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Resumo

A manutenção preditiva visa antecipar falhas e otimizar os processos de manutenção,

reduzindo custos operacionais e aumentando a eficiência dos equipamentos, no entanto,

um modelo de manutenção preditiva robusto, precisa de um conjunto de informações

adicionais importantes e confiáveis sobre o equipamento. Assim, proponho desenvolver um

modelo capaz de prever o estresse de um caminhão basculante, em tempo real, utilizando

técnicas de aprendizado de máquina, separar os operadores em grupos de direção leve,

morederada e severa, baseados em sua eficiência para a saúde do equipamento e gerar Key

Performance Indicators (KPIs) valiosos que poderão servir como base para um modelo

de manutenção preditiva. O desenvolvimento todo foi baseado em dados extráıdos da

rede Controller Area Network (CAN) de um caminhão Volvo FMX 500, ano 2023, de

uma empresa do setor de mineração. Para isso, foi adotado o uso de dados como RPM,

temperatura do motor, consumo de combust́ıvel e hoŕımetro, coletados em tempo real pela

rede CAN. O método utilizado envolve a coleta, pré-processamento e análise desses dados,

utilizando algoritmos de aprendizado de máquina, como MLP Regressor e o K-means.

A validação do modelo foi realizada com base em dados históricos e o desempenho foi

avaliado por meio de métricas como precisão, recall e acurácia. Os resultados indicam

que o modelo desenvolvido consegue, em tempo real, prever o esforço baseado em uma

grandeza heuŕıstica que o equipamento está realizando com alta precisão e classificar os

operadores em grupos por seus tipos de condução do equipamento, proporcionando uma

solução eficiente para a gestão de manutenção e tomada de decisões para equipamentos

pesados. As conclusões apontam para a viabilidade da implementação para um trabalho

de manutenção preditiva, mediante a possibilidade de acesso a mais dados, com benef́ıcios

significativos para a indústria, especialmente em termos de redução de custos e aumento

da vida útil dos equipamentos.

Palavras-chaves: Manutenção preditiva, KPIs, Rede CAN, Aprendizado de máquina,

Eficiência operacional.



Abstract

Predictive maintenance aims to anticipate failures and optimize maintenance processes,

reducing operational costs and increasing equipment efficiency. However, a robust predictive

maintenance model requires a set of important and reliable additional information about

the equipment. Therefore, I propose developing a model capable of predicting the stress

of a dump truck in real time, using machine learning techniques, separating operators

into light, moderate, and severe driving groups based on their efficiency for the health of

the equipment, and generating valuable Key Performance Indicators (KPIs) that could

serve as the basis for a predictive maintenance model. The entire development was based

on data extracted from the Controller Area Network (CAN) of a 2023 Volvo FMX 500

truck from a mining sector company. For this, data such as RPM, engine temperature,

fuel consumption, and hour meter were collected in real-time via the CAN network. The

method used involves collecting, pre-processing, and analyzing these data, using machine

learning algorithms such as MLP Regressor and K-means. The model’s validation was

carried out based on historical data, and performance was evaluated through metrics

such as precision, recall, and accuracy. The results indicate that the developed model

can, in real time, predict the effort based on a heuristic magnitude that the equipment is

performing with high accuracy and classify operators into groups by their driving types,

providing an efficient solution for maintenance management and decision-making for heavy

equipment. The conclusions point to the feasibility of implementation for a predictive

maintenance work, given the possibility of accessing more data, with significant benefits

for the industry, especially in terms of cost reduction and increased equipment lifespan.

Key-words: predictive maintence, CAN network, Machine learning, Operational efficiency.
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1 Introdução

Este capitulo irá introduzir a formulação do problema de pesquisa, os objetivos do

trabalho e a estrutura do texto.

1.1 Contextualização do Tema e Problema de Pesquisa

A manutenção de equipamentos industriais, especialmente aqueles utilizados em

setores como a construção e a mineração, é um dos principais fatores que impactam

diretamente na produtividade e nos custos operacionais. Equipamentos a diesel, como

escavadeiras, tratores e caminhões, desempenham um papel crucial nessas indústrias,

operando frequentemente em condições extremas. Esses ambientes desafiadores exigem

um gerenciamento eficiente de manutenção para garantir o funcionamento cont́ınuo dos

equipamentos e minimizar falhas inesperadas.

