

petem, em cada novo projeto, as mesmas etapas de configuração de servidor, integração

com a API da Meta, tratamento de mensagens e conexão com banco de dados, em vez

de reutilizar uma base comum e bem organizada. Ao mesmo tempo, órgãos públicos e

empresas precisam de soluções confiáveis para automatizar fluxos como pesquisas de opi-

nião e vistorias veiculares, usando um canal já conhecido pela população. Nesse contexto,

O’Brien e Marakas (2013) destacam que iniciativas de automação e uso de canais digitais

só geram resultados consistentes quando apoiadas em processos bem definidos e bases de

dados confiáveis.

O objetivo deste trabalho é propor e implementar um template estrutural open-source

para o desenvolvimento de chatbots conversacionais integrados à WhatsApp Cloud API.

Para isso, têm-se os seguintes objetivos espećıficos: mapear os requisitos mı́nimos de

infraestrutura e de lógica de negócio para esse tipo de solução; definir uma arquitetura

modular em camadas, separando servidor, integração com a API, controle de mensagens

e acesso a dados; implementar e documentar esse template em código aberto, de forma

organizada e reutilizável; e validar sua aplicação em um caso real de vistoria veicular,

avaliando sua estabilidade, seu comportamento sob múltiplas requisições e a facilidade de

adaptação a novas lógicas de conversação.

A metodologia de pesquisa é de natureza aplicada, com abordagem qualitativa e cará-

ter descritivo e exploratório. O estudo é conduzido como pesquisa-ação, na qual o autor

desenvolve, testa e ajusta o template em ciclos sucessivos de implementação e validação,

utilizando tecnologias de desenvolvimento web, banco de dados e controle de versão.

12

2 Referencial teórico

Este caṕıtulo apresenta os conceitos que sustentam o desenvolvimento deste trabalho,

abordando sistemas de informação, comunicação automatizada, arquitetura modular, in-

tegração entre aplicações, computação em nuvem e fundamentos relacionados ao uso de

software livre.

2.1 Sistemas de Informação e Automação de Processos

Laudon (2022) trata os sistemas de informação como arranjos coordenados de pes-

soas, processos e tecnologia, responsáveis por coletar, processar, armazenar e distribuir

informações para apoiar as operações rotineiras e a tomada de decisão nas organizações.

Seguindo a mesma linha de pensamento, M.Stair e W.Reynolds (2015) definem os siste-

mas de informação como uma combinação organizada de pessoas, software, hardware e

dados, ressaltando que o valor do sistema não está apenas na tecnologia em si, mas na

capacidade de transformar dados em informação útil para quem toma decisões. Já Pot-

ter (2007) chamam atenção para a dimensão gerencial desses sistemas, ao defender que

eles devem ser pensados como instrumentos para apoiar a estratégia e não apenas como

ferramentas operacionais, aproximando a linguagem da TI da linguagem do negócio.

Na mesma direção, Prado e Souza (2014) reforça a ideia de que os sistemas de in-

formação são sistemas sociotécnicos, resultantes da interação entre tecnologia, pessoas e

processos organizacionais, e só fazem sentido quando conectados a objetivos concretos

da organização. Da mesma forma, Rezende (2011) enfatiza que o planejamento de TI

deve estar integrado ao planejamento estratégico, de modo que a informação circule entre

áreas distintas e dê suporte às decisões. Audy (2005) destacam que, à medida que cresce

a necessidade de integrar dados e serviços, aumenta também o espaço para automação de

rotinas e para o uso de canais digitais de atendimento.

Nesse cenário, O’Brien e Marakas (2013) lembram que iniciativas de automação só

geram resultados consistentes quando estão acopladas a processos bem definidos e a bases

de dados confiáveis, estrutura que, segundo os autores, permite que canais automatizados

respondam de forma padronizada, registrem o histórico das interações e alimentem os

demais sistemas corporativos com informações atualizadas.

2.2 Chatbots e Comunicação Automatizada

Raj (2019) mostra que um chatbot pode ser estruturado como uma aplicação que

combina processamento de linguagem natural, regras de negócio e um canal de entrega

(mensageiro, web ou aplicativo), de modo que o usuário interaja em linguagem natural e

o sistema responda de forma programática. Nessa mesma linha, Cruz, Alencar e Schmitz

Caṕıtulo 2. Referencial teórico 13

(2019) destacam que assistentes virtuais inteligentes e chatbots articulam essa camada

técnica com preocupações de experiência do cliente, desenhando diálogos e fluxos de aten-

dimento consistentes ao longo do tempo. De forma mais prática, Frizzarin e Frizzarin

(2023) evidenciam como bots em mensageiros podem ser constrúıdos para executar ta-

refas espećıficas, como consultas, notificações, apoio ao comércio eletrônico e pesquisas

de opinião, reforçando a ideia de chatbots como serviços automatizados acoplados a um

canal de comunicação.

No contexto dos aplicativos de mensagem, Gonçalez (2020) apontam que o canal de

comunicação passa a desempenhar papel central na jornada do usuário, influenciando di-

retamente o desenho dos fluxos conversacionais, as formas de interação e os requisitos

de integração com sistemas legados. Os autores destacam que, em plataformas ampla-

mente utilizadas, como mensageiros móveis, aspectos como tipos de mensagem suporta-

dos, mecanismos de autenticação e poĺıticas de uso definidos pelo provedor da plataforma

condicionam a forma como os chatbots são projetados e implantados.

Sob a perspectiva dos sistemas de informação, Laudon (2022) ressalta que iniciativas

de automação em canais digitais de atendimento dependem da integração entre processos

organizacionais, recursos tecnológicos e bases de dados, de modo que as interações reali-

zadas nesses canais possam ser registradas, recuperadas e utilizadas para apoiar a tomada

de decisão. Essa integração, segundo o autor, é fundamental para que aplicações conver-

sacionais operem de forma cont́ınua, mantenham o histórico das interações e garantam

disponibilidade e consistência na prestação do serviço.

2.3 Arquitetura de Software Modular

Pressman (2011) aponta que a modularização reduz a complexidade e aumenta a

manutenibilidade do software, na medida em que diminui a dificuldade de entendimento

do código. Sommerville (2011) reforça que módulos bem definidos permitem ciclos de

desenvolvimento em paralelo e que a arquitetura deve deixar claras as dependências entre

componentes. Na mesma linha, Wazlawick (2019) destaca que a modularidade só é efetiva

quando combinada com forte coesão interna entre as funções e baixo acoplamento entre

módulos, de forma que cada parte tenha uma responsabilidade bem definida e possa

evoluir sem provocar efeitos impreviśıveis no restante do sistema.

