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Resumo 

A estabilidade de taludes é um tema importante da engenharia geotécnica, sendo o 

Fator de Segurança (FS) o principal indicador do risco de ruptura. Este trabalho 

avaliou a aplicação de modelos de regressão linear múltipla para estimar o FS de 

taludes sujeitos à ruptura circular, analisando a influência do tratamento de dados no 

desempenho e na confiabilidade estatística dos modelos. Foi utilizado um banco de 

dados contendo parâmetros geotécnicos e geométricos de taludes. Inicialmente, 

realizou-se análise exploratória para identificação de inconsistências, com remoção 

de observações fisicamente incoerentes, reduzindo o conjunto de 87 para 71 amostras 

válidas. Em seguida, foram definidos três cenários de modelagem: (i) modelo com 

dados brutos; (ii) modelo com remoção de outliers multivariados por meio da distância 

de Mahalanobis; e (iii) modelo com dados tratados segundo critérios de valores típicos 

das variáveis independentes. A modelagem foi conduzida por regressão linear 

múltipla, acompanhada de análise gráfica, avaliação de resíduos e validação cruzada 

K-fold no terceiro cenário. A análise dos resíduos indicou comportamento aleatório, 

sem tendência ou estrutura, indicando que o ajuste para os três cenários foi 

satisfatório. Os resultados mostraram que o modelo com dados brutos apresentou 

baixo poder explicativo, enquanto a remoção de outliers no segundo cenário resultou 

em melhora moderada. O melhor desempenho foi obtido no terceiro cenário com 

tratamento de dados mais robusto, que apresentou elevado R2 ajustado e bom 

desempenho preditivo na validação cruzada. Conclui-se que o tratamento prévio dos 

dados influência de forma decisiva o desempenho de modelos de regressão linear 

múltipla aplicados à estabilidade de taludes. O modelo baseado em valores típicos 

mostrou maior confiabilidade estatística, porém com restrição de aplicabilidade, 

devendo ser utilizado como ferramenta complementar às análises determinísticas 

tradicionais. 

Palavras-chave: Estabilidade de taludes; Fator de Segurança; Regressão linear 

múltipla; Tratamento de dados; Geotecnia. 

 

 

 



    
 

Abstract 

Slope stability is an important topic in geotechnical engineering, with the Factor of 

Safety (FS) being the main indicator of failure risk. This study evaluated the application 

of multiple linear regression models to estimate the FS of slopes subjected to circular 

failure, analyzing the influence of data treatment on model performance and statistical 

reliability. A database containing geotechnical and geometric slope parameters was 

used. Initially, an exploratory analysis was carried out to identify inconsistencies, and 

physically incoherent observations were removed, reducing the dataset from 87 to 71 

valid samples. Subsequently, three modeling scenarios were defined: (i) model using 

raw data; (ii) model with removal of multivariate outliers using Mahalanobis distance; 

and (iii) model with data treated according to typical value criteria for the independent 

variables. Modeling was performed using multiple linear regression, accompanied by 

graphical analysis, residual evaluation, and K-fold cross-validation in the third scenario. 

Residual analysis indicated random behavior, with no trend or structure, suggesting 

satisfactory fit across the three scenarios. The results showed that the model with raw 

data had low explanatory power, while outlier removal in the second scenario led to 

moderate improvement. The best performance was obtained in the third scenario, with 

more robust data treatment, which presented a high adjusted R² and good predictive 

performance in cross-validation. It is concluded that prior data treatment decisively 

influences the performance of multiple linear regression models applied to slope 

stability. The model based on typical values showed greater statistical reliability; 

however, its applicability is limited and it should be used as a complementary tool to 

traditional deterministic analyses. 

Keywords: Slope stability; Factor of Safety; Multiple linear regression; Data 

treatment; Geotechnics. 
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1. INTRODUÇÃO 

A estabilidade de taludes é um dos principais desafios da engenharia 

geotécnca, estando diretamente relacionada à segurança em ambientes de mineração 

e obras civis. Rupturas de taludes podem resultar em perdas econômicas 

significativas, impactos ambientais e consequentemente, riscos à vida humana. Sendo 

assim, a correta avaliação da estabilidade é etapa fundamental em projetos que 

envolvem escavações em taludes artificiais ou encostas. 

Tradicionalmente, a análise da estabilidade de taludes é realizada por meio de 

métodos determinísticos. Segundo Gerscovich (2016) esses métodos permitem a 

obtenção do Fator de Segurança (FS) por meio da comparação entre as tensões 

cisalhantes mobilizadas e a resistência ao cisalhamento do maciço. Contudo, para sua 

aplicação, é necessária a definição prévia de alguns parâmetros geotécnicos, tais 

como peso específico, coesão, ângulo de atrito, geometria do talude e condições de 

poropressão. 

Entretanto, a obtenção de parâmetros confiáveis nem sempre é simples, uma 

vez que esses dados são oriundos de pesquisas de investigação, ensaios 

laboratoriais, retroanálises e interpretações empíricas. Nesse contexto, a busca por 

ferramentas auxiliares a avaliação preliminar da estabilidade torna-se relevante. 

 Com o avanço das ferramentas computacionais e da análise de dados, 

métodos estatísticos e técnicas multivariadas têm sido cada vez mais utilizados na 

engenharia. Dentre essas técnicas, a regressão linear múltipla se destaca como uma 

abordagem capaz de modelar relações entre uma variável dependente e múltiplas 

variáveis independentes, permitindo avaliar, simultaneamente, a influência dos 

parâmetros no fator de segurança (FS) em taludes. 

Diante desse cenário, o presente trabalho propõe o desenvolvimento e a 

avaliação de modelos de regressão linear múltipla para estimativa do Fator de 

Segurança. O banco de dados utilizado foi compilado e organizado por Ahmad et al 

(2022), ele contempla 87 taludes reais oriundos da literatura, sujeitos, principalmente, 

a ruptura circular, caracterizados por sete parâmetros geomecânicos.  

São analisados diferentes cenários de tratamento dos dados, incluindo a 

remoção de outliers e a aplicação de critérios baseados em valores típicos dos 
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parâmetros geomecânicos. O objetivo é avaliar o impacto dessas etapas na qualidade 

estatística e na confiabilidade dos modelos gerados. 

É importante ressaltar que essa análise constitui uma ferramenta complementar 

aos métodos clássicos de análise de estabilidade de taludes. Conforme mencionado 

por Santos (2016), os métodos estatísticos multivariados não substituem as análises 

tradicionais de estabilidade de taludes, entretanto, podem contribuir para a 

identificação preliminar de taludes que demandam de uma investigação mais 

detalhada. 

 

2. OBJETIVOS 

2.1 Objetivo Geral 

 Desenvolver e avaliar modelos de regressão linear múltipla para estimativa do 

Fator de Segurança de taludes sujeitos a ruptura circular. 

 

2.2 Objetivos Específicos 

Abaixo estão descritos os objetivos específicos do presente trabalho: 

• Analisar estatisticamente o banco de dados; 

• Avaliar diferentes cenários de tratamento de dados; 

• Verificar a adequação da regressão linear; 

• Comparar os modelos desenvolvidos; 

• Validar os modelos por validação cruzada; 

 

3. JUSTIFICATIVA 

 A análise de estabilidade de taludes é fundamental na engenharia geotécnica, 

não apenas para garantir a segurança de obras e vidas humanas, mas também para 

mitigar riscos concretos em áreas vulneráveis. 

 De acordo com o Serviço Geológico do Brasil – SGB (CPRM, 2021), o município 

de Ouro Preto (MG) apresenta o maior número de áreas de risco geológico no país, 



12 
 

com 313 áreas mapeadas das quais cerca de 97% são classificadas como de risco 

geológico alto e 2,8% como muito alto, atingindo diretamente mais de 3 mil pessoas.  

 Ainda segundo o SGB (CPRM, 2021), 882 domicílios particulares e coletivos 

estão localizados nestas áreas de risco, e mais de 80% desses domicílios se situam 

em áreas suscetíveis a deslizamentos de encostas, evidenciando a relevância deste 

problema. 

 A aplicação de modelos estatísticos na estabilidade de taludes representa uma 

ferramenta complementar para análises preliminares, retroanálises e estudos 

comparativos, especialmente quando há dados históricos disponíveis. Modelos de 

regressão linear múltipla permitem estimar o fator de segurança (FS) em taludes de 

forma rápida e apoiam na tomada de decisão em diversos projetos de engenharia.  

 Este trabalho analisa o desempenho de regressões lineares para estimar o FS 

e demonstra a influência do tratamento dos dados na confiabilidade dos modelos. Ao 

mostrar as vantagens, as limitações e as condições em que esses modelos podem 

ser aplicados, o estudo contribui para o uso cauteloso de técnicas de análise de dados 

na geotecnia, de forma complementar aos métodos determinísticos tradicionais de 

análise de estabilidade. 

 

4. FUNDAMENTAÇÃO TEÓRICA 

4.1 Estabilidade de Taludes 

 A avaliação da estabilidade de taludes, fundamenta-se nas tensões cisalhantes 

atuantes e na sua comparação com a resistência ao cisalhamento do solo, ambas ao 

longo de uma superfície de ruptura considerada crítica. De acordo com Gerscovich 

(2016), a ruptura ocorre com a formação de uma superfície de cisalhamento contínua 

na massa do solo. Nesse processo, uma camada de solo ao redor dessa superfície 

perde parte de suas características, formando a zona cisalhada. 

Gerscovich (2016) e Fiori (2015), definem talude como qualquer superfície 

inclinada que limita um maciço de solo ou rocha. Os taludes podem ser classificados 

como naturais, também denominados encostas, ou artificiais, quando resultantes das 

intervenções do homem. 
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 De acordo com Santos (2016), a altura e o ângulo de inclinação do talude 

constituem parâmetros fundamentais nos estudos de estabilidade, uma vez que são 

variáveis que podem ser alteradas quando as medidas adotadas contribuem para a 

instabilidade do talude. Na figura 1, são representados alguns termos principais para 

geometria de taludes. 