A implementação de estratégias de manutenção preditiva, que utilizam tecnologias

avançadas para monitorar e prever o estado dos equipamentos, tem se mostrado eficaz

na redução de custos e aumento da disponibilidade operacional. Segundo Aqueveque

et al. (2021), a utilização de sensores e algoritmos de aprendizado de máquina permitiu a

detecção precoce de falhas em máquinas móveis de mineração, com precisão superior a

90% .

De modo geral, a mineração é uma atividade de alto risco, que exige um alto

investimento financeiro. Segundo IBRAM – Instituto Brasileiro de Mineração (2018), o

investimento direcionado para a manutenção dos ativos usados na mineração correspon-

dem de 35% a 50% do orçamento aplicado a operação da mina. Em relacão aos custos

com transporte de minério, esses podem corresponder até 60% dos custos de operação

(kristjanpoller et al., 2020).

As abordagens tradicionais de manutenção, como a corretiva e a preventiva, de-

sempenham papéis fundamentais na gestão de equipamentos industriais. A manutenção

corretiva é realizada após a ocorrência de falhas, o que pode levar a custos elevados,

interrupções não planejadas e riscos à segurança dos trabalhadores . Por outro lado, a

manutenção preventiva, embora eficaz na redução de falhas inesperadas, pode resultar em

gastos desnecessários com a substituição antecipada de componentes que ainda não atingi-

ram o fim de sua vida útil . Além disso, autores como Slack, Chambers e Johnston (2002)

destacam que essas abordagens, apesar de amplamente utilizadas, apresentam limitações

quando comparadas a estratégias mais técnologicas baseadas em análise preditiva e dados

em tempo real.
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A Indústria 4.0, caracterizada pela integração de tecnologias avançadas como

Internet das Coisas (IoT), Big Data e Inteligência Artificial (IA), tem transformado o

monitoramento e a manutenção de equipamentos industriais. Nesse contexto, sensores e

dispositivos IoT passaram a captar dados operacionais em tempo real a partir de diversas

redes de comunicação já consolidadas, como a Controller Area Network (CAN). Essas redes

são amplamente utilizadas em véıculos e maquinários pesados, possibilitando a obtenção

de informações cŕıticas, como temperatura, pressão, RPM e consumo de combust́ıvel,

dados essenciais para a análise do desempenho do equipamento e para a implementação de

estratégias de manutenção preditiva. De acordo com Aqueveque et al. (2021), a utilização

de redes como a CAN permite a integração de dados em tempo real para o monitoramento

de parâmetros cŕıticos, o que tem um impacto direto na eficiência da manutenção. Além do

mais, Zheng, Paiva e Gurciullo (2020) destacam que a implementação de IoT e Big Data

possibilita a análise preditiva do desempenho dos equipamentos, resultando na redução de

custos com falhas inesperadas.

Neste contexto, a manutenção preditiva emerge como uma solução promissora,

utilizando dados coletados por sensores e sistemas de monitoramento, aliados a algoritmos

de aprendizado de máquina, para antecipar falhas, monitorar a saúde do equipamento

em tempo real e otimizar as estratégias de manutenção. A utilização da rede CAN, com

sua capacidade de fornecer dados em tempo real, é particularmente vantajosa para o

desenvolvimento de modelos preditivos de falhas. O trabalho de Ledmaoui et al. (2025)

relata que a análise de dados em tempo real, por meio de sensores e algoritmos de

aprendizado de máquina, tem se mostrado eficaz na redução de custos e no aumento da

disponibilidade operacional.

Dado o exposto, torna-se interessante desenvolver um modelo capaz de monitorar

continuamente o estresse do motor e padrões de operação dos condutores, permitindo

identificar condições de uso mais severas, evitar sobrecargas desnecessárias e otimizar o

desempenho global do equipamento.