Bass, Clements e Kazman (2021) trata a arquitetura como uma decomposição do

sistema em componentes e conectores orientada por atributos de qualidade, como desem-

penho, disponibilidade e modificabilidade, mostrando que a escolha dos módulos não é

apenas técnica, mas estratégica para a evolução da solução e a inserção de novos recur-

sos. De forma complementar, Richards e Ford (2024) discute a importância de pensar em

módulos como unidades que combinam coesão, granularidade adequada e contratos bem

definidos, permitindo que alterações estruturais sejam feitas de modo incremental, sem

reescrever o sistema inteiro.

Caṕıtulo 2. Referencial teórico 14

No contexto brasileiro, há também uma preocupação prática em conectar modulari-

dade com cenários reais de desenvolvimento. Santana (2024) argumenta que uma arqui-

tetura modular bem desenhada facilita atacar requisitos não funcionais, como escalabili-

dade, segurança e confiabilidade, porque cada módulo pode ser dimensionado e protegido

de forma espećıfica. Em termos de organização do código, isso implica, segundo o autor,

separar claramente partes voltadas à infraestrutura, à integração com serviços externos e

à lógica de negócio, evitando estruturas muito ŕıgidas e pouco flex́ıveis.

2.4 Integração de Sistemas, APIs e WhatsApp Cloud API

Segundo Alves (2014) e Audy (2005), uma API (Application Programming Interface)

pode ser entendida como um“contrato” de software que define quais operações podem ser

realizadas, como devem ser chamadas e em qual formato os dados serão trocados. Em

geral, ela especifica endpoints, métodos HTTP, formatos de envio (geralmente em JSON),

códigos de retorno e mecanismos de autenticação. Na prática, é essa camada que permite

que dois sistemas — muitas vezes desenvolvidos em linguagens diferentes, hospedados em

infraestruturas distintas e pertencentes a organizações diferentes — consigam “conversar”

de forma previśıvel e segura. Grande parte das APIs contemporâneas segue o estilo

REST (Representational State Transfer), em que cada recurso é identificado por uma

URL, operações como GET, POST, PUT e DELETE são utilizadas de forma consistente

e o servidor não precisa manter o estado da interação entre uma requisição e outra.

Richardson, Amundsen e Ruby (2013) destacam que, quando os endpoints estão bem

documentados e seguem o modelo RESTful, a comunicação entre clientes e serviços é

facilitada, podendo ser complementada por fluxos de notificação baseados em webhooks.

Nesse arranjo, em vez de o cliente consultar continuamente a API para saber se há novi-

dades, o próprio provedor envia requisições HTTP a uma URL pública sempre que ocorre

um evento relevante, como o recebimento de uma nova mensagem ou a alteração de status

de um recurso. Segundo o autor, essa abordagem reduz o acoplamento entre os sistemas,

melhora a escalabilidade e permite o processamento de eventos em tempo quase real.

Além desses prinćıpios, Fowler (2018) apontam que integrações distribúıdas tendem

a ser mais estáveis quando os limites entre serviços são bem definidos e a comunicação

entre eles segue padrões claros. Em arquiteturas orientadas a serviços, cada componente

deve assumir responsabilidades espećıficas e expor interfaces bem projetadas, de forma

que mudanças internas não quebrem o funcionamento do restante do sistema. Nessa

mesma direção, Filho (2009) ressalta que a definição de interfaces estáveis e o uso de

especificações bem estabelecidas são fundamentais para reduzir riscos em sistemas que

dependem de integração entre diferentes componentes.

No caso da WhatsApp Cloud API, a Meta fornece um serviço backend em nuvem res-

ponsável por receber e encaminhar mensagens ao número de WhatsApp do negócio, dis-

ponibilizar endpoints REST para envio de mensagens, disparar webhooks HTTPS quando

Caṕıtulo 2. Referencial teórico 15

o usuário interage e aplicar regras de segurança baseadas em tokens de acesso. Do ponto

de vista arquitetural, as aplicações que consomem essa API assumem o papel de cliente,

enquanto a infraestrutura da Meta atua como servidor, configurando um arranjo t́ıpico

de arquitetura cliente–servidor em que as comunicações ocorrem por meio de requisições

e respostas HTTP de forma asśıncrona Tanenbaum, Feamster e Wetherall (2021). As-

sim, a automação conversacional ocorre por meio de uma API oficial que intermedeia, de

maneira segura, o mensageiro e as aplicações que consomem esses serviços.

2.5 Engenharia de Software e Desenvolvimento do Template

Pressman (2011) destaca que processos de engenharia de software conduzidos em ciclos

iterativos, envolvendo análise, projeto, implementação e testes, tendem a produzir siste-

mas mais estáveis, pois permitem revisar requisitos e corrigir falhas em estágios iniciais

do desenvolvimento. Na mesma direção, Sommerville (2011) reforça que a clareza na se-

paração de etapas e na definição de atividades reduz a complexidade do trabalho e facilita

a manutenção de soluções que serão evolúıdas ou reutilizadas por diferentes equipes ao

longo do tempo.

Essa perspectiva é complementada por Bezerra (2014), ao apontar que a engenharia de

software contemporânea exige não apenas processos bem definidos, mas também a capa-

cidade de estruturar sistemas de maneira a favorecer extensões futuras. O autor observa

que projetos que dependem de integração com APIs externas se beneficiam de arquitetu-

ras modulares que isolam componentes e reduzem o impacto de mudanças inevitáveis ao

longo do ciclo de vida do software, principalmente em contextos distribúıdos e sujeitos a

evolução tecnológica constante.

Além disso, Larman (2007) destaca que o desenvolvimento orientado a objetos, quando

associado a boas práticas de análise de requisitos e a iterações curtas, contribui para maior

flexibilidade na evolução de sistemas. Essa abordagem favorece a identificação de respon-

sabilidades e a divisão do software em unidades menores e coesas, estratégia considerada

fundamental para aplicações que precisam lidar com diferentes fluxos de mensagens, múl-

tiplos tipos de eventos e regras de negócio espećıficas. Nessa mesma linha, Martin (2020)

argumenta que a manutenção de um código limpo, com funções claras, modularização

adequada e eliminação de dependências desnecessárias, é um fator determinante para a

longevidade de soluções de software e para sua possibilidade de reutilização por outros

desenvolvedores.