 

   

  

 

 

 

Fonte: Fiori (2015). 

 

4.2 Resistência ao Cisalhamento 

 A ruptura por cisalhamento caracteriza-se pelo desenvolvimento de uma 

superfície de ruptura na qual a tensão cisalhante atinge um valor crítico, sendo 

seguida pelo deslocamento ao longo do plano de ruptura e pelo relaxamento dos 

esforços atuantes (FIORI, 2015). 

 Ainda segundo Fiori (2015), o critério de ruptura mais simples e amplamente 

difundido é o critério de Mohr–Coulomb, o qual é representado por uma envoltória 

linear tangente ao círculo de Mohr, definindo as condições críticas associadas às 

combinações dos esforços principais. Na figura 2, é exibida a representação gráfica 

do critério de ruptura de Mohr-Coulomb. 

Figura 1 - Terminologia aplicada a geometria de taludes. 



14 
 

 

 

 

 

 

 

Fonte: Fiori (2015). 

 

A equação da reta apresentada na figura 2 é dada por: 

𝜏 = 𝑐 + 𝜎 𝑡𝑔 𝜙             (1) 

 Onde: 

 𝜏 = resistência ao cisalhamento 

c = coesão 

σ = tensão normal 

ϕ = ângulo de atrito 

 

 Para os diferentes tipos de falhas por cisalhamento, o maciço rochoso pode ser 

tratado como um material que obedece ao critério de Mohr–Coulomb, no qual a 

resistência ao cisalhamento é definida em função da coesão (c) e do ângulo de atrito 

(ϕ) (WYLLIE; MAH, 2004). 

 

4.2.1 Coesão  

 Conforme exposto por Murrieta (2018), mesmo na ausência de esforços 

externos aplicados, determinados tipos de solo apresentam uma parcela de 

resistência ao cisalhamento, denominada por Coulomb como coesão, considerada 

uma constante do solo.  

Figura 2 - Critério de Ruptura de Mohr-Coulomb. 
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 A resistência ao cisalhamento dos solos decorre, predominantemente, do atrito 

existente entre as partículas. No entanto, forças de atração química entre essas 

partículas podem gerar uma parcela de resistência independente da tensão normal 

atuante no plano de ruptura, caracterizando a chamada coesão real (PINTO, 2006). 

Segundo Hoque et al. (2023), a coesão é o grau de cisalhamento do solo em um ponto 

onde a tensão de compressão é igual a zero. A figura 3 traz valores típicos para coesão 

em argilas. 

 

 

 

 

 

 

 

 

Fonte: Adaptado de Alonso (1983) apud Priebe et al. (2019). 

 

4.2.2 Ângulo de Atrito 

 O ângulo de atrito do material rochoso está associado ao tamanho e à forma 

dos grãos expostos na superfície da fratura. Assim, rochas de granulação fina, como 

aquelas com elevado teor de mica orientada paralelamente à superfície, como os 

filitos, tendem a apresentar baixos valores de ângulo de atrito, enquanto rochas de 

granulação grossa, como o granito, apresentam ângulos de atrito mais elevados 

(WYLLIE; MAH, 2004). Faixas típicas para ângulos de atrito e suas classificações 

foram apresentados na figura 4. 

 

Figura 3 - Valores típicos de coesão. 
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Fonte: Adaptado de Wyllie & Mah (2004). 

 

4.2.3 Razão de Poropressão  

 Wyllie e Mah (2004) destacam que a principal influência da presença de água 

em uma descontinuidade é a redução da resistência ao cisalhamento, decorrente da 

diminuição da tensão normal efetiva atuante sobre a superfície. Essa tensão normal 

efetiva é definida como a diferença entre o peso do maciço rochoso sobrejacente e a 

pressão de soerguimento gerada pela água. Dessa forma, o efeito da pressão da 

água, também chamada poropressão (u), sobre a resistência ao cisalhamento pode 

ser incorporado à equação de resistência ao cisalhamento: 

 

𝜏 = 𝑐 + (𝜎 − 𝑢) 𝑡𝑔 𝜙             (2) 

 

 A Razão de Poropressão (ru), poder ser definida pela relação entre 

poropressão e tensão normal: 

𝑟𝑢 =
𝑢

σ 
                          (3) 

 

Onde:  

  ru = razão de poropressão; 

 u = poropressão 

 σ = tensão normal 

Figura 4 - Valores típicos de ângulo de atrito para diferentes tipos de rocha. 



17 
 

4.3 Peso Específico 

Segundo Cintra (2003), na ausência de ensaios laboratoriais, o peso específico 

do solo pode ser estimado a partir de valores aproximados, definidos em função da 

consistência das argilas e do grau de compacidade das areias. A consistência dos 

solos está diretamente relacionada ao índice de resistência à penetração (NSPT), 

conforme estabelecido pela Associação Brasileira de Normas Técnicas (ABNT), por 

meio da Norma Brasileira NBR 6484:2001. Nesse contexto, Godoy (1972, apud 

CINTRA, 2003) propõe valores típicos para a estimativa do peso específico de solos. 

 

 

 

 

 

 

 

Fonte: Godoy (1972, apud CINTRA, 2003). 

 

Figura 6 - Peso Específico de Solos Arenosos. 

 

 

 

 

 

 

Fonte: Godoy (1972, apud CINTRA, 2003). 

 

 

Figura 5 - Peso Específico de Solos Argilosos. 
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4.4 Método do Equilíbrio Limite 

 O método baseia-se na determinação do equilíbrio de uma massa ativa de solo, 

a qual pode ser delimitada por uma superfície de ruptura de geometria circular, 

poligonal ou de outra forma qualquer. Neste método, assume-se que a ruptura ocorre 

ao longo dessa superfície e que todos os elementos que a compõem atingem 

simultaneamente a condição correspondente a um fator de segurança (FS) igual a 1 

(GERSCOVICH, 2016). 

 

4.4.1 Fator de Segurança 

 O objetivo da análise de estabilidade consiste em avaliar a probabilidade de 

ocorrência de movimentos de massa em taludes naturais ou artificiais. Essas análises 

baseiam-se na comparação entre as tensões cisalhantes mobilizadas e a resistência 

ao cisalhamento ao longo de superfícies potenciais de ruptura (GERSCOVICH, 2016). 

Portanto, define-se um Fator de Segurança (FS), que pode ser dado pela relação 

apresentada na figura 7. 

 

 

 

 

 

Fonte: Gerscovich (2016). 

 

Onde: 

FS = fator de segurança; 

τf = resistência ao cisalhamento do solo 

τmob = tensões cisalhantes mobilizadas 

 

Figura 7 - Relação do Fator de Segurança. 
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4.5 Ruptura Circular 

 De maneira geral, a instabilidade de taludes é comumente associada a planos 

que dividem o maciço em um meio descontínuo. Nesses casos, uma ou mais 

descontinuidades tendem a controlar a superfície de ruptura, entretanto, em solos ou 

rochas muito fraturadas ou intemperizadas, o padrão estrutural é pouco definido, 

permitindo que a superfície de deslizamento se desenvolva ao longo do trajeto de 

menor resistência no talude, assumindo, na maioria das ocorrências já observadas, 

uma geometria aproximadamente circular (WYLLIE; MAH, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Gerscovich (2016). 

 

 

Figura 8 - Ruptura Circular. 
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4.6 Estatística Multivariada 

 De acordo com Hair et al. (2009), a análise multivariada engloba o conjunto de 

técnicas estatísticas destinadas à avaliação simultânea de múltiplas medidas 

associadas a indivíduos ou objetos de estudo. Dessa forma, qualquer análise 

simultânea de mais de duas variáveis pode ser, em princípio, classificada como 

multivariada. 

 Abaixo, seguem alguns conceitos estatísticos importantes e as definições 

propostas por Hair et al. (2009):  

• Homoscedasticidade – “Quando a variância dos termos de erro (e) 

parece constante ao longo de um domínio de variáveis preditoras, diz-

se que os dados são homoscedásticos. A suposição de variância igual 

do erro E da população (onde E é estimado a partir de e) é crítica para 

a aplicação correta de muitas técnicas multivariadas.” (HAIR et al., 2009, 

p. 51). 

• Linearidade – “Usada para expressar o conceito de que o modelo possui 

as propriedades de aditividade e homogeneidade. Em termos gerais, os 

modelos lineares preveem valores que recaem em uma linha reta que 

tem uma mudança com unidade constante (coeficiente angular) da 

variável dependente em relação a uma mudança com unidade constante 

da variável independente.” (HAIR et al., 2009, p. 51). 

• Normalidade – “Grau em que a distribuição dos dados da amostra 

corresponde a uma distribuição normal.” (HAIR et al., 2009, p. 51). 

• Resíduo – “Parte de uma variável dependente não explicada por uma 

técnica multivariada. Associado a métodos de dependência que tentam 

prever a variável dependente, o resíduo representa a parte inexplicada 

da mesma. Os resíduos podem ser usados em procedimentos 

diagnósticos para identificar problemas na técnica de estimação ou para 

identificar relações não especificadas.” (HAIR et al., 2009, p. 51). 

  

 

 



21 
 

4.6.1 Correlação entre variáveis 

 4.6.1.1 Fórmula do coeficiente de correlação de Pearson 

 De acordo com Montgomerya et al. (2021), o coeficiente de correlação da 

amostra, rxy, constitui uma medida quantitativa da força da relação linear entre duas 

variáveis aleatórias, x e y. Esse coeficiente também é conhecido como coeficiente de 

correlação de Pearson, e é definido através da equação: 

 

𝑟𝑥𝑦 =
∑ (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

[∑ (𝑥𝑖−𝑥̅)2 ∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

𝑛
𝑖=1 ]

1/2                       (4) 

 

 onde: 

▪ xi e yi são os valores observados; 

▪ x̅ e y̅ são as médias das variáveis. 