1.2 Objetivo Geral

Propõe-se neste trabalho o desenvolvimento de um modelo preditivo do Engine

Stress Index (ESI) baseado em aprendizado de máquina, utilizando dados extráıdos da

rede CAN de um modelo de caminhão de uma empresa de mineração, com o objetivo de

avaliar o estresse do motor e padrões de operação dos condutores, para fornecer indicadores

cont́ınuos de desempenho e contribuir para a otimização das operações em termos de

segurança, produtividade e manutenção preditiva.
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1.3 Objetivos Espećıficos

Desenvolver um pipeline modular e escalável de predição do ı́ndice de estresse do

motor (ESI), capaz de:

• Processar dados de equipamentos a diesel em lotes, simulando uma aplicação em

tempo real, capturados via rede CAN;

• Prever o ESI a partir de variáveis operacionais cŕıticas (RPM, velocidade, consumo

instântaneo do combust́ıvel, temperatura do motor);

• Classificar padrões operacionais de cada operador do equipamento por meio de um

algoritmo de agrupamento não supervisionado;

• Gerar métricas derivadas, como o Efficiency Score, que quantifica a eficiência relativa

do operador com base no estresse imposto ao motor;

• Fornecer informações acionáveis para análise de desempenho, que poderão ser usados

para o planejamento de manutenção e avaliação de eficiência operacional.

1.4 Justificativa

A importância deste trabalho reside no impacto significativo que a manutenção

preditiva pode ter sobre os custos operacionais e a eficiência dos processos industriais. Em

indústrias que dependem de equipamentos pesados, como construção civil, mineração e

transporte, a falha inesperada de um equipamento pode resultar em prejúızos financeiros

elevados, perda de produtividade e até mesmo riscos à segurança. Tradicionalmente, a

manutenção tem sido realizada de forma corretiva ou preventiva, ambas com limitações

substanciais. A manutenção corretiva gera custos com reparos inesperados, enquanto a

preventiva pode resultar em trocas prematuras de componentes, gerando custos desne-

cessários.

A proposta de utilizar dados extráıdos da rede CAN para prever falhas em equipa-

mentos a diesel oferece uma alternativa mais eficiente e econômica. A rede CAN, sendo um

protocolo amplamente utilizado para comunicação entre sistemas de controle de véıculos e

maquinários, permite uma coleta rica de dados operacionais, como temperatura, rotação

do motor (RPM), pressão, e consumo de combust́ıvel. Esses dados podem ser usados para

a detecção precoce de falhas, permitindo que a manutenção seja realizada apenas quando

necessário, evitando paradas inesperadas e o desperd́ıcio de recursos.

A aplicação de algoritmos de Inteligência Artificial (IA) para análise desses dados

representa um avanço importante, uma vez que essas técnicas podem identificar padrões

complexos e prever falhas com maior precisão do que os métodos tradicionais. Com a
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implementação de um modelo de manutenção preditiva, as empresas podem não só reduzir

seus custos de manutenção, mas também melhorar a confiabilidade e a disponibilidade dos

seus equipamentos, otimizando a produtividade das operações. Portanto, este trabalho pode

ser usado como uma ferramenta que irá fornecer dados para ajudar no desenvolvimento de

um modelo, para a modernização e otimização da gestão de manutenção na indústria.

1.5 Estrutura do Trabalho

O presente trabalho está estruturado da seguinte forma:

• Caṕıtulo 2 – Fundamentação Teórica: Apresenta os conceitos fundamentais

sobre manutenção preditiva, redes CAN e inteligência artificial aplicados em sistemas

industriais e as técnicas de apredizado de máquina utilizador no trabalho.

• Caṕıtulo 3 – Metodologia: Descreve a abordagem adotada para a coleta e pré-

processamento dos dados, além da construção e avaliação dos modelos de inteligência

artificial.

• Caṕıtulo 4 – Resultados e Discussões: Apresenta os resultados obtidos com o

modelo desenvolvido, discutindo sua eficácia e posśıveis melhorias.