Por fim, Valente (2020) ressalta que projetos de software que pretendem ser ampla-

mente adotados devem considerar, desde o ińıcio, a escolha de tecnologias com ecossis-

temas maduros, documentação acesśıvel e forte apoio comunitário. Segundo o autor, a

combinação entre uma arquitetura bem modularizada, boas práticas de engenharia de

software e o uso de plataformas consolidadas aumenta a probabilidade de que o código

possa ser compreendido, mantido e estendido em diferentes contextos de uso.

Caṕıtulo 2. Referencial teórico 16

2.6 Computação em Nuvem e Disponibilidade

Taurion (2009) explica que a computação em nuvem fornece recursos de forma elástica

e sob demanda, permitindo que aplicações voltadas à internet fiquem sempre dispońıveis e

escalem quando o volume de acesso cresce. Da mesma forma, Veras (2015) aponta que esse

modelo de provisão remota favorece sistemas que precisam expor endpoints públicos para

receber notificações (como webhooks), porque a própria infraestrutura de nuvem já oferece

disponibilidade, endereço público e mecanismos de segurança necessários para esse tipo de

integração. Nessa linha, Velte (2012) destaca que a nuvem permite ajustar dinamicamente

capacidade de processamento e armazenamento conforme a carga do sistema, o que é

essencial para manter desempenho aceitável mesmo em peŕıodos de pico de acesso.

De forma complementar, Erl e Monroy (2024) destacam que a computação em nuvem

é uma infraestrutura fundamental para sistemas modernos, pois permite alocar recursos

computacionais conforme a demanda, com mecanismos nativos de redundância, recupera-

ção automática e balanceamento de carga. Essas caracteŕısticas tornam a nuvem especi-

almente adequada para aplicações que exigem operação cont́ınua e baixa latência, já que

o provedor entrega serviços de processamento, armazenamento e rede de forma integrada,

reduzindo as chances de interrupções mesmo em cenários de alto uso simultâneo.

2.7 Software Livre e Colaboração

Raymond (1998) apresenta uma visão de desenvolvimento colaborativo em que o soft-

ware é produzido de forma aberta e incremental, com participação ativa de uma comuni-

dade distribúıda. Nesse modelo, o código-fonte é disponibilizado sob licenças que garan-

tem ao usuário liberdades como executar, estudar, modificar e redistribuir o software, o

que o diferencia de soluções proprietárias, nas quais o código permanece fechado. Uma

base ampla de usuários, desenvolvedores, pesquisadores e estudantes, distribúıda e ativa,

consegue encontrar erros com mais rapidez, propor melhorias e adaptar o sistema a dife-

rentes contextos, śıntese que o autor descreve como o “modelo bazar” de desenvolvimento

colaborativo.

No contexto brasileiro, Silveira (2004) destaca que o software livre também assume

um papel poĺıtico e social, ao favorecer a democratização do acesso ao conhecimento e

a redução da dependência tecnológica de grandes empresas. Ao tratar o código como

bem comum, o autor argumenta que comunidades de desenvolvedores e instituições pú-

blicas podem adaptar e compartilhar soluções tecnológicas de acordo com suas próprias

necessidades, fortalecendo aquilo que denomina soberania informacional e a circulação de

conhecimento na sociedade.

Do ponto de vista econômico, Taurion (2004) mostra que o software livre viabiliza dife-

rentes modelos de negócio baseados na prestação de serviços, na customização de soluções,

em treinamentos e em suporte técnico especializado, em vez de uma simples venda de li-

Caṕıtulo 2. Referencial teórico 17

cenças de uso. Esses modelos permitem que empresas e organizações públicas reduzam

custos com licenças ao mesmo tempo em que apoiam um ecossistema local de desenvolvi-

mento de software, criando oportunidades de inovação e especialização tecnológica.

Subramanian e Jude (2020) apresentam uma introdução sistemática aos fundamentos

do software livre e de código aberto, abordando conceitos, licenças, comunidades de de-

senvolvimento e implicações para organizações que pretendem adotar esse tipo de solução.

Os autores ressaltam que a adoção de software livre envolve uma cultura de comparti-

lhamento, revisão e melhoria cont́ınua, em que o código é constantemente inspecionado,

corrigido e ampliado pela própria comunidade usuária.

Por fim, Guesser (2006) analisa o software livre como um fenômeno social que envolve

disputas sobre propriedade intelectual, poĺıticas públicas de tecnologia e estratégias de

desenvolvimento nacional. No caso brasileiro, o autor mostra que sua adoção por ór-

gãos públicos influencia não apenas a infraestrutura técnica, mas também poĺıticas de

transparência e abertura de código. Nesse contexto, o uso de componentes livres em ar-

quiteturas de software favorece a criação de soluções reutilizáveis e alinhadas a prinćıpios

de colaboração e compartilhamento de conhecimento.

2.7.1 Uso do Git

O Git é um sistema de controle de versão distribúıdo utilizado para registrar alterações

em arquivos de código-fonte e gerenciar diferentes estados de um repositório ao longo

do tempo. Sua arquitetura permite a manutenção de um histórico de mudanças em

repositórios locais e remotos.

De acordo com Chacon e Straub (2014), o Git foi projetado para ser rápido, efici-

ente e seguro, oferecendo recursos como branches, merges e um modelo distribúıdo que

reduz riscos de perda de dados e de inconsistências. Aquiles (2014) mostram como o uso

disciplinado de branches, tags e repositórios remotos facilita o trabalho em equipe e a

rastreabilidade das alterações em projetos reais, permitindo acompanhar quem fez cada

modificação, quando e com qual propósito. De forma complementar, Silverman (2013)

ressalta que o modelo distribúıdo do Git possibilita que cada desenvolvedor experimente

localmente e só compartilhe suas mudanças quando estiverem estáveis, o que contribui

para reduzir conflitos e erros de compilação durante o processo de integração.

18

3 Metodologia

De acordo com (VENAZI et al., 2016) , a metodologia de pesquisa deve ser classificada

quanto à natureza, abordagem, objetivos e procedimentos técnicos adotados. Assim, este

trabalho segue esse modelo de categorização metodológica, conforme descrito a seguir.

• natureza: A pesquisa é de natureza aplicada, pois busca gerar um produto prático

capaz de solucionar uma necessidade real. O estudo visa desenvolver uma infraestru-

tura de código aberto (open-source) voltada à criação de chatbots conversacionais

integrados à WhatsApp Cloud API. O resultado é um template modular e reutili-

zável, que reduz o esforço técnico na integração com a API e promove o reuso de

código e arquitetura entre diferentes projetos.