 Os valores do coeficiente de Pearson podem variar entre −1 e +1, em que 

valores próximos de ±1 indicam forte correlação linear, enquanto valores próximos de 

0 indicam fraca associação. 

 

4.6.2 Regressão linear múltipla 

 A regressão múltipla é uma técnica estatística empregada para analisar a 

relação entre uma única variável dependente (critério) e diversas variáveis 

independentes (preditoras). Seu objetivo é utilizar variáveis independentes com 

valores conhecidos para estimar ou prever os valores da variável dependente definida 

pelo pesquisador (Hair et al., 2009). 

 4.6.2.1 Forma geral do modelo 

 Em um modelo de regressão múltipla, a variável dependente (Y) será 

determinada por mais de uma variável independente (X) (MAIA, s.d.). 

 Montgomery et al. (2021) sugere a seguinte forma geral do modelo de 

regressão:  

Y = 0 + 1X1 + 2X2 + 𝜀              (5) 
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 Onde:  

β0 = é o valor esperado de Y quando todos as variáveis independentes forem 

nulas;  

1 = coeficiente parcial de regressão para a variável independente X1;  

2 = coeficiente parcial de regressão para a variável independente X2;  

k = coeficiente parcial de regressão para a variável independente Xk;  

𝜀 = erro; 

 O parâmetro β0 é a interseção do plano. Os coeficientes β₁ e β₂ são 

denominados coeficientes parciais de regressão, pois β₁ expressa a variação 

esperada em Y para cada unidade de variação em x₁, mantendo-se x₂ constante, 

enquanto β₂ representa a variação esperada em Y para cada unidade de variação em 

x₂, mantendo-se x₁ constante (MONTGOMERY et al., 2021). 

 

4.6.3 Teste de esfericidade de Bartlett 

 Conforme Dutt-Ross (2020), o teste de Bartlett é empregado para verificar a 

homogeneidade das variâncias entre amostras, ou seja, se elas podem ser 

consideradas estatisticamente iguais. A verificação desse pressuposto é requerida 

pela maioria dos procedimentos estatísticos. 

 De acordo com Bartlett (1951) apud Lugu (2023), o teste de esfericidade de 

Bartlett, é utilizado para avaliar se a matriz de correlação observada é estatisticamente 

diferente de uma matriz identidade, na qual as variáveis não apresentam correlação 

entre si. A hipótese nula do teste pressupõe que os coeficientes de correlação fora da 

diagonal principal sejam iguais a zero, indicando ausência de interdependência entre 

as variáveis. Quando o resultado do teste apresenta p-valor inferior a 0,05, rejeita-se 

essa hipótese, evidenciando a existência de correlações significativas entre as 

variáveis. 
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4.6.4 Detecção de outliers multivariados 

 De acordo com Hair et al. (2009), a detecção de outliers multivariados pode ser 

realizada por meio da medida D² de Mahalanobis, que consiste em uma avaliação 

multivariada de cada observação em relação a um conjunto de variáveis. Ainda 

segundo os autores, esse método mede a distância de cada observação, em um 

espaço multidimensional a partir do centro médio de todas as observações, 

fornecendo um único valor para cada caso, independentemente do número de 

variáveis analisadas. Valores mais elevados de D² indicam observações mais 

distantes da distribuição geral dos dados nesse espaço multidimensional. 

  

5. MATERIAIS E MÉTODOS 

 O principal objetivo deste capítulo é expor a metodologia constituída no 

trabalho, bem como apresentar o banco de dados, software e os métodos aplicados 

durante seu desenvolvimento. Os algoritmos resultantes estão dispostos no 

Apêndices do presente trabalho. 

 

5.1 Banco de Dados 

 O banco de dados utilizado neste estudo é oriundo do trabalho “Prediction of 

slope stability using Tree Augmented Naive-Bayes classifier: modeling and 

performance evaluation” (AHMAD et al, 2022). Ele é composto por 87 elementos 

amostrais referentes a taludes sujeitos predominantemente a mecanismos de ruptura 

circular, contendo 7 variáveis que foram utilizadas para construção dos modelos de 

regressão. O banco de dados pode ser encontrado no Anexo A deste trabalho. 

 

5.1.1 Variáveis do estudo 

 O conjunto de variáveis analisadas é constituído por parâmetros geotécnicos e 

geométricos, além do Fator de Segurança. São elas: 

• peso específico (γ); 

• coesão (c); 

• ângulo de atrito interno (ϕ); 
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• ângulo de inclinação do talude (β); 

• altura do talude (H); 

• razão de poropressão (ru); 

• fator de segurança (FS);  

 O FS foi considerado como variável dependente, enquanto as demais foram 

tratadas como variáveis independentes do modelo. 

 

5.2 Ambiente computacional 

 As análises estatísticas e a construção dos modelos de regressão foram 

realizadas no ambiente RStudio, utilizando a linguagem R. Foram utilizados scripts 

para leitura, tratamento, análise exploratória e modelagem dos dados, bem como 

pacotes específicos para aplicação de testes estatísticos e análise multivariada. 

 

5.2.1 RStudio 

 O RStudio consiste em um ambiente integrado de desenvolvimento (Integrated 

Development Environment – IDE) desenvolvido para dar suporte a várias linguagens 

de programação, com destaque para a linguagem R. 

 

5.3 Análise exploratória dos dados 

 Foi realizada uma análise exploratória do banco de dados com o objetivo de 

compreender o comportamento das variáveis e suas relações. Nessa etapa, foram 

efetuados cálculos de estatística básica, incluindo valores mínimos e máximos, 

mediana e média aritmética. Além disso, foram calculadas as matrizes de covariâncias 

e de correlação, a fim de identificar a dependência linear entre as variáveis. 

  Foram construídos boxplots, histogramas e gráficos de dispersão, com o intuito 

de identificar previamente se as variáveis apresentavam comportamento de 

distribuição normal, assimetrias, possíveis outliers e tendências nos dados. 

 Uma matriz de dispersão foi obtida por meio da utilização da função pairs() do 

software RStudio, permitindo avaliar, de forma bivariada e visual, as correlações entre 

as variáveis. De maneira complementar, a função painel.pearson exibe, no painel 
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superior da matriz de dispersão, o valor absoluto do coeficiente de correlação linear 

entre os pares. Esse coeficiente pode variar entre 0 e 1, em que valores abaixo de 0,3 

indicam associação linear fraca, enquanto valores próximos de 1 indicam forte 

associação linear.  

 

5.4 Testes estatísticos preliminares 

 A fim de verificar se o banco de dados era adequado para aplicação de técnicas 

multivariadas, foram realizados testes estatísticos preliminares capazes de avaliar a 

existência de correlações significativas, bem como a viabilidade do uso dos métodos 

aplicados. 

 

5.4.1 Teste de Esfericidade de Bartlett 

 Neste teste, a hipótese nula considera a inexistência de correlação significativa 

entre as variáveis. Para satisfazer o interesse desse estudo, assume-se o que é 

estabelecido previamente na literatura, segundo a qual a hipótese nula deve ser 

rejeitada para um p-value inferior a 0,05, indicando, com 95% de confiança, a 

presença de correlação suficiente para a aplicação de métodos multivariados. 

 Também foi realizado um teste de normalidade multivariada, visando avaliar, de 

forma simultânea, se todas as variáveis do conjunto de dados seguem uma 

distribuição normal multivariada, e não apenas as suas distribuições individuais. Para 

realização deste teste foi utilizada a função mvn() do pacote MVN do RStudio. 

 

5.5 Identificação e tratamento de outliers 

 A identificação de outliers foi realizada por meio da distância de Mahalanobis, 

técnica comumente utilizada em análises multivariadas para encontrar elementos 

amostrais discrepantes em relação ao conjunto de dados. As observações 

identificadas como outliers foram analisadas e removidas conforme os critérios 

definidos em cada cenário proposto. 
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5.6 Construção dos modelos de regressão 

 Foram construídos modelos de regressão linear múltipla considerando três 

cenários distintos: 

• Análise 1: construção do modelo utilizando todos os dados, sem tratamento 

de dados e sem remoção de outliers; 

• Análise 2: construção do modelo utilizando todo o conjunto de dados, mas com 

a remoção dos outliers identificados pela distância de Mahalanobis; 

• Análise 3: tratamento prévio dos dados baseado em critérios de valores típicos 

e observações para algumas variáveis independentes, seguido da remoção de 

outliers. 

 Como dito anteriormente, o Fator de Segurança (FS) foi considerado a variável 

dependente, sendo as demais variáveis utilizadas como variáveis independentes. 

 Os modelos foram ajustados utilizando a função lm() do R, que estima os 

coeficientes de determinação por meio do método dos mínimos quadrados ordinários. 

 

5.6.1 Critérios adotados para tratamento dos dados na Análise 3 

 Para a análise 3 alguns critérios adicionais foram implementados. Foram 

removidos os elementos amostrais que apresentaram pelo menos uma das seguintes 

condições: 

• Peso específico (γ) < 15kN/m3   

• Coesão (c) < 5 kPa   

• Altura do talude (H) > 50 m  

 Esses limites foram definidos com base em valores da literatura, propostos para 

peso específico por Godoy (1972, apud Cintra, 2003) e para coesão por Alonso (1983). 