• Caṕıtulo 5 – Considerações Finais: Conclui o trabalho com uma análise dos

resultados, as contribuições do estudo e sugestões para futuras pesquisas e aplicações.
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2 Fundamentação Teórica

Este caṕıtulo apresenta a base cientifica usada para o desenvolvimento desse

trabalho.

2.1 Manutenção

A gestão de manutenção industrial é composta por um conjunto de técnicas

fundamentais para garantir a continuidade operacional, a segurança e a eficiência dos

processos produtivos. Entre as abordagens mais relevantes estão a manutenção corretiva,

aplicada após a falha; a manutenção preventiva, realizada em intervalos programados para

evitar falhas e a manutenção preditiva, baseada no monitoramento cont́ınuo da condição

dos ativos. Cada uma dessas técnicas possui caracteŕısticas, vantagens e limitações que as

tornam adequadas a diferentes contextos operacionais. No setor de mineração, onde os

equipamentos são submetidos a condições severas de operação e longos ciclos de trabalho,

a escolha e combinação estratégica dessas técnicas tornam-se decisivas para otimizar a

disponibilidade, reduzir custos e evitar perdas produtivas

2.1.1 Manutenção corretiva

A manutenção corretiva é definida como a ação tomada para restaurar um equi-

pamento ou sistema ao seu estado funcional após a ocorrência de uma falha ou avaria.

Em muitos casos, a manutenção corretiva é realizada quando o equipamento já apresenta

defeitos, o que leva a paradas imprevistas, perda de produção e aumento dos custos

operacionais. Embora em algumas situações esse tipo de manutenção seja inevitável, ele

pode se tornar problemático se for a única forma de manutenção utilizada em uma mina,

segundo a norma NBR 5462, essa prática é considerada uma das mais custosas, devido a

paradas prolongadas e prejúızos na produção (faria; raposo, 2023).

Esta estratégia de manutenção possui Natureza reativa. Ela ocorre após a falha ou

defeito, ou seja, não há planejamento prévio para impedir o problema. Isso pode resultar

em falhas graves que interrompem a produção de maneira não planejada, com impactos

financeiros substanciais (penha; batista; viegas, 2021).

Como a manutenção corretiva é realizada de maneira emergencial, ela frequente-

mente envolve custos mais elevados. Além dos custos com reparos, podem ser necessários

serviços adicionais, como o transporte de peças sobressalentes e mão de obra especializada.

Além disso, as falhas inesperadas causam paralisações imprevistas da produção, afetando
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a continuidade dos processos e o cumprimento dos cronogramas de operação (magalhães,

2021).

O uso cont́ınuo sem intervenções preventivas ou preditivas pode diminuir a vida

útil dos equipamentos, uma vez que falhas repetitivas, mesmo que pequenas, podem causar

danos cumulativos. Isso acelera o desgaste dos componentes e requer manutenções mais

dispendiosas a longo prazo (faria; raposo, 2023).

Embora a manutenção corretiva tenha o custo inicial mais baixo em comparação

com a manutenção preventiva ou preditiva, devido à ausência de necessidade de inspeções ou

monitoramento constante dos equipamentos, ela possui algumas vantagens e desvantagens.

Entre as vantagens, destaca-se o custo inicial baixo, já que não são necessárias inspeções

ou monitoramento cont́ınuo. Além disso, a simplicidade operacional é um ponto positivo,

pois a manutenção corretiva é mais simples em termos de execução, já que os técnicos ou

operadores realizam o reparo necessário após a falha, sem a necessidade de planejamentos

complexos.

Por outro lado, a manutenção corretiva também apresenta desvantagens consi-

deráveis. A principal delas é o alto custo com paradas, pois, embora o custo inicial seja

baixo, o impacto das paradas imprevistas pode gerar custos elevados com a interrupção das

operações. Além disso, falhas frequentes e não planejadas podem danificar irreparavelmente

componentes, levando a reparos mais caros ou até mesmo à necessidade de substituição de

peças. Por fim, a manutenção corretiva contribui para uma baixa eficiência operacional, já

que equipamentos quebrados afetam diretamente a produção e a eficiência, resultando em

menor produtividade.