• abordagem: A abordagem adotada é qualitativa, uma vez que se atuou diretamente

em todas as etapas do desenvolvimento, interpretando e analisando os resultados

obtidos. A observação do comportamento do chatbot, dos fluxos de mensagens e da

estrutura modular foi essencial para compreender os fenômenos técnicos envolvidos

na integração entre o servidor Node.js e a WhatsApp Cloud API, permitindo o

aprimoramento cont́ınuo da solução.

• objetivos: A pesquisa possui caráter descritivo e exploratório. É descritiva por

apresentar detalhadamente a estrutura da arquitetura proposta — suas camadas,

módulos e funções de integração. É também exploratória, pois busca investigar

novas formas de projetar uma base genérica e flex́ıvel para chatbots, permitindo sua

aplicação em diferentes contextos de automação conversacional.

• procedimentos técnicos: Quanto aos procedimentos técnicos, trata-se de uma pesquisa-

ação, pois o autor participou diretamente do processo de desenvolvimento e vali-

dação do sistema. Foram utilizadas ferramentas como Node.js, Express.js, Post-

greSQL, Visual Studio Code, GitLab e Ngrok. Durante a implementação, o pesqui-

sador criou e testou módulos independentes de envio e recebimento de mensagens,

controle de tokens, webhooks e gerenciamento de respostas, intervindo de forma

prática para aprimorar e validar a estrutura desenvolvida.

:

19

4 Apresentação e discussão dos resultados

O presente caṕıtulo apresenta a aplicação prática da metodologia proposta no caṕı-

tulo anterior, detalhando as etapas de construção, estruturação e validação do template

estrutural para chatbots conversacionais.

4.1 Concepção da ideia

A criação de chatbots surgiu como resposta a um problema que se tornou cada vez

mais comum na atualidade: a resistência dos usuários de smartphones em instalar novos

aplicativos. É frequente que a exigência de instalação de aplicativos empresariais, apenas

para a execução de uma tarefa simples, iniba o usuário de realizá-la, devido à necessidade

de realizar diversas etapas, como download, cadastro, login e aprendizado sobre o uso da

interface. Esse processo torna-se repetitivo e cansativo, mesmo quando os aplicativos são

considerados intuitivos.

Nesse contexto, o problema apresentado pelo cliente estava diretamente relacionado

a essa dificuldade: como criar uma aplicação de pesquisa de opinião que fosse de rápida

disseminação e que exigisse o mı́nimo de esforço do usuário?

A solução encontrada foi o desenvolvimento de chatbots de pesquisa integrados ao

WhatsApp, plataforma amplamente popular e acesśıvel. Atualmente, o WhatsApp é o

aplicativo de mensagens mais utilizado do Brasil e um dos mais populares do mundo, com

cerca de 148 milhões de usuários brasileiros ativos em 2024, o que representa aproxima-

damente 98% dos usuários de smartphones do páıs (World Population Review, 2024).

A simples divulgação de um número de telefone, que ao ser acessado abre automa-

ticamente uma conversa no aplicativo e inicia o diálogo com o usuário, mostrou-se uma

alternativa muito mais acesśıvel e menos onerosa do que a obrigatoriedade de instalar um

aplicativo próprio ou acessar um site, por exemplo.

Após a implementação de outros chatbots, como o de vistoria de véıculos (criado a

partir de novas demandas do mesmo cliente), foi posśıvel observar que a estrutura básica

desses sistemas se repete. As funções e a estruturação interna dos chatbots apresentavam

padrões semelhantes, compostos por módulos de envio de mensagens, controle de servidor

e utilitários básicos, variando apenas na lógica espećıfica de cada aplicação, de acordo

com sua finalidade.

Dessa forma, surgiu a ideia central deste trabalho: disseminar essa estrutura-base,

transformando-a em um template open-source que permita a outros desenvolvedores reu-

tilizar essa infraestrutura pronta, concentrando seus esforços apenas na criação da lógica

e das regras de negócio de cada chatbot, conforme suas necessidades espećıficas.

Caṕıtulo 4. Apresentação e discussão dos resultados 20

4.2 Estrutura e Arquitetura do Sistema

A estrutura proposta neste trabalho foi desenvolvida a partir de uma arquitetura mo-

dular em camadas, com foco em reutilização, baixo acoplamento e independência lógica

entre os componentes. O template open-source foi projetado para permitir que o desenvol-

vedor concentre seus esforços apenas na lógica de negócio de cada chatbot, enquanto toda

a infraestrutura de comunicação e integração com a WhatsApp Cloud API permanece

pronta e padronizada.

A Figura 1 apresenta o fluxograma geral da arquitetura do sistema, que ilustra o

fluxo completo de comunicação entre o usuário final, a API da Meta e o servidor do

programador. O diagrama foi dividido em duas grandes áreas de responsabilidade: o

Aplicativo da Meta e o Sistema do Programador, representadas visualmente por cores

distintas no fundo.

Figura 1 – Fluxograma de comunicação sistema-usuário.

Fonte: Pesquisa direta, 2025.

Na parte superior, localizada na região amarela, encontra-se o Aplicativo da Meta,

Caṕıtulo 4. Apresentação e discussão dos resultados 21

que engloba o Usuário (aplicativo WhatsApp) e a WhatsApp Cloud API (Meta Deve-

loper). Essa camada é responsável por receber as mensagens enviadas pelos usuários e

encaminhá-las aos servidores configurados pelo desenvolvedor. O WhatsApp atua como

interface de comunicação, enquanto a API da Meta funciona como um intermediário oficial

entre a plataforma de mensagens e o sistema externo, garantindo autenticação, entrega e

segurança das requisições.

O bloco da WhatsApp Cloud API encontra-se propositalmente posicionado entre as

duas áreas (meio amarelo e meio rosado), simbolizando sua dupla natureza operacional.

Isso ocorre porque, embora a API seja hospedada e mantida pela Meta, toda a implemen-

tação prática — como o tratamento de erros, o gerenciamento de tokens, a configuração de

endpoints e o recebimento das requisições via webhook — é realizada pelo desenvolvedor

dentro do seu próprio sistema. Assim, a API funciona como um ponto de transição entre

o domı́nio da Meta e o ambiente controlado pelo programador.

Na sequência, na área rosada, inicia-se o Sistema do Programador, composto por mó-

dulos interligados que estruturam o template proposto. De forma geral, toda a arquitetura

pode ser entendida como um conjunto de blocos bem separados: (i) uma camada de ser-

vidor, responsável por receber as requisições HTTP; (ii) uma camada de integração com a

WhatsApp Cloud API, que concentra tudo o que diz respeito a tokens, endpoints e deta-

lhes do protocolo; (iii) uma camada de tratamento de mensagens e eventos, que interpreta

o que chegou e encaminha para o lugar certo; e (iv) uma camada de lógica conversacional,

onde ficam as regras espećıficas de cada chatbot. Essa decomposição ajuda a manter o

código organizado e facilita tanto a manutenção quanto o reuso em outros projetos.