Além da análise do próprio banco de dados para definir o critério adotado para a 

variável altura, buscando calibrar o modelo com condições que representassem o 

comportamento médio dos taludes. Importante ressaltar que tais critérios foram 

adotados por representarem condições típicas de taludes artificiais e encostas em 

solos residuais, permitindo que o modelo estatístico fosse ajustado a situações 

geomecânicas compatíveis a cenários recorrentes em projetos. 
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5.7 Análise dos modelos 

 Os modelos obtidos foram analisados por meio do resultado referente ao 

coeficiente de determinação múltiplo (R²) e do coeficiente de determinação ajustado 

(R² ajustado), que permitem avaliar a capacidade explicativa dos modelos 

considerando o número de variáveis independentes e quais variáveis apresentavam 

maior significância na análise. 

 Além disso, foi realizada a análise dos resíduos com o objetivo de verificar a 

normalidade e a homoscedasticidade dos mesmos, garantindo que eles não 

apresentem qualquer tipo de padrão ou tendência, confirmando que a variabilidade 

dos erros é aleatória.  

 

5.8 Validação dos modelos 

 Como etapa adicional, foi implementada a validação cruzada do tipo K-fold, 

com valores de K iguais a 5 e 10. Ela permitiu avaliar a capacidade de generalização 

e o desempenho preditivo dos modelos. O conjunto de dados foi dividido 

aleatoriamente em K subconjuntos, de modo que, a cada iteração, um fold fosse 

utilizado como conjunto de teste e os demais como conjunto de treinamento. 

 Em cada iteração, o modelo foi ajustado exclusivamente com os dados de 

treino e aplicado ao conjunto de teste para a predição do fator de segurança. O 

desempenho foi avaliado por meio do erro quadrático médio da raiz (RMSE) e do 

coeficiente de determinação preditivo (R²). Ao final, as médias foram utilizadas para 

identificar se o modelo possui boa capacidade de generalização. 

 

6. RESULTADOS E DISCUSSÕES 

 Este capítulo apresenta os resultados obtidos a partir da aplicação de modelos 

de regressão linear múltipla para estimativa do Fator de Segurança (FS) em taludes.  

A comparação entre os cenários permitiu avaliar a influência e a importância do pré-

processamento para o melhor desempenho dos modelos. Cada cenário foi analisado 

individualmente por meio de estatística descritiva, análise gráfica e ajuste do modelo 

de regressão. 
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6.1 Análise Preliminar 

 Inicialmente, foi realizada uma análise preliminar, a fim de entender o banco de 

dados e verificar a consistência dos mesmos. Essa etapa contribuiu para a 

identificação de valores física ou geotecnicamente incoerentes com a análise 

proposta. Esses valores geralmente podem ser associados a erros de digitação, 

conversão de unidades ou falhas na construção do banco de dados. 

 Como essas observações poderiam prejudicar o ajuste estatístico dos modelos 

de regressão, bem como a análise dos resultados, elas foram removidas. Assim, o 

banco de dados inicial que antes continha 87 amostras, foi reduzido para 71, 

garantindo maior coerência e confiabilidade para as etapas seguintes. 

 

6.2 Cenários de Análise 

 Para avaliar a influência do tratamento dos dados no desempenho e na 

confiabilidade dos modelos de regressão linear, foram desenvolvidos três cenários de 

modelagem, que se diferenciam com base no pré-processamento feito em cada um 

deles, conforme já exposto no Capítulo 5, Seção 5.6 - Construção dos Modelos de 

Regressão. 

 

6.3 Teste de Bartlett 

 Como pode ser observado na tabela 1, em todos os cenários analisados o teste 

de Bartlett resultou em um p-value menor que 0,05. Portanto, a hipótese nula pode 

ser descartada, indicando correlações significativas com confiança superior a 95%. 

 

Tabela 1 - Resultados Teste de Bartlett. 

 

 

 

 

Fonte: Autor (2026). 

Análise p-value 

1 
3.735362e-25 

2 

3 1.431403e-11 
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6.4 Análise 1  

6.4.1 Estatística descritiva 

 A análise inicial foi realizada utilizando o banco de dados após a etapa de 

análise preliminar e remoção de dados incoerentes, porém preservando as 

observações originais sem avaliação estatística para remoção de dados discrepantes. 

A Tabela 2 apresenta o resumo da estatística descritiva das variáveis consideradas. 

 

Tabela 2 - Resumo Estatística Descritiva – Análise 1. 

Fonte: Autor (2026). 

 

 Os resultados desta etapa mostram certo nível de dispersão dos parâmetros 

analisados, especialmente para as variáveis coesão (c) e altura (H), cujos valores 

máximos são muito superiores às medidas centrais. Esse comportamento pode ser 

observado também no boxplot apresentado na Figura 9. 

 

Dados γ c ϕ β H ru FS 

Min. 14 5 10 16 6 0 0.625 

1º Qu. 18.8 12 23.5 29.6 17.5 0.1 1.11 

Mediana 21 24.8 30 35 50 0.25 1.25 

Média 21.83 30.05 28.91 35.28 118.7 0.2265 1.321 

3º Qu. 25 38.35 35 44.25 157.5 0.3 1.455 

Max. 31.3 150 45 53 511 0.5 2.31 
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Fonte: Autor (2026). 

 A presença de outliers univariados coloca em evidência o quão heterogêneo é 

este conjunto de dados, característica que pode ser comum devido as diferentes 

condições em taludes observados nas análises em campo. 

 

 Fonte: Autor (2026). 

Figura 9 - Boxplot Geral – Análise 1 

Figura 10 - Histogramas - Análise 1. 
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 Na Figura 10, os histogramas apresentados indicam assimetrias e distribuições 

não normais para diversas variáveis, confirmando, novamente, a variabilidade natural 

dos parâmetros. 

 Do ponto de vista estatístico, dados muito dispersos e com valores extremos 

podem comprometer alguns pressupostos da regressão linear, como a 

homocedasticidade e a estabilidade das estimativas. Já em termos geotécnicos, essa 

variação representa a heterogeneidade natural dos maciços de solo, mas dificulta a 

construção de modelos com boa capacidade de previsão. 

 

6.4.2 Correlações entre as variáveis 

 A matriz de dispersão apresentada na Figura 11 permitiu avaliar visualmente 

as relações bivariadas entre as variáveis do modelo. 

Fonte: Autor (2026). 

 

 Observa-se alguns coeficientes de correlação abaixo de 0,3 entre o FS e 

grande parte das variáveis independentes, além de alta dispersão dos pontos. Esse 

comportamento indica baixa linearidade entre as variáveis, o que tende a 

comprometer o desempenho do modelo de regressão. 

Figura 11 - Matriz de dispersão – Análise 1. 
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6.4.3 Desempenho do modelo 

 Para avaliar se o ajuste do modelo foi satisfatório, espera-se que os valores 

médios dos resíduos tendam a zero.e que não apresentem nenhum tipo de tendência 

ou normalidade. Como pode ser observado na tabela 3, o valor de medida central dos 

erros é igual a 0.0094, dando um primeiro indício de que o ajuste do modelo foi bom. 

 

Tabela 3 - Resíduos – Análise 1. 

 

 

Fonte: Autor (2026). 

  

 Nos gráficos presentes nas figuras 12 e 13 podemos avaliar a dispersão e a 

normalidade dos resíduos, podendo confirmar o ajuste satisfatório do modelo. 

 

  

 

 

 

 

 

 

 

 

 

Fonte: Autor (2026).  

 

Min 1Q Mediana 3Q Max 

-0.585 -0.2705 0.0094 0.2004 0.7478 

Figura 12 - Dispersão dos resíduos – Análise 1. 
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Fonte: Autor (2026). 

 

 6.4.3.1 Coeficientes de Regressão  

  Na tabela 4 é possível observar os coeficientes resultantes da regressão 

para cada um dos parâmetros utilizados para calibração do modelo.   

 

Tabela 4 - Coeficientes de Regressão – Análise 1. 

 

 

 

 

 

 

Fonte: Autor (2026). 

 

 Na tabela, é possível observar que os parâmetros ângulo de atrito (ϕ) e ângulo 

de inclinação do talude (β) apresentaram o maior nível de significância (***), indicando 

forte relevância estatística para o ajuste do modelo. Geotecnicamente, isso é 

Parâmetro Coeficiente Estimado Significância 

Constante 0.9864411 *** 

γ 0.0261668 . 

c 0.0017277  

ϕ 0.0242515 *** 

β -0.0214203 *** 

H -0.0008062 * 

ru -0.6102048 * 

Figura 13 - Histograma dos resíduos – Análise 1. 
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coerente, pois o ângulo de atrito está diretamente associado à resistência ao 

cisalhamento do solo como visto anteriormente na equação 1, que representa o 

critério de resistência de Mohr-Coulomb. 

 A variável altura do talude (H) e a razão de poropressão (ru) apresentaram 

significância intermediária (*), indicando que exercem influência, ainda que menor. A 

poropressão reduz as tensões efetivas, diminuindo a resistência ao cisalhamento, 

conforme dito por Wyllie e Mah (2004). 

 A coesão (c) apresentou baixa significância estatística neste cenário, isso pode 

estar associado à elevada variabilidade dessa variável no domínio analisado, 

reduzindo sua capacidade de explicar linearmente o comportamento do FS. 

 

 6.4.3.2 Fórmula do modelo de regressão  

  A equação 6 é a equação resultante do modelo ajustado para o cenário 

1, baseado na forma geral dos modelos de regressão linear múltipla. 

𝐹𝑆 = 0.9864411 + 0.0261668γ + 0.0017277c +   0.0242515𝜙  − 0.0214203β −

0.0008062H −   0.6102048ru                                    (6) 

 Por fim, para avaliar se o modelo apresentou bom desempenho, se verifica o 

coeficiente de determinação ajustado (R2 ajustado). Neste cenário ele foi igual a 

0,3193, indicando baixo poder explicativo. Esse resultado evidencia que o modelo 

consegue explicar apenas uma parcela limitada dos dados originais. 