Na mineração, a manutenção corretiva é frequentemente aplicada a equipamentos

móveis como escavadeiras, pás-carregadeiras e caminhões de transporte. Estes equipamentos

operam em condições extremas, como alta vibração, poeira e umidade, o que os torna

suscet́ıveis a falhas inesperadas. Segundo Faria e Raposo (2023) em casos de falha de motor,

quebra de sistema hidráulico ou desgaste excessivo de pneus, a manutenção corretiva se

torna essencial.

Um exemplo de aplicação da manutenção corretiva pode ser encontrado na manu-

tenção de pás-carregadeiras utilizadas em minas de ferro. Quando uma dessas máquinas

sofre uma falha em seu sistema hidráulico, ela precisa ser reparada imediatamente para

evitar que a produção seja interrompida. Nesse caso, a manutenção corretiva é acionada

para consertar a falha, mas não impede que uma nova falha aconteça, o que pode levar a

mais custos operacionais no futuro (penha, 2021).

A manutenção corretiva é muitas vezes vista como uma abordagem reativa em

sistemas de gerenciamento de manutenção. Quando não há planejamento, os gestores de

manutenção se veem forçados a operar em um ciclo constante de emergências. Portanto,



17

muitas empresas buscam alternativas mais eficientes, como a manutenção preventiva e a

preditiva, para reduzir a necessidade de manutenção corretiva e aumentar a disponibilidade

dos equipamentos (magalhães, 2021).

O estudo de Faria e Raposo (2023) destaca que a manutenção corretiva não pode

ser completamente eliminada, mas deve ser minimizada para evitar os impactos negativos

que ela acarreta. A gestão de confiabilidade é uma abordagem que integra diferentes tipos

de manutenção, com foco na maximização da disponibilidade dos equipamentos enquanto

minimiza os custos totais de manutenção .

2.1.2 Manutenção preventiva

A manutenção preventiva consiste em um conjunto de ações planejadas com o

objetivo de evitar falhas e manter os equipamentos operando dentro dos padrões esperados

de desempenho. Ela é baseada em intervalos regulares de tempo ou uso, estabelecidos com

base em recomendações do fabricante, histórico de falhas ou critérios estat́ısticos. No setor

de mineração, onde a continuidade da operação é fundamental para a produtividade, a

manutenção preventiva assume papel estratégico.

Segundo Penha, Batista e Viegas (2021), a manutenção preventiva é essencial para

garantir a confiabilidade operacional dos equipamentos em plantas de mineração. Ela

permite identificar posśıveis problemas antes que resultem em falhas, reduzindo o número

de paradas não planejadas e aumentando a vida útil dos ativos. Isso é alcançado por meio

de inspeções regulares, ajustes, limpezas, lubrificações e substituições programadas de

componentes.

Além disso, a autora destaca que o planejamento eficiente da manutenção preven-

tiva, quando alinhado ao gerenciamento de projetos e às práticas do PMBOK (Project

Management Body of Knowledge), contribui diretamente para o controle de recursos, o

cumprimento de prazos e a segurança dos processos industriais.

As principais vantagens da utilização da manutenção preventiva incluem a redução

de paradas inesperadas, uma vez que ao intervir nos equipamentos antes que falhas ocorram,

a manutenção preventiva diminui a frequência de interrupções inesperadas na produção

(penha; batista; viegas, 2021). Além disso, equipamentos submetidos a manutenções

periódicas apresentam maiores taxas de disponibilidade, o que é fundamental no contexto

de alta demanda de produção das operações de mina. A manutenção preventiva também

contribui para o controle de custos, pois, embora envolva custos regulares com inspeções

e trocas de componentes, ela evita os altos custos associados às manutenções corretivas

emergenciais. Outra vantagem é a segurança, já que equipamentos bem mantidos tendem

a operar com menor risco de acidentes ou falhas graves que possam comprometer a

integridade dos operadores ou da planta.
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No entanto, de acordo com Marins (2024), as principais desvantagens da abordagem