O primeiro módulo é o Servidor Node.js, desenvolvido com o framework Express.js,

responsável por receber as mensagens encaminhadas pelo webhook da Meta, validar as

credenciais e direcionar o conteúdo para o módulo apropriado.

A escolha pelo uso de Node.js com Express.js não foi aleatória. Por ser uma plataforma

orientada a operações de entrada e sáıda asśıncronas, o Node.js lida bem com cenários em

que há muitas conexões simultâneas e diversas requisições leves acontecendo ao mesmo

tempo, que é justamente o caso de um chatbot exposto na internet. Além disso, trata-se

de uma tecnologia com amplo ecossistema de bibliotecas e uma comunidade ativa, o que

facilita a resolução de problemas práticos e a evolução do template no futuro.

Em seguida, o fluxo segue para o Controlador de Mensagens, que representa a camada

de orquestração das requisições. Essa camada atua como um roteador lógico, identificando

o tipo de mensagem recebida (texto, imagem, botão, lista, etc.) e encaminhando-a para

a Lógica de Negócio correspondente. A Lógica de Negócio, representada por um bloco

branco, simboliza o núcleo variável de cada chatbot — é a parte do sistema que muda

conforme a finalidade da aplicação. Enquanto as demais camadas do template perma-

necem fixas e compartilhadas entre diferentes projetos, a lógica é onde o desenvolvedor

define as regras de decisão, os diálogos e os comportamentos personalizados do bot.

Caṕıtulo 4. Apresentação e discussão dos resultados 22

Essa separação entre lógica e infraestrutura é o que garante a modularidade e reuti-

lização do código. Abaixo da lógica, o sistema conta com o módulo de Utilitários Base,

que fornece funções genéricas, como formatação de mensagens, templates de resposta,

tratamento de erros e logs. Esse módulo também realiza a ponte de comunicação com o

Banco de Dados, responsável por registrar informações, armazenar respostas simuladas e

processar dados necessários ao fluxo da conversa.

A interação entre os utilitários e o banco é representada por setas bidirecionais, sim-

bolizando que há tanto consulta quanto registro de informações. Por fim, o fluxo retorna

ao topo do diagrama, seguindo o caminho inverso até o usuário. A mensagem processada

percorre novamente as camadas — Controlador, Servidor Node.js e WhatsApp Cloud

API — até chegar ao aplicativo do usuário, que recebe a resposta de forma automática e

cont́ınua, fechando o ciclo de interação.

Em resumo, a arquitetura do template proposto foi estruturada de modo a isolar

responsabilidades: a Meta mantém o ambiente de hospedagem e autenticação; o desen-

volvedor controla o tratamento, a lógica e o envio das respostas; e o usuário final interage

por meio de uma interface já familiar, o WhatsApp. Essa divisão clara, representada

visualmente no fluxograma, reflete a proposta central do trabalho: oferecer uma base es-

trutural genérica, aberta e reutilizável, capaz de suportar a criação de diferentes tipos de

chatbots conversacionais de forma ágil e padronizada.

4.3 Exemplo de Implementação

O código exposto na Tabela 1 exemplifica o funcionamento básico de envio de men-

sagens via WhatsApp Cloud API, utilizando o módulo Axios para comunicação HTTP.

Vale ressaltar que o código contido neste trabalho se encontra dispońıvel em sua ı́ntegra

e documentado na plataforma GitLab.

Na prática, o fluxo de desenvolvimento adotado neste trabalho pode ser resumido em

quatro etapas principais:

a) modelar o fluxo de mensagens que o bot deve tratar, definindo quais informações

serão solicitadas e em qual ordem;

b) projetar as interfaces de comunicação com a API do WhatsApp, especificando end-

points, formatos de mensagem e parâmetros de autenticação;

c) implementar os handlers de webhook responsáveis por receber os eventos enviados

pela Meta e repassar o conteúdo para a lógica de negócio;

d) testar o endpoint real, validando assinatura, token de acesso e formatos de requisição

e resposta, até garantir o funcionamento estável da integração.

Caṕıtulo 4. Apresentação e discussão dos resultados 23

Esse encadeamento ajuda a transformar o template em uma base reaproveitável de fato,

e não apenas em um exemplo isolado de código.

Nesse contexto, o uso do Git se torna fundamental em práticas recentes de engenharia

de software, como desenvolvimento colaborativo, integração cont́ınua e metodologias ágeis,

permitindo que equipes controlem versões de código de forma organizada. Ao manter

o template versionado e publicado em um repositório GitLab, o projeto passa a estar

dispońıvel para estudo, cópia, adaptação e melhoria por outros desenvolvedores. Neste

contexto de colaboração, o Git se torna um requisito básico para a difusão da ideia de

software livre proposta neste trabalho.

Tabela 1 – Função em JavaScript para envio de mensagem do bot para o usuário.

Trecho de código em JavaScript:

export async function sendMessage(

number: string,

message: string,

wmaid?: string

): Promise<any | null> {

const ctx = "sendTextMessage";

const body = (message || "").trim() || " ";

const payload: any = {

messaging_product: "whatsapp",

to: number,

type: "text",

text: {

preview_url: false,

body,

},

};

try {

const { data } = await api.post(‘/messages‘, payload);

console.log(‘[WA:${ctx}] OK‘, JSON.stringify(data));

return data;

} catch (e) {

logAxiosError(ctx, e);

return null;

}

}

Fonte: Pesquisa direta, 2025.

Do ponto de vista da comunicação, toda a sessão do WhatsApp fica sob responsabili-

dade da Meta, e a aplicação desenvolvida neste trabalho conversa com a plataforma exclu-

sivamente por meio de requisições HTTP direcionadas à WhatsApp Business Platform.

Esse é exatamente o modelo descrito na documentação oficial da WhatsApp Business

Caṕıtulo 4. Apresentação e discussão dos resultados 24

Platform, que apresenta endpoints como os ilustrados nas Tabelas 2 e 3.

No contexto deste trabalho, o servidor desenvolvido faz o papel de cliente e a infraes-

trutura da Meta faz o papel de servidor, em um modelo clássico cliente-servidor descrito

por Tanenbaum, Feamster e Wetherall (2021), em que as trocas se dão por requisições

e respostas HTTP de forma asśıncrona — requisito importante para suportar múltiplas

conversas simultâneas. Para garantir autenticidade e integridade, utiliza-se aquilo que a

própria Meta exige: tokens de acesso válidos e webhooks expostos em HTTPS com ve-

rificação. Assim, a automação conversacional só ocorre porque há uma API oficial que

intermedeia, de maneira segura, o mensageiro e a aplicação desenvolvida.