 

6.4.4 Avaliação do modelo 

 Mesmo com após a realização da análise preliminar, o modelo apresentou 

baixo desempenho. Isso se dá devido à alta variabilidade dos dados e a presença de 

outliers, que prejudicam o ajuste estatístico do modelo e a relação linear entre as 

variáveis.  

 Do ponto de vista geotécnico, essa alta variabilidade engloba diferentes 

contextos físicos de taludes, mas estatisticamente reduz a consistência do modelo, o 

tornando menos eficaz, mostrando a limitação do uso direto de dados brutos em 

modelos multivariados. 
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6.5 Análise 2 

 Considerando que a Análise 2 foi realizada com base no mesmo banco de 

dados da Análise 1, admite-se que as conclusões inciais referentes à estatística 

descritiva permanecem as mesmas da etapa anterior. A principal diferença entre as 

análises decorre da remoção de outliers, buscando o aumento da confiabilidade do 

modelo. 

 

6.5.1 Identificação de outliers 

 A detecção foi realizada com base na distância de Mahalanobis, cujo limite 

crítico determinado foi igual a 14,067. A partir desse critério, foram identificados dois 

elementos amostrais classificados como outliers multivariados, correspondentes às 

observações 41 e 78.  

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2026). 

 

Figura 14 - Distâncias de Mahalanobis e limite crítico – Análise 2. 
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6.5.2 Estatística Descritiva pós remoção de outliers 

 Na Análise 2, foram removidos dois elementos amostrais identificados como 

outliers multivariados. A Tabela 5 apresenta o resumo da estatística descritiva após 

essa remoção. 

 

Tabela 5 - Resumo Estatística Descritiva pós remoção de outliers – Análise 2. 

Fonte: Autor (2026). 

  

 Observa-se leve redução dos valores máximos e da dispersão das variáveis, 

especialmente para a coesão, indicando que os dados estão pouco mais homogêneos 

em comparação à Análise 1. 

 

6.5.3 Desempenho do modelo  

 Neste segundo cenário, a análise inicial dos resíduos sugere que o ajuste do 

modelo teve bom nível de satisfação, conforme dados dispostos na tabela 6. Também 

é possível fazer essa conclusão a partir do comportamento observado nos gráficos 

das figuras 15 e 16. 

 

Tabela 6 - Resíduos – Análise 2.  

 

 

Fonte: Autor (2026). 

 

Dados γ c ϕ β H ru FS 

Min. 14 5 10 16 6 0 0.625 

1º Qu. 18.8 12 22 29.2 15 0.11 1.11 

Mediana 20.6 24 30 35 50 0.25 1.25 

Média 21.72 27.01 28.44 34.81 117.5 0.2331 1.323 

3º Qu. 25 35 35 42.6 135 0.3 1.46 

Max. 31.3 100 45 50 511 0.5 2.31 

Min 1Q Mediana 3Q Max 

-0.49117 -0.24031 0.00634 0.20501 0.61041 
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Fonte: Autor (2026). 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autor (2026). 

Figura 15 - Dispersão dos Resíduos – Análise 2. 

Figura 16 - Histograma dos resíduos – Análise 2. 
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 6.5.3.1 Coeficientes de regressão  

  Na tabela 7 estão dispostos os coeficientes de regressão resultantes 

deste segundo cenário. 

 

Tabela 7 - Coeficiente de Regressão – Análise 2. 

 

 

 

 

 

 

Fonte: Autor (2026). 

 

 Após a remoção dos outliers, observa-se aumento da significância da coesão 

(c) (**), indicando que com a redução da influência dos dados discrepantes, o modelo 

passa a entender de forma mais clara o seu papel na estimativa do FS.  

 O ângulo de atrito (ϕ) e o ângulo do talude (β) permanecem significativos (***), 

confirmando sua importância geométrica no equilíbrio das forças. Já a altura (H) 

elevou seu grau de significância (**), reforçando a ideia de que o aumento de massa 

potencialmente instável proporcionado pela variação deste parâmetro, influencia 

negativamente o FS, indo de encontro a afirmação feita por Santos (2016). 

 A razão de poropressão (ru) ganha maior significância neste cenário (**), o que 

é coerente com seu efeito direto na redução da resistência efetiva.  

 Portanto, a melhoria geral dos níveis de significância demonstra que a remoção 

dos outliers permitiu ao modelo representar de forma mais fiel os mecanismos físicos 

envolvidos. 

 

Parâmetro Coeficiente Estimado Significância 

Constante 0.9308533 *** 

γ 0.0219366 . 

c 0.0071211 ** 

ϕ 0.0282661 *** 

β -0.0235557 *** 

H -0.0008769 ** 

ru -0.6759952 ** 
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 6.5.3.2 Fórmula do modelo de regressão  

 A equação 7 é resultante deste modelo de regressão: 

 

𝐹𝑆 = 0.9308533 + 0.0219366γ + 0.0071211c +   0.0282661𝜙 − 0.0235557β −

0.0008769H −   0.6759952ru                                    (7) 

 

 O modelo ajustado após a remoção dos outliers apresentou R2 ajustado igual 

a 0,4485, representando melhora significativa em relação ao cenário anterior. Esse 

aumento demonstra a influência negativa que observações discrepantes exerciam 

sobre o ajuste do modelo. 

 

6.5.4 Avaliação do modelo 

 A remoção dos outliers multivariados contribuiu para o aumento da 

confiabilidade do modelo, reduzindo desvios estatísticos associadas a estas 

observações. Portanto, confirma o comportamento esperado em regressões lineares, 

uma vez que estes elementos exercem grande influência sobre os coeficientes 

estimados.  

 Apesar disso, o modelo ainda apresenta desempenho moderado, indicando 

que a variabilidade característica dos parâmetros geotécnicos permanece relevante 

mesmo após a exclusão dos casos extremos. 

 

6.6 Análise 3  

6.6.1 Estatística descritiva 

 A Tabela 8 apresenta o resumo da estatística descritiva do banco de dados 

tratado por critérios de valores típicos.  
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Tabela 8 - Resumo Estatística Descritiva - Análise 3. 

Fonte: Autor (2026). 

 

 

Fonte: Autor (2026). 

 

Dados γ c ϕ β H ru FS 

Min. 18 5 10 16 6 0 0.65 

1º Qu. 18.8 11.93 20 25 12 0.1075 1.085 

Mediana 19.1 20 25.75 30 20.5 0.3 1.315 

Média 19.77 24.23 25.84 31.48 27.36 0.2489 1.385 

3º Qu. 20.7 30 32.75 40 50 0.4 1.725 

Max. 22.4 100 45 49 50 0.5 2.31 

Figura 17 - Boxplot Geral – Análise 3. 
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Fonte: Autor (2026). 

  

 Quando comparado com as análises 1 e 2, existe uma redução significativa da 

dispersão e maior concentração dos dados em torno das medidas centrais. Isto sugere 

um conjunto de dados mais homogêneo e representativo das condições médias de 

estabilidade. 

 Os dados mais homogêneos tendem a apresentar estimativas mais estáveis e 

com menor variância, favorecendo o desempenho de modelos lineares e melhora a 

confiabilidade dos coeficientes estimados. 

 

 

 

 

 

 

Figura 18 - Histogramas - Análise 3. 
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6.6.2 Correlações entre as variáveis 

 

Fonte: Autor (2026). 

  

 A matriz evidencia correlações lineares mais fortes entre o Fator de Segurança 

e as demais variáveis, com menor espalhamento dos pontos, indicando melhor 

adequação ao modelo. 

 

6.6.3 Identificação de outliers 

 Mais uma vez a distância de Mahalanobis foi utilizada para identificação dos 

dados discrepantes. O limite crítico calculado foi igual a 14,067. Foram identificados 

dois elementos amostrais, 17 e 45, classificados como outliers.  

 

 

 

 

Figura 19 - Matriz de dispersão – Análise 3. 
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Fonte: Autor (2026). 

 

6.6.4 Desempenho do modelo 

 A análise dos resíduos foi realizada a partir dos dados dispostos na tabela 9 e 

nas representações gráficas apresentadas a seguir. 

 

Tabela 9 - Resíduos – Análise 3. 

 

 

Fonte: Autor (2026). 

  

 Na figura 21 verifica-se que os resíduos se distribuem de forma aleatória, sem 

a presença de quaisquer tendências ou padrões, o que indica adequação do ajuste 

linear. Já na figura 22, é possível ressaltar que, conforme esperado, os resíduos não 

apresentam normalidade. 

Min 1Q Mediana 3Q Max 

-0.412 -0.0985 0.00691 0.10647 0.34232 

Figura 20 - Distâncias de Mahalanobis e limite crítico - Análise 3. 
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Fonte: Autor (2026). 

 

 

 

 

  

 

 

 

 

 

 

Fonte: Autor (2026). 

 

Figura 21 - Dispersão dos Resíduos – Análise 3. 

Figura 22 - Histograma dos Resíduos – Análise 3. 
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 6.6.4.1 Coeficientes de regressão  

  A tabela 10 apresenta os valores dos coeficientes obtidos pelo modelo 

de regressão. 

 

Tabela 10 - Coeficiente de Regressão – Análise 3.  

 

 

 

 

 

Fonte: Autor (2026). 

 

 Neste cenário, observa-se que praticamente todas as variáveis apresentam alta 

significância (**, ***), indicando um modelo estatisticamente consistente e 

geomecanicamente coerente. 

 A coesão (c) e o ângulo de atrito (ϕ) apresentam elevada significância, refletindo 

sua função direta como parâmetros de resistência ao cisalhamento. A inclinação do 

talude (β) e a altura (H) também são altamente significativas, pois controlam a 

diretamente o impacto resultante das forças mobilizadoras. 