preventiva incluem a substituição prematura de peças. Em muitos casos, componentes

podem ser trocados antes de atingirem o fim de sua vida útil, baseando-se apenas em prazos

fixos. Isso pode resultar em desperd́ıcio de materiais e aumento de custos operacionais

desnecessários. Outra desvantagem é o custo operacional cont́ınuo, já que a manutenção

preventiva exige recursos financeiros recorrentes, incluindo peças de reposição, mão de obra

especializada e tempo de parada programada, sendo que esses custos são mantidos mesmo

quando os equipamentos estão funcionando perfeitamente. Além disso, a necessidade de

paradas programadas, mesmo quando os equipamentos estão operacionais, pode interromper

o fluxo produtivo, exigindo reprogramações loǵısticas para não impactar o volume de

produção.

Em ambientes industriais de mineração, como na moagem de bauxita no processo

Bayer descrito por Penha, Batista e Viegas (2021), a manutenção preventiva é aplicada em

sistemas cŕıticos como moinhos, transportadores de correia, silos e bombas. As inspeções

periódicas e a programação de revisões evitam que os equipamentos atinjam estados de

falha irreverśıvel. Durante o Major Overhaul de um moinho de bauxita, por exemplo, a

manutenção preventiva envolve desmontagens programadas para substituição de peças

desgastadas e revisão geral do sistema. O objetivo é garantir que o equipamento retorne à

operação com confiabilidade e desempenho esperado, minimizando riscos operacionais e

otimizando a performance do processo produtivo.

A etapa de planejamento e execução da manutenção preventiva requer um processo

rigoroso e sistematizado, voltado à maximização da disponibilidade dos equipamentos

e à redução de paradas não programadas. Esse planejamento envolve a definição da

periodicidade de cada atividade de manutenção, de acordo com as recomendações do

fabricante e o histórico operacional do equipamento. Inclui também a estimativa do

tempo de máquina parada, permitindo o agendamento das intervenções com o mı́nimo

impacto produtivo, além da alocação adequada de recursos humanos, peças e ferramentas

necessárias para a execução das tarefas. Por fim, o controle documental e o registro

histórico das intervenções garantem rastreabilidade, conformidade com normas técnicas e

fornecem insumos valiosos para análises futuras de confiabilidade e otimização do plano de

manutenção(marques da costa; paulo sachetto, 2023).

O trabalho de Penha, Batista e Viegas (2021) também enfatiza que o uso de

ferramentas de gerenciamento de projetos, como cronogramas estruturados e análises

de risco, é fundamental para o sucesso de grandes manutenções preventivas em plantas

industriais.

Em resumo, apesar de suas vantagens, a manutenção preventiva pode levar à

substituição prematura de peças ainda em bom estado, resultando em custos desnecessários.

Além disso, se mal planejada, pode interferir no cronograma de produção. Assim, seu
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sucesso depende do equiĺıbrio entre frequência, custo e impacto operacional.

2.1.3 Manutenção por condição

A manutenção por condição é uma abordagem estratégica que visa realizar in-

tervenções em equipamentos somente quando suas condições operacionais indicam que

uma falha iminente ou anomalia pode ocorrer. Diferente das abordagens de manutenção

preditiva ou preventiva, a manutenção por condição baseia-se em monitoramento cont́ınuo

dos componentes para ajustar as atividades de manutenção de forma dinâmica, otimizando

os custos e evitando tanto falhas inesperadas quanto manutenções desnecessárias.

Segundo Teixeira, Lopes e Braga (2020), a implementação da manutenção por

condição tem ganhado destaque devido ao seu potencial para aumentar a eficiência

operacional e reduzir custos com manutenções desnecessárias. A utilização de tecnologias

como sensores, sistemas de monitoramento em tempo real e análise de dados permite que

as intervenções sejam realizadas de forma mais assertiva, baseando-se no estado real dos

ativos.