Tabela 2 – Exemplo de requisição à WhatsApp Business Platform.

Exemplo de solicitação para enviar uma mensagem de texto com visualizações de
links ativadas e uma string de texto do corpo que contém um link.

curl ’https://graph.facebook.com/v24.0/106540352242922/messages’ \

-H ’Content-Type: application/json’ \

-H ’Authorization: Bearer EAAJB...’ \

-d ’

{

"messaging_product": "whatsapp",

"recipient_type": "individual",

"to": "+16505551234",

"type": "text",

"text": {

"preview_url": true,

"body": "As requested, here’’’s the link to our latest product:

https://www.meta.com/quest/quest-3/"

}

}’

Fonte: Pesquisa direta, 2025.

Caṕıtulo 4. Apresentação e discussão dos resultados 25

Tabela 3 – Exemplo de retorno da plataforma após envio da mensagem.

Trecho de resposta JSON retornada pela API.

{

"messaging_product": "whatsapp",

"contacts": [

{

"input": "+16505551234",

"wa_id": "16505551234"

}

],

"messages": [

{

"id": "wamid.HBgLMTY0NjcwNDM1OTUVAgARGBI1RjQyNUE3NEYxMzAzMzQ5MkEA"

}

]

}

Fonte: Pesquisa direta, 2025.

Esses exemplos reforçam que o código JavaScript apresentado na Tabela 1 atua como

uma camada de conveniência sobre os endpoints oficiais: o desenvolvedor constrói o pay-

load, envia a requisição HTTP e trata o retorno JSON, enquanto toda a manutenção da

sessão, entrega de mensagens e disponibilidade da infraestrutura permanece sob respon-

sabilidade da Meta.

4.4 Validação Experimental

Após a implementação do template, o sistema foi submetido a uma fase de validação

experimental com o objetivo de testar seu desempenho, estabilidade e comportamento em

situações reais de uso. Durante os testes, foi utilizada a ferramenta Ngrok, responsável

por criar túneis seguros entre o servidor local e a internet, permitindo que o webhook do

WhatsApp Cloud API fosse acessado publicamente durante o processo de homologação.

Essa abordagem possibilitou simular requisições reais de usuários, observando o compor-

tamento do sistema em um ambiente controlado, porém representativo de uma operação

real.

Os testes contemplaram a análise de diferentes aspectos técnicos, como:

• tempo médio de resposta do servidor às requisições da API;

• estabilidade do webhook sob diferentes cargas e volumes de mensagens;

• tratamento automático de falhas, reconexões e reenvios;

Caṕıtulo 4. Apresentação e discussão dos resultados 26

• envio e recebimento de diferentes tipos de conteúdo, incluindo texto, imagem e

botões interativos.

Os resultados demonstraram que o template é estável, modular e compat́ıvel com

diversos contextos de aplicação, apresentando baixo tempo de resposta e comportamento

previśıvel mesmo em situações de múltiplas requisições simultâneas. Ressalta-se que o

Ngrok é utilizado apenas para fins de homologação da aplicação, não sendo o servidor que

será utilizado em produção.

Ademais, os testes confirmaram a viabilidade técnica da estrutura proposta, validando

sua utilização como base genérica para o desenvolvimento de chatbots personalizados.

4.5 Aplicação Prática

Como parte da validação técnica e da demonstração do uso prático do template desen-

volvido, foi realizada uma aplicação real do sistema em um cliente corporativo do setor

de engenharia, sediado em Belo Horizonte. Essa implementação foi configurada como um

estudo de campo técnico e o objetivo principal foi validar o comportamento do template

em um fluxo conversacional real, com dados concretos sendo processados, armazenados e

exibidos por uma aplicação web integrada.

O caso de uso escolhido foi o de vistoria veicular automatizada, no qual motoristas

interagem com o chatbot via WhatsApp para responder a uma sequência de perguntas

configuradas previamente no servidor. As mensagens são trocadas de forma dinâmica: o

bot inicia solicitando a placa do véıculo (campo obrigatório) e, em seguida, envia perguntas

sobre condições do automóvel, como funcionamento de freios, existência de arranhões,

irregularidades externas e outros itens do checklist de inspeção.

Cada resposta enviada pelo motorista é capturada pela WhatsApp Cloud API, tratada

no servidor Node.js e posteriormente armazenada em um banco de dados PostgreSQL. A

Figura 2 apresenta um exemplo real da conversa realizada no WhatsApp, mostrando o

fluxo entre o bot e o motorista. Na imagem é posśıvel observar as perguntas e respos-

tas registradas durante uma vistoria, incluindo a placa “HPM3905”, que corresponde ao

mesmo véıculo exibido nos demais registros. O bot conduz a interação de maneira ori-

entada, utilizando botões interativos, listas e mensagens de confirmação, oferecendo uma

experiência conversacional fluida e intuitiva.

Caṕıtulo 4. Apresentação e discussão dos resultados 27

Figura 2 – Captura de tela do aplicativo WhatsApp.

Fonte: Pesquisa direta, 2025.

O armazenamento e a estrutura lógica dos dados coletados são realizados por meio

de um banco de dados relacional PostgreSQL, cujo modelo é apresentado na Figura 3.

O diagrama exibe as principais tabelas envolvidas no processo de vistoria: Motoristas

(dados pessoais e CNH); Véıculos (identificação, modelo, ano, status); ChecklistModelos,

ChecklistItens e ChecklistSecoes (estrutura das perguntas e seções de vistoria); Inspecoes

(dados das vistorias realizadas, incluindo coordenadas GPS e status); RespostasChecklist

(armazenamento das respostas individuais de cada item); e Irregularidades (controle de

não conformidades identificadas). Essa estrutura relacional garante integridade referen-

cial, escalabilidade e rastreabilidade, permitindo que cada resposta no WhatsApp seja

vinculada diretamente à vistoria correspondente.

Caṕıtulo 4. Apresentação e discussão dos resultados 28

Figura 3 – Esquema entidade-relacionamento do Banco de Dados.

Fonte: Pesquisa direta, 2025.

Além do armazenamento e análise dos dados, foi desenvolvida uma API REST em

Python, utilizando o framework FastAPI, responsável por fornecer os dados do sistema

ao painel web administrativo. Essa API permite consultas por placa, data, checklist e

status, além de gerar resumos automáticos e relatórios de vistoria. A Tabela 4 ilustra

parte do código da API que fornece os dados de resumo por placa:

Caṕıtulo 4. Apresentação e discussão dos resultados 29

Tabela 4 – Exemplo de endpoint da API desenvolvida em FastAPI.