 A razão de poropressão (ru) também apresenta forte significância (***), sendo 

um dos parâmetros mais sensíveis do modelo. Isso se dá devido ao fato de que 

qualquer aumento deste parâmetro pode reduzir drasticamente as tensões efetivas, 

impactando o FS. 

 O aumento geral da significância estatística nesse cenário indica que o 

tratamento dos dados reduziu substancialmente as inconsistências, permitindo que o 

modelo representasse de forma mais clara as relações físicas conhecidas na 

mecânica dos solos. 

 

Parâmetro Coeficiente Estimado Significância 

Constante 2.808259 *** 

γ -0.050297 . 

c 0.015013 *** 

ϕ 0.019626 ** 

β -0.021113 *** 

H -0.012561 *** 

ru -1.021841 *** 
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 6.6.4.2 Fórmula do modelo de regressão  

 A partir dos coeficientes estimados pelo modelo de regressão linear múltipla, 

novamente foi deduzida a equação que relaciona o Fator de Segurança às variáveis 

consideradas, válida apenas para o domínio de dados tratado para este cenário. A 

equação é apresentada abaixo:  

 

𝐹𝑆 = 2.808259 − 0.050297γ + 0.015013c +   0.019626𝜙 − 0.021113β −

 0.012561H − 1.021841ru                                    (8) 

  

 O modelo ajustado apresentou R2 ajustado igual a 0,8134, mostrando seu 

elevado poder explicativo, com desempenho significativamente superior aos cenários 

analisados anteriormente. 

 

6.6.5 Validação Cruzada 

 A Tabela 11 apresenta o desempenho do modelo avaliado por validação 

cruzada K-fold, com K=5 e K=10, permitindo analisar sua capacidade preditiva em 

partições independentes de dados. 

 

Tabela 11 - Resultados da Validação Cruzada. 

Fonte: Autor (2026). 

  

 Observa-se que os valores de RMSE médio são baixos em ambos os casos, 

indicando que o erro médio de predição do Fator de Segurança é baixo quando o 

modelo é aplicado para dados não utilizados no ajuste. 

K RMSE Medio Desvio Padrão RMSE R2 Médio Desvio Padrão R2 

5 0.220 0.065 0.781 0.233 

10 0.206 0.114 0.744 0.345 
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 Já em relação ao coeficiente de determinação, os valores de R2 médio 

confirmam que o modelo mantém elevada capacidade explicativa mesmo fora da 

partição de ajuste, reforçando sua robustez. 

 Os desvios padrão associados a ambos os índices indicam a estabilidade do 

modelo entre as diferentes partições dos dados. Para K=5, observa-se menor 

variabilidade, enquanto em K=10 existe um aumento do desvio padrão, o que é 

esperado dado o menor tamanho das partições de teste. Ainda assim, os valores 

permanecem satisfatórios e com um modelo estatisticamente confiável. 

 

6.6.6 Avaliação do modelo 

 Os resultados obtidos pelo modelo de regressão confirmam que o tratamento 

dos dados mais robusto resultou em um modelo mais confiável e com maior 

capacidade de explicativa, indicando que grande parte da variabilidade do FS foi 

explicada pelo modelo. Já os resultados da validação cruzada confirmam que o 

modelo apresenta boa capacidade de generalização, não estando restrito apenas ao 

conjunto de dados utilizado no ajuste.  

 Entretanto, essa melhoria ocorre à custa de maiores restrições do domínio de 

validade, limitando sua aplicação a condições geomecânicas semelhantes as 

consideradas para calibração do modelo. Apesar da redução da variabilidade geral 

dos dados, foi mantida uma variabilidade compatível com o contexto de solos 

residuais, preservando a representatividade das condições médias desses materiais. 

Dessa forma, o modelo torna-se particularmente adequado para aplicação em taludes 

artificiais e encostas associadas a contextos urbanos, rodoviários e ferroviários, os 

quais comumente se enquadram nas restrições impostas durante o tratamento dos 

dados. 

 Dados os resultados, este modelo foi considerado como o mais robusto entre 

os cenários de avaliação. 
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6.7 Síntese das Análises 

 A tabela 12 traz um resumo dos três cenários analisados.  

 

Tabela 12 - Comparação de resultados dos modelos. 

Análise Tratamento dos Dados 
R² 

ajustado 
Interpretação 

1 
análise preliminar e modelo 

calibrado com os dados brutos 
0,3193 

Baixa 
representatividade 

estatística 

2 
Mesmo banco de dados da análise 

1, porém com a remoção de 
outliers multivariados 

0,4485 Melhoria moderada 

3 

Tratamento dos dados mais 
robusto, aumentando a restrição 

do modelo, mas com maior 
confiabilidade 

0,8134 
Alta representatividade 
dos dados, mas com 

restrições 

Fonte: Autor (2026). 

  

 Embora os cenários 1 e 2 mantenham maior variabilidade do conjunto de 

dados, o cenário 3 possui desempenho estatístico superior, tornando-se a alternativa 

mais adequada para estimativas que representem as condições médias de 

estabilidade. 

 Esse comportamento levanta a discussão sobre o equilíbrio entre 

representatividade física e desempenho estatístico: modelos mais gerais tendem a 

apresentar menor ajuste, enquanto modelos mais restritivos exibem maior precisão, 

porém aplicáveis a um intervalo reduzido de condições que explicam um mesmo 

contexto geofísico. 
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7. CONCLUSÕES 

 Este trabalho avaliou o desempenho de modelos de regressão linear múltipla 

aplicados à estimativa do Fator de Segurança de taludes, considerando diferentes 

níveis de tratamento de dados. A comparação entre os três cenários demonstrou que 

a qualidade e o pré-processamento do banco de dados exercem influência direta no 

ajuste estatístico, no poder explicativo e na confiabilidade dos modelos. 

 O modelo construído a partir dos dados brutos apresentou baixo desempenho, 

refletindo a elevada variabilidade natural dos parâmetros geotécnicos e a influência 

de valores extremos, que dificultaram a identificação de relações lineares mais 

consistentes. A remoção de outliers multivariados por meio da distância de 

Mahalanobis resultou em melhora moderada do segundo ajuste, evidenciando que os 

outliers exerciam impacto significativo sobre os coeficientes de regressão estimados.  

 O melhor desempenho foi obtido no cenário em que o banco de dados foi 

previamente tratado baseado em critérios de valores típicos para as variáveis 

independentes. A exclusão de observações inconsistentes e de condições extremas 

promoveu a homogeneização do conjunto de dados, e melhor ajuste do modelo. Os 

valores obtidos para o R2 ajustado, juntamente com os resultados da validação 

cruzada, indicaram boa capacidade de generalização dentro do domínio analisado. 

 Entretanto, é válido ressaltar que a maior confiabilidade estatística do último 

cenário está associada a restrição do domínio de aplicação do modelo. Apesar da 

redução da variabilidade global dos dados, foi preservada uma variabilidade 

representativa do comportamento típico de solos residuais, tornando o modelo 

adequado para taludes artificiais e encostas em contextos urbanos, rodoviários e 

ferroviários, que se enquadram nas restrições adotadas. 

 Dessa forma, este modelo se mostra mais adequado para análises preliminares 

e estimativas médias, devendo ser utilizado de forma complementar aos métodos 

determinísticos tradicionais em avaliações de estabilidade de taludes nestes tipos de 

solo. 

 Em trabalhos futuros, sugere-se a ampliação do banco de dados, a avaliação 

de modelos não lineares e a aplicação da metodologia em casos reais para validação 

externa, buscando ampliar o domínio de validade e a aplicabilidade prática dos 

modelos propostos. 
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APÊNDICE A – ALGORITMO ANÁLISE 1 

 

##ANÁLISE 1 

##LEITURA DOS DADOS 

dados <- read.table("database.txt",header=TRUE, row.names = 1, dec = '.') 

dados 

 

## dimensão dos dados 

dim(dados) 

 

## estrutura do conjunto de dados 

str(dados) 

 

## Vetor de médias 

colMeans(dados) 

 

## Matriz de Covariâncias 

S = var(dados) 

S 

 

## Matriz de Correlação dos Dados 

R= cor(dados) 

R 

 

##Resumo Estatísticos 

summary(dados) 

 

##BOXPLOT 

x11() 

boxplot(dados, main = "Boxplot das variáveis") 

boxplot(dados$γ, xlab = "Peso Específico", ylab = "kNm-3", main = "Boxplot 

da variável Peso Específico") 

boxplot(dados$c, xlab = "Coesão", ylab = "kPa", main = "Boxplot da variável 

Coesão") 

boxplot(dados$φ, xlab = "Ângulo de atrito", ylab = "graus", main = "Boxplot 

da variável Ângulo de Atrito") 
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boxplot(dados$β, xlab = "Ângulo de Inclinação", ylab = "graus", main = 

"Boxplot da variável Ângulo de Inclinação") 

boxplot(dados$H, xlab = "Altura", ylab = "metros", main = "Boxplot da 

variável Altura") 

boxplot(dados$ru, xlab = "Razão de Poropressão", main = "Boxplot da 

variável Razão de Poropressão") 

boxplot(dados$FS, xlab = "Fator de Segurança", main = "Boxplot da variável 

Fator de Segurança") 

 