A principal vantagem dessa abordagem está em sua capacidade de realizar ma-

nutenções apenas quando necessário, evitando o desgaste excessivo de componentes ou

substituições prematuras. Estudos mostram que a aplicação da manutenção por condição

pode aumentar a vida útil dos equipamentos, reduzir o tempo de inatividade não progra-

mado e melhorar a confiabilidade dos processos industriais (teixeira; lopes; braga,

2020).

A manutenção por condição é especialmente eficaz em ambientes industriais com-

plexos, onde os custos de falhas são elevados, como no setor de petróleo e gás, mineração e

energia elétrica. A implementação de técnicas de monitoramento remoto e análise preditiva

proporciona uma melhor alocação dos recursos de manutenção, além de contribuir para a

segurança operacional e a redução de custos operacionais. De acordo com Teixeira, Lopes

e Braga (2020), a literatura tem demonstrado resultados positivos na implementação dessa

estratégia, principalmente com o aux́ılio de ferramentas tecnológicas avançadas, como a

Internet das Coisas (IoT) e inteligência artificial.

2.1.4 Manutenção preditiva

A manutenção preditiva é uma abordagem estratégica voltada para o acompanha-

mento cont́ınuo das condições reais de funcionamento dos equipamentos, com o objetivo

de prever falhas antes que elas ocorram. Diferentemente das manutenções corretiva e

preventiva, essa modalidade utiliza tecnologias de monitoramento e análise de dados para

estimar com precisão o momento ideal para a intervenção, otimizando a vida útil dos

componentes e reduzindo os custos operacionais.
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Segundo Marins (2024), a manutenção preditiva representa um avanço significativo

na gestão de ativos industriais, especialmente no setor de mineração, onde a alta disponi-

bilidade dos equipamentos é cŕıtica para o sucesso operacional. Ela permite intervenções

baseadas em condições reais e não em intervalos fixos de tempo, o que melhora a eficiência

e confiabilidade da planta ou da central de manutenção.

Essa abordagem é baseada em condições, fundamentada na coleta e análise de

dados sobre variáveis operacionais (vibração, temperatura, rúıdo, pressão, entre outros),

que indicam o estado real dos componentes monitorados. De acordo com Xenos (1998)

ao detectar desgastes e anomalias em estágio inicial, a manutenção preditiva evita falhas

inesperadas, aumentando a disponibilidade dos ativos.

O uso de ferramentas anaĺıticas, sensores e tecnologias como Internet das Coisas

(IoT) e aprendizado de máquina (Machine Learning) permite decisões mais assertivas

sobre o momento de realizar manutenção.

A aplicação da manutenção preditiva em equipamentos de mineração, como es-

cavadeiras hidráulicas, carregadeiras, correias transportadoras e moinhos — tem gerado

resultados expressivos, tais como:

• Aumento da disponibilidade f́ısica dos equipamentos;

• Prolongamento dos intervalos entre paradas programadas, com redução de downtime;

• Aproveitamento total do ciclo de vida dos componentes, evitando trocas prematuras;

• Melhora na confiabilidade e segurança operacional, por evitar falhas catastróficas;

Estudos de caso analisados por Marins (2024) demonstram que o monitoramento

preditivo de componentes como mancais, motores a diesel e tubulações permitiu detec-

tar microfalhas em estágio inicial, permitindo ações corretivas planejadas, com mı́nima

interferência na produção.

2.2 Rede CAN

A rede CAN é um sistema de comunicação serial padronizado internacionalmente

pela ISO 11898-1:2015, desenvolvido originalmente pela empresa Robert Bosch GmbH

em 1983, com o objetivo de otimizar a comunicação entre unidades de controle eletrônico

(ECUs) em véıculos automotivos. Antes do desenvolvimento da rede CAN, cada módulo

de controle de um véıculo, como o motor, o sistema de freios e os sensores necessitavam de

uma conexões elétricas diretas e dedicadas entre si, o que resultava em chicotes complexos,

pesados e caros (lawrenz, 2013). A introdução do barramento CAN reduziu significati-

vamente essa complexidade, permitindo que múltiplos dispositivos compartilhassem um
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mesmo meio f́ısico de comunicação, trocando mensagens curtas e altamente confiáveis sem

a necessidade de um controlador central.