Trecho de código em Python:

@app.get("/placa/{placa}/resumo")

def resumo_por_placa(placa: str):

"""

Retorna um resumo agregado por placa:

- total_inspecoes

- ultima_inspecao

- itens_reprovados

- irregularidades_abertas

"""

p = _sanitize_placa(placa)

sql = """

SELECT v.placa, COUNT(i.id) AS total_inspecoes,

MAX(i.finalizado_em) AS ultima_inspecao

FROM Veiculos v

LEFT JOIN Inspecoes i ON i.placa = v.placa

WHERE v.placa = %s

GROUP BY v.placa;

"""

return _exec(sql, (p,))

Fonte: Pesquisa direta, 2025.

O painel web, desenvolvido com React, consome essa API e exibe visualmente as

informações de cada véıculo. A Figura 4 mostra a interface completa do painel de vistorias,

na qual o administrador pode consultar o histórico por placa, visualizar o resumo da

vistoria (no exemplo, da placa HPM3905), acessar o checklist com todas as respostas

enviadas pelo bot e exportar o relatório em formato PDF. O sistema também apresenta

métricas consolidadas, como o total de inspeções, a data da última vistoria e indicadores

de irregularidades.

Caṕıtulo 4. Apresentação e discussão dos resultados 30

Figura 4 – Captura de tela do website.

Fonte: Pesquisa direta, 2025.

Com a integração entre o chatbot, o banco de dados e o painel de controle, o sistema

completo demonstra a viabilidade e a aplicabilidade do template proposto. A infraestru-

tura mostrou-se robusta, reutilizável e escalável, atendendo aos requisitos de modularidade

e independência entre camadas. A correspondência direta entre as mensagens registradas

no WhatsApp (Figura 2), os dados gravados no banco (Figura 3) e os resultados exibi-

dos no painel (Figura 4) evidencia o funcionamento completo e validado da arquitetura

desenvolvida.

Vale ressaltar que, no momento em que foi documentado este trabalho, ainda não

haviam sido desenvolvidos métodos de autenticação de usuário, o que se faz necessário

neste tipo de aplicação para garantir confidencialidade e privacidade dos dados. Essa

aplicação prática consolida o template como uma ferramenta open-source aplicável em

ambientes corporativos, reduzindo custos de desenvolvimento e acelerando a implantação

de chatbots integrados à WhatsApp Cloud API.

31

5 Conclusões e considerações finais

Este trabalho teve como objetivo propor e implementar um template estrutural open

source para o desenvolvimento de chatbots conversacionais integrados à WhatsApp Cloud

API. Ao longo do texto, mostrou-se que é viável organizar essa solução em camadas bem

definidas, separando a infraestrutura de comunicação da lógica de negócio. Com isso,

o desenvolvedor deixa de se preocupar com detalhes repetitivos de integração e pode

concentrar esforços naquilo que o chatbot precisa, de fato, realizar em cada contexto.

Na prática, a implementação evidenciou que o template é capaz de sustentar um fluxo

completo: o usuário interage com o bot pelo WhatsApp, as mensagens passam pela API

da Meta, são tratadas em um servidor Node.js, registradas em um banco PostgreSQL e,

posteriormente, exibidas em um painel web constrúıdo em React e abastecido por uma

API. O caso de uso de vistoria veicular permitiu demonstrar esse percurso de ponta a

ponta, desde a coleta das respostas até a geração de relatórios e a visualização de históricos

de inspeção.

Os testes de validação indicaram que a estrutura proposta é estável e previśıvel, apre-

sentando bom desempenho e comportamento consistente mesmo diante de múltiplas requi-

sições simultâneas. A divisão em módulos — servidor, controlador de mensagens, lógica

de negócio, utilitários e banco de dados — também se mostrou vantajosa para a manu-

tenção e evolução do código. Ainda assim, ficaram evidentes alguns pontos de melhoria,

como a ausência de mecanismos completos de autenticação de usuários e a necessidade de

uma avaliação mais aprofundada da experiência de uso do chatbot em diferentes cenários.

Como trabalhos futuros, espera-se que esse template sirva de base para que outros

desenvolvedores possam reutilizar o código, adaptar a solução às suas próprias demandas

e aprimorar o desempenho do bot, especialmente em termos de segurança. A partir dessa

infraestrutura já consolidada, é posśıvel incluir autenticação, fortalecer o tratamento de

dados senśıveis, adicionar camadas adicionais de logs e monitoramento, integrar modelos

de inteligência artificial para processar a intenção do usuário e adequar a lógica conversa-

cional a outros domı́nios além de vistorias. A perspectiva futura é de que o projeto evolua

como um ponto de partida flex́ıvel, sobre o qual cada desenvolvedor possa construir seus

próprios chatbots, aproveitando a o código fonte base disponibilidado neste trabalho.

Referências

ALVES, W. P. Projetos de sistemas Web: Conceitos, estruturas, criação de banco de
dados e ferramentas de desenvolvimento. 1. ed. São Paulo: Editora Érica, 2014.

AQUILES, A. Controlando Versões com Git e GitHub. São Paulo: Casa do Código, 2014.
ISBN 8566250532.

AUDY, G. K. d. A. e. A. C. J. L. N. Fundamentos de Sistemas de Informação. 1. ed.
Porto Alegre, RS: Bookman, 2005.

BASS, L.; CLEMENTS, P.; KAZMAN, R. Software Architecture in Practice. 4. ed. [S.l.]:
Addison-Wesley, 2021.

BEZERRA, E. Prinćıpios de Análise e Projeto de Sistemas com UML. Rio de Janeiro:
GEN LTC, 2014. ISBN 9788535226263.

CHACON, S.; STRAUB, B. Pro Git. 2. ed. [S.l.]: Apress, 2014. ISBN 9781484200773.

CRUZ, L. T.; ALENCAR, A. J.; SCHMITZ, E. A. Assistentes Virtuais Inteligentes e
Chatbots: Um guia prático e teórico sobre como criar experiências e recordações encan-
tadoras para os clientes da sua empresa. Rio de Janeiro: Brasport, 2019.

ERL, T.; MONROY, E. B. Computação em Nuvem: Conceitos, Tecnologia, Segurança e
Arquitetura. Porto Alegre: Bookman, 2024. ISBN 8582606583.