## HISTOGRAMA 

hist(dados$γ, xlab = "Peso Específico (kN/m3)", ylab = "Frequência", main = 

"Histograma da variável Peso Específico") 

hist(dados$c, xlab = "Coesão (kPa)", ylab = "Frequência", main = 

"Histograma da variável Coesão") 

hist(dados$φ, xlab = "Ângulo de atrito (graus)", ylab = "Frequência", main 

= "Histograma da variável Ângulo de atrito") 

hist(dados$β, xlab = "Ângulo de Inclinação (graus)", ylab = "Frequência", 

main = "Histograma da variável Ângulo de Inclinação") 

hist(dados$H, xlab = "Altura (m)", ylab = "Frequência", main = "Histograma 

da variável Altura") 

hist(dados$ru, xlab = "Razão de Poropressão", ylab = "Frequência", main = 

"Histograma da variável Razão de Poropressão") 

hist(dados$FS, xlab = "Fator de Segurança", ylab = "Frequência", main = 

"Histograma da variável Fator de Segurança") 

 

## scatterplot matriz  

pairs(dados)  

 

## scatterplot matriz com correlacoes 

## funcao para personalizacao do painel 

painel.pearson <- function(x, y, ...) { 

  horizontal <- (par("usr")[1] + par("usr")[2]) / 2; 

  vertical <- (par("usr")[3] + par("usr")[4]) / 2; 

  text(horizontal, vertical, format(abs(cor(x,y)), digits=2), cex = 1.2, 

       font = 1) 

} 

pairs(dados, main = "Matriz de Dispersão - Análise 1", pch = 21, 

      upper.panel = painel.pearson) 

 

## Teste de esfericidade de Bartlett 

library(psych) 
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n=dim(dados)[1] 

cortest.bartlett(R,n) 

 

## Teste de normalidade multivariada 

library(MVN) 

mvn(dados) 

 

##REGRESSAÕ LINEAR MULTIPLA 

modelo <- lm(dados$FS ~., data = dados) 

summary(modelo) 

 

## Homocedasticidade dos resíduos 

plot(rstudent(modelo) ~ fitted(modelo), pch = 19) 

abline(h = 0, lty = 2, col = "red") 

 

## Normalidade dos Residuos 

hist(x = modelo$residuals, col = 'gray', xlab = 'Resíduos', ylab = 

'Densidade de Probabilidade', 

     probability = TRUE)  

lines(density(modelo$residuals)) 
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APÊNDICE B – ALGORITMO ANÁLISE 2 

 

##ANÁLISE 2 

##LEITURA DOS DADOS 

dados <- read.table("database.txt",header=TRUE, row.names = 1, 

dec = '.') 

dados 

 

## dimensao dos dados 

dim(dados)  

 

## estrutura do conjunto de dados 

str(dados) 

 

## Vetor de médias 

colMeans(dados) 

 

## Matriz de Covariâncias 

S = var(dados) 

S 

 

## Matriz de Correlação dos Dados 

R= cor(dados) 

R 

 

##ESTATISTICA DESCRITIVA 

summary(dados) 

 

##BOXPLOT 

x11() 
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boxplot(dados, main = "Boxplot das variáveis") 

boxplot(dados$γ, xlab = "Peso Específico", ylab = "kNm-3", 

main = "Boxplot da variável Peso Específico") 

boxplot(dados$c, xlab = "Coesão", ylab = "kPa", main = 

"Boxplot da variável Coesão") 

boxplot(dados$φ, xlab = "Ângulo de atrito", ylab = "graus", 

main = "Boxplot da variável Ângulo de Atrito") 

boxplot(dados$β, xlab = "Ângulo de Inclinação", ylab = 

"graus", main = "Boxplot da variável Ângulo de Inclinação") 

boxplot(dados$H, xlab = "Altura", ylab = "metros", main = 

"Boxplot da variável Altura") 

boxplot(dados$ru, xlab = "Razão de Poropressão", main = 

"Boxplot da variável Razão de Poropressão") 

boxplot(dados$FS, xlab = "Fator de Segurança", ylab = "kPa", 

main = "Boxplot da variável Fator de Segurança") 

 

## HISTOGRAMA 

hist(dados$γ, xlab = "Peso Específico", ylab = "Frequência", 

main = "Histograma da variável Peso Específico") 

hist(dados$c, xlab = "Coesão", ylab = "Frequência", main = 

"Histograma da variável Coesão") 

hist(dados$φ, xlab = "Ângulo de atrito", ylab = "Frequência", 

main = "Histograma da variável Ângulo de atrito") 

hist(dados$β, xlab = "Ângulo de Inclinação", ylab = 

"Frequência", main = "Histograma da variável Ângulo de 

Inclinação") 

hist(dados$H, xlab = "Altura", ylab = "Frequência", main = 

"Histograma da variável Altura") 

hist(dados$ru, xlab = "Razão de Poropressão", ylab = 

"Frequência", main = "Histograma da variável Razão de 

Poropressão") 

hist(dados$FS, xlab = "Fator de Segurança", ylab = 

"Frequência", main = "Histograma da variável Fator de 

Segurança") 
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## scatterplot matriz  

pairs(dados) #verificação da dispersão de todos os dados 

 

## scatterplot matrix com correlacoes 

## funcao para personalizacao do painel 

painel.pearson <- function(x, y, ...) { 

  horizontal <- (par("usr")[1] + par("usr")[2]) / 2; 

  vertical <- (par("usr")[3] + par("usr")[4]) / 2; 

  text(horizontal, vertical, format(abs(cor(x,y)), digits=2), 

cex = 1.2, 

       font = 1) 

} 

pairs(dados, main = "Conjunto de Dados", pch = 21, 

      upper.panel = painel.pearson) 

 

## Teste de esfericidade de Bartlett 

library(psych) 

n=dim(dados)[1] 

cortest.bartlett(R,n) 

 

## Teste de normalidade multivariada 

library(MVN) 

mvn(dados) 

 

 

##Detecçãoo de outliers multivariados (distancia de 

mahalanobis) 

maha2 <- mahalanobis(dados, center = colMeans(dados), cov = 

cov(dados)) 

maha2 
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# calcular o c^2, n graus de liberdade 

quant2 <- qchisq(0.95, dim(dados)[2]) 

quant2 

x11() 

plot(1:length(maha2), maha2, xlab = "Elementos amostrais",  

     ylab= "Distância de Mahalanobis") 

abline(h=quant2, lty=2, col="red") 

out2 <- maha2[maha2>quant2] 

out2 

out2 = as.data.frame(out2) 

out2 

dim(out2) 

text(row.names(out2),out2$out2,row.names(out2), pos = 2 ) 

 

## Remoção dos outliers do banco de dados 

ifelse(maha2>quant2, FALSE, TRUE) 

row_to_keep = ifelse(maha2>quant2, FALSE, TRUE) 

dados_s_out = dados[row_to_keep,] 

dados_s_out 

 

#ESTATÍSTICA DESCRITIVA PÓS REMOÇÃO OUTLIERS  

summary(dados_s_out) 

boxplot(dados_s_out, main = "Boxplot das variáveis") 

 

#REGRESSAÕ LINEAR MULTIPLA 

modelo <- lm(dados_s_out$FS ~., data = dados_s_out) 

summary(modelo) 
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## Homocedasticidade dos resíduos 

x11() 

plot(rstudent(modelo) ~ fitted(modelo), pch = 19) 

abline(h = 0, lty = 2, col = "red") 

 

## Normalidade dos Resíduos 

hist(x = modelo$residuals, col = 'gray', xlab = 'Resíduos', 

ylab = 'Densidade de Probabilidade', 

     probability = TRUE)  

lines(density(modelo$residuals), col="red") 
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APÊNDICE C – ALGORITMO ANÁLISE 3 

 

##ANÁLISE 3 

##LEITURA DOS DADOS 

dados <- read.table("database_tratado.txt",header=TRUE, row.names = 1, dec 

= '.') 

dados 

 

## dimensao dos dados 

dim(dados) ## n = 40, p = 7 

 

## estrutura do conjunto de dados 

str(dados) 

 

## Vetor de médias 

colMeans(dados) 

 

## Matriz de Covariâncias 

S = var(dados) 

S 

 

## Matriz de Correlação dos Dados 

R= cor(dados) 

R 

 

##ESTATISTICA DESCRITIVA 

summary(dados) 

 

##BOXPLOT 

x11() 

boxplot(dados, main = "Boxplot das variáveis") 

boxplot(dados$γ, xlab = "Peso Específico", ylab = "kNm-3", main = "Boxplot 

da variável Peso Específico") 
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boxplot(dados$c, xlab = "Coesão", ylab = "kPa", main = "Boxplot da variável 

Coesão") 

boxplot(dados$φ, xlab = "Ângulo de atrito", ylab = "graus", main = "Boxplot 

da variável Ângulo de Atrito") 

boxplot(dados$β, xlab = "Ângulo de Inclinação", ylab = "graus", main = 

"Boxplot da variável Ângulo de Inclinação") 

boxplot(dados$H, xlab = "Altura", ylab = "metros", main = "Boxplot da 

variável Altura") 

boxplot(dados$ru, xlab = "Razão de Poropressão", main = "Boxplot da 

variável Razão de Poropressão") 

boxplot(dados$FS, xlab = "Fator de Segurança", ylab = "kPa", main = 

"Boxplot da variável Fator de Segurança") 

 

## HISTOGRAMA 

hist(dados$γ, xlab = "Peso Específico (kN/m3)", ylab = "Frequência", main = 

"Histograma da variável Peso Específico") 

hist(dados$c, xlab = "Coesão (kPa)", ylab = "Frequência", main = 

"Histograma da variável Coesão") 

hist(dados$φ, xlab = "Ângulo de atrito (graus)", ylab = "Frequência", main 

= "Histograma da variável Ângulo de atrito") 

hist(dados$β, xlab = "Ângulo de Inclinação (graus)", ylab = "Frequência", 

main = "Histograma da variável Ângulo de Inclinação") 

hist(dados$H, xlab = "Altura (m)", ylab = "Frequência", main = "Histograma 

da variável Altura") 

hist(dados$ru, xlab = "Razão de Poropressão", ylab = "Frequência", main = 

"Histograma da variável Razão de Poropressão") 

hist(dados$FS, xlab = "Fator de Segurança", ylab = "Frequência", main = 

"Histograma da variável Fator de Segurança") 