A rede CAN foi projetado com foco em alta confiabilidade, tolerância a falhas e

robustez eletromagnética, caracteŕısticas essenciais para ambientes automotivos e indus-

triais. De acordo com Corrigan (2016), o CAN é um sistema multi-master e orientado a

mensagens, em que qualquer nó pode transmitir dados sempre que o barramento estiver

livre, e todas as mensagens são recebidas simultaneamente por todos os nós conectados.

Essa arquitetura baseada em broadcast garante a consistência das informações em toda a

rede e permite uma coordenação eficiente entre múltiplos módulos.

O protocolo CAN rapidamente ultrapassou os limites da indústria automotiva

e passou a ser adotado em diversos setores industriais, como automação de processos,

sistemas médicos, máquinas agŕıcolas, equipamentos de mineração e embarcações navais,

devido à sua robustez, baixo custo e simplicidade de implementação (etschberger,

2001). A padronização internacional pela ISO 11898-1:2015 consolidou sua aplicação em

sistemas industriais que exigem comunicação determińıstica e confiável, o que tornou o

CAN uma das tecnologias de rede mais utilizadas na Indústria 4.0 para telemetria, controle

distribúıdo e manutenção preditiva (boland et al., 2021).

2.2.1 Arquitetura e Camadas do Padrão ISO 11898

O protocolo CAN foi normalizado pela Organização Internacional de Normalização

(ISO) sob o padrão ISO 11898-1:2015, como visto na Figura 1, o qual define as especificações

elétricas e de comunicação de um barramento serial voltado para aplicações em tempo

real e ambientes industriais. Segundo Corrigan (2016), o protocolo CAN segue a estrutura

conceitual do modelo OSI (Open Systems Interconnection), utilizando principalmente

as duas camadas inferiores: a camada f́ısica (Physical Layer) e a camada de enlace de

dados (Data Link Layer). Essa arquitetura modular é o que permite a interoperabilidade

entre diferentes dispositivos e fabricantes, garantindo confiabilidade e consistência na

comunicação entre nós da rede.
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Figura 1 – Arquitetura da norma ISO 11898 em camadas

Fonte: Corrigan (2016)

A camada f́ısica é responsável por especificar os aspectos elétricos e de transmissão

do sinal, incluindo o tipo de cabos, conectores, ńıveis de tensão, topologia de rede e

taxas de transmissão. O CAN utiliza uma topologia de barramento linear composta por

um par trançado de fios, identificado como CAN High (CANH) e CAN Low (CANL).

Essa configuração adota um sinal diferencial balanceado, que reduz a interferência ele-

tromagnética e assegura maior imunidade a rúıdos externos, caracteŕıstica essencial em

ambientes industriais e automotivos. O padrão ISO 11898 especifica que o sistema opere

com uma impedância caracteŕıstica de 120 Ω (ohms) e que as extremidades do barramento

sejam terminadas com resistores do mesmo valor para evitar reflexões de sinal (corrigan,

2016).

A variação de tensão entre as linhas define dois estados lógicos: o estado dominante,

quando há diferença de aproximadamente 2 V entre CANH e CANL, e o estado recessivo,

quando ambas permanecem próximas de 2,5 V. Essa forma de codificação binária permite a

detecção de erros e o controle de acesso ao meio sem destruição de mensagens concorrentes.

Já a camada de enlace de dados é responsável pelo gerenciamento do tráfego de

mensagens na rede, pelo controle de acesso ao meio e pela detecção e correção de erros.

Essa camada é subdividida em duas subcamadas: Medium Access Control (MAC) e Logical

Link Control (LLC). A subcamada MAC coordena o acesso ao barramento por meio do

método Carrier Sense Multiple Access with Collision Detection and Arbitration on Message

Priority (CSMA/CD+AMP). Nessa abordagem, cada nó monitora o barramento antes

de transmitir, e, caso duas transmissões ocorram simultaneamente, o sistema realiza uma

arbitragem