FILHO, W. de P. P. Engenharia de Software: Fundamentos, Métodos e Padrões. Rio de
Janeiro: LTC, 2009. ISBN 9788521616504.

FOWLER, M. Padrões de Arquitetura de Aplicações Corporativas. Porto Alegre: Book-
man, 2018. ISBN 978-8577800643.

FRIZZARIN, P. K. L. P.; FRIZZARIN, F. B. Chatbots para Telegram: programe seus
primeiros bots usando Python. São Paulo: Casa do Código, 2023.

GONçALEZ, F. F. Chatbot para atendimento automatizado. Dissertação (Dissertação de
Mestrado) — Universidade Fernando Pessoa, Porto, 2020.

GUESSER, A. H. Software Livre & Controvérsias Tecnocient́ıficas: Uma análise socio-
técnica no Brasil e em Portugal. 1. ed. Curitiba: [s.n.], 2006. ISBN 8536212330.

LARMAN, C. Utilizando UML e Padrões: Uma Introdução à Análise e ao Projeto Ori-
entados a Objetos e ao Desenvolvimento Iterativo. Porto Alegre: Bookman, 2007. ISBN
8560031529.

LAUDON, K. C. L. e J. P. Sistemas de Informação Gerenciais: administrando a empresa
digital. 17. ed. Porto Alegre, RS: Bookman, 2022.

MARTIN, R. C. Código Limpo: Habilidades Práticas do Agile Software. Rio de Janeiro:
Alta Books, 2020. ISBN 978-8550811482.

M.STAIR, R.; W.REYNOLDS, G. Prinćıpios de Sistemas de Informação. 3. ed. São
Paulo: Cengage Learning, 2015. ISBN 8522118620.

O’BRIEN, J. A.; MARAKAS, G. M. Administração de Sistemas de Informação. 15. ed.
São Paulo: McGraw-Hill, 2013. ISBN 8580551102.

POTTER, E. T. e R. E. Introdução a Sistemas de Informação: Uma Abordagem Gerencial.
Rio de Janeiro: Campus, 2007. ISBN 9788535222067.

PRADO, E. P. V.; SOUZA, C. A. de. Fundamentos de Sistemas de Informação. Rio de
Janeiro: LTC, 2014. ISBN 8535274359.

PRESSMAN, R. S. Engenharia de Software: Uma Abordagem Profissional. 7. ed. Porto
Alegre, RS: AMGH Editora, 2011.

RAJ, S. Construindo Chatbots Com Python. São Paulo: Novatec, 2019.

RAYMOND, E. S. A Catedral e o Bazar. [S.l.: s.n.], 1998.

REZENDE, D. A. Planejamento Estratégico Publico ou Privado. 1. ed. São Paulo,SP:
Atlas, 2011.

RICHARDS, M.; FORD, N. Fundamentos da Arquitetura de Software: Uma Abordagem
de Engenharia. Rio de Janeiro: Alta Books, 2024.

RICHARDSON, L.; AMUNDSEN, M.; RUBY, S. RESTful Web APIs: Services for a
Changing World. 1. ed. Sebastopol: O’Reilly Media, 2013.

SANTANA, E. F. Z. Caixa de ferramentas da Arquitetura de Software: Como tornar suas
aplicações mais escaláveis, confiáveis e seguras. [S.l.]: Casa do Código, 2024.

SILVEIRA, S. A. da. Software livre: a luta pela liberdade do conhecimento. São Paulo:
Fundação Perseu Abramo, 2004. ISBN 8576430037.

SILVERMAN, R. E. Git. Guia Prático. São Paulo: Novatec Editora, 2013. ISBN
8575223798.

SOMMERVILLE, I. Engenharia de Software. 9. ed. São Paulo: Pearson Education, 2011.

SUBRAMANIAN, B.; JUDE, J. Introdução ao Software Livre e de Código Aberto. [S.l.]:
Edições Nosso Conhecimento, 2020. ISBN 6200968675.

TANENBAUM, A.; FEAMSTER, N.; WETHERALL, D. Redes de Computadores. 6. ed.
Porto Alegre, RS: Bookman, 2021.

TAURION, C. Software livre: potencialidades e modelos de negócio. Rio de Janeiro: Bras-
port, 2004. ISBN 8574521736.

TAURION, C. Cloud Computing. Computação em Nuvem. Rio de Janeiro: Brasport,
2009.

VALENTE, M. T. Engenharia de Software Moderna: prinćıpios e práticas para desenvol-
vimento de software com produtividade. Belo Horizonte: [s.n.], 2020.

VELTE, A. T. Cloud Computing. Computação em Nuvem: uma Abordagem Prática. Rio
de Janeiro: Alta Books, 2012. ISBN 8576085364.

VENAZI, D. et al. Introdução à engenharia de produção: conceitos e casos práticos. Rio
de Janeiro: LTC, 2016.

VERAS, M. Computação em nuvem. 1. ed. Rio de Janeiro: Brasport, 2015.

WAZLAWICK, R. S. Engenharia de Software: Conceitos e Práticas. 2. ed. Rio de Janeiro:
LTC, 2019.

World Population Review. WhatsApp Users by Country 2024. 2024. <https://
worldpopulationreview.com/country-rankings/whatsapp-users-by-country>. Acesso em:
30 out. 2025.

https://worldpopulationreview.com/country-rankings/whatsapp-users-by-country
https://worldpopulationreview.com/country-rankings/whatsapp-users-by-country

	5782e9ee5213940cf1b1d894e1fce1bb00fe0da115374a6cf3dff7699573fe9b.pdf
	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract

	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	Lista de abreviaturas e siglas

	18cd9cfedb935b48220dfc28abde74a1f974663abc0ecf02821f8e348b1dbdf9.pdf
	Sumário
	Introdução
	Referencial teórico
	Sistemas de Informação e Automação de Processos
	Chatbots e Comunicação Automatizada
	Arquitetura de Software Modular
	Integração de Sistemas, APIs e WhatsApp Cloud API
	Engenharia de Software e Desenvolvimento do Template
	Computação em Nuvem e Disponibilidade
	Software Livre e Colaboração
	Uso do Git

	Metodologia
	Apresentação e discussão dos resultados
	Concepção da ideia
	Estrutura e Arquitetura do Sistema
	Exemplo de Implementação
	Validação Experimental
	Aplicação Prática

	Conclusões e considerações finais
	Referências

	5782e9ee5213940cf1b1d894e1fce1bb00fe0da115374a6cf3dff7699573fe9b.pdf
	5782e9ee5213940cf1b1d894e1fce1bb00fe0da115374a6cf3dff7699573fe9b.pdf