 

## scatterplot matrix  

x11() 

pairs(dados)  

 

## scatterplot matrix com correlacoes 

## funcao para personalizacao do painel 

painel.pearson <- function(x, y, ...) { 

  horizontal <- (par("usr")[1] + par("usr")[2]) / 2; 

  vertical <- (par("usr")[3] + par("usr")[4]) / 2; 
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  text(horizontal, vertical, format(abs(cor(x,y)), digits=2), cex = 1.2, 

       font = 1) 

} 

pairs(dados, main = "Conjunto de Dados", pch = 21, 

      upper.panel = painel.pearson) 

 

## Teste de espericidade de Bartlett 

library(psych) 

n=dim(dados)[1] 

cortest.bartlett(R,n) 

 

## Teste de normalidade multivariada 

library(MVN) 

mvn(dados) 

 

###Detecçãoo de outliers multivariados (distancia de mahalanobis) 

maha2 <- mahalanobis(dados, center = colMeans(dados), cov = cov(dados)) 

maha2 

 

# para calcular o c^2, n graus de liberdade 

quant2 <- qchisq(0.95, dim(dados)[2]) 

quant2 

plot(1:length(maha2), maha2, xlab = "Elementos amostrais",  

     ylab= "Distância de Mahalanobis") 

abline(h=quant2, lty=2, col="red") 

out2 <- maha2[maha2>quant2] 

out2 

out2 = as.data.frame(out2) 

out2 

dim(out2) 

text(row.names(out2),out2$out2,row.names(out2), pos = 2 ) 
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## Removendo os outliers do banco de dados 

ifelse(maha2>quant2, FALSE, TRUE) 

row_to_keep = ifelse(maha2>quant2, FALSE, TRUE) 

dados_s_out = dados[row_to_keep,] 

dados_s_out 

dim(dados_s_out) 

 

#REGRESSAÕ LINEAR MULTIPLA 

modelo <- lm(dados_s_out$FS ~., data = dados_s_out) 

summary(modelo) 

 

## Homocedasticidade dos resíduos 

plot(rstudent(modelo) ~ fitted(modelo), pch = 19) 

abline(h = 0, lty = 2, col = "red") 

 

## Normalidade dos Residuos 

hist(x = modelo$residuals, col = 'gray', xlab = 'Resíduos', ylab = 

'Densidade de Probabilidade', 

     probability = TRUE)  

lines(density(modelo$residuals), col="red") 

 

##Validação Cruzada 

kfold_cv_lm <- function(dados, k){ 

   

  set.seed(123)  # reprodutibilidade 

  n <- nrow(dados) 

  folds <- sample(rep(1:k, length.out = n)) 

   

  rmse <- numeric(k) 

  r2   <- numeric(k) 

  for(i in 1:k){ 

    treino <- dados[folds != i, ] 

    teste  <- dados[folds == i, ] 
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    modelo_cv <- lm(FS ~ ., data = treino) 

     

    pred <- predict(modelo_cv, newdata = teste) 

     

    rmse[i] <- sqrt(mean((teste$FS - pred)^2)) 

    r2[i]   <- cor(teste$FS, pred)^2 

  }   

  return(list( 

    RMSE_medio = mean(rmse), 

    RMSE_sd    = sd(rmse), 

    R2_medio   = mean(r2), 

    R2_sd      = sd(r2) 

  )) 

} 

 

## K=5 

cv_5 <- kfold_cv_lm(dados_s_out, k = 5) 

cv_5 

## K=10 

cv_10 <- kfold_cv_lm(dados_s_out, k = 10) 

cv_10 

 

##TABELA COMPARATIVA CV 

resultado_cv <- data.frame( 

  K = c(5, 10), 

  RMSE_medio = c(cv_5$RMSE_medio, cv_10$RMSE_medio), 

  RMSE_sd    = c(cv_5$RMSE_sd, cv_10$RMSE_sd), 

  R2_medio   = c(cv_5$R2_medio, cv_10$R2_medio), 

  R2_sd      = c(cv_5$R2_sd, cv_10$R2_sd) 

) 

 

resultado_cv 
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ANEXO A – BANCO DE DADOS 

 Tabela A1 – Banco de dados com os parâmetros geomecânicos utilizados. 

No. γ/kNm-3 c/kPa 𝝓 /° β/° H/m ru FoS SS 

1 14 11.97 26 30 88 0.45 0.625 0 

2 27 37.5 35 37.8 320 0.25 1.24 1 

3 12 0 30 35 4 0 1.46 1 

4 22.4 10 35 45 10 0.4 0.9 0 

5 21 35 28 40 12 0.5 1.43 1 

6 20 10.1 29 34 6 0.3 1.34 1 

7 27 40 35 47.1 292 0.25 1.15 0 

8 28.4 29.4 35 35 100 0 1.78 1 

9 27.3 31.5 29.7 41 135 0.25 1.245 1 

10 22 20 22 20 180 0.1 0.99 0 

11 22.4 10 35 30 10 0 2 1 

12 27.3 10 39 41 511 0.25 1.434 1 

13 19 30 35 35 11 0.2 2 1 

14 27.3 10 39 40 470 0.25 1.418 1 

15 14 12 26 30 88 0 1.02 0 

16 19.1 10.1 10 25 50 0.4 0.65 0 

17 18.7 26.4 15 35 8.2 0 1.11 0 

18 20 0 36 45 50 0.25 0.79 0 

19 22 20 22 20 180 0 1.12 0 

20 19.6 12 20 22 12.2 0.405 1.35 0 

21 16 70 20 40 115 0 1.11 0 

22 19 11.7 28 35 21 0.11 1.09 0 

23 21 45 25 49 12 0.3 1.53 1 

24 20 20 36 45 50 0.5 0.83 0 

25 18.8 30 20 30 50 0.1 1.46 1 

26 14.8 0 17 20 50 0 1.13 0 

27 27 35 35 42 359 0.25 1.27 1 

28 20 0 24.5 20 8 0.35 1.37 1 

29 18 24 30.2 45 20 0.12 1.12 0 

30 25 46 36 44.5 299 0.25 1.55 1 

31 27 32 33 42.4 289 0.25 1.3 1 

32 22 0 36 45 50 0 0.89 0 

33 18.8 20 10 25 50 0.3 0.97 0 

34 18.8 25.1 20 30 50 0.2 1.21 0 

35 27.3 10 39 40 480 0.25 1.45 1 

36 27.3 16.8 28 50 90.5 0.25 1.252 1 

37 20 40.1 30 30 15 0.3 1.84 1 

38 18.8 14.4 25 20 30.6 0 1.88 1 

39 21.5 6.9 30 31 76.8 0.38 1.01 0 

40 14 11.97 26 30 88 0 1.02 0 

41 26 150 45 50 200 0 1.2 1 

42 25 46 35 46 432 0.25 1.23 1 
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43 18.5 12 0 30 6 0 0.78 0 

44 18 45 25 25 14 0.3 2.09 1 

45 22.4 100 45 45 15 0.25 1.8 1 

46 20.6 16.2 26.5 30 40 0 1.25 0 

47 25 46 35 50 284 0.25 1.34 1 

48 18.8 20 20 30 50 0.3 1 0 

49 21 20 40 40 12 0 1.84 1 

50 18.8 25.1 10 25 50 0.2 1.18 0 

51 23.47 0 32 37 214 0 1.08 0 

52 21.43 0 20 20 61 0.5 1.03 0 

53 18.5 25 0 30 6 0 1.09 0 

54 31.3 68 37 49 200.5 0.25 1.2 0 

55 28.4 39.2 38 35 100 0 1.99 1 

56 18.8 14.4 25 20 30.6 0.45 1.11 0 

57 27.3 14 31 41 110 0.25 1.249 1 

58 31.3 68 37 46 366 0.25 1.2 0 

59 20 40.1 40 40 10 0.2 2.31 1 

60 21.8 8.6 32 28 12.8 0.49 1.03 0 

61 18.8 30 10 25 50 0.1 1.4 1 

62 18.84 0 20 20 7.62 0.45 1.05 0 

63 18.8 10.4 21.3 34 37 0.3 1.29 0 

64 20.4 24.9 13 22 10.6 0.35 1.4 1 

65 27 32 33 42.6 301 0.25 1.16 0 

66 22 0 40 33 8 0.35 1.45 1 

67 21.4 10 30.34 30 20 0 1.7 1 

68 20 0 36 45 50 0.5 0.67 0 

69 16.5 11.6 0 30 3.6 0 1 0 

70 18.8 57.5 20 20 30.6 0 2.04 1 

71 12 0 30 45 8 0 0.8 0 

72 18 5 30 20 8 0.3 2.05 1 

73 18.84 14.36 25 20 30.5 0.45 1.11 0 

74 19.1 10.1 20 30 50 0.4 0.65 0 

75 25 46 35 47 443 0.25 1.28 1 

76 18.8 24.8 21.3 29.2 37 0.5 1.07 0 

77 22 20 36 45 50 0 1.02 0 

78 25 120 45 53 120 0 1.3 1 

79 23 0 20 20 100 0.3 1.2 0 

80 20.4 33.5 11 16 45.8 0.2 1.28 0 

81 25 46 35 44 435 0.25 1.37 1 

82 18.8 15.3 30 25 10.6 0.38 1.63 1 

83 21 30 35 40 12 0.4 1.49 1 

84 24 0 40 33 8 0.3 1.58 1 

85 14 12 26 30 88 0.45 0.63 0 

86 20 20 36 45 50 0.25 0.96 0 

87 27.3 26 31 50 92 0.25 1.246 1 
Fonte: Ahmad et al (2022). 
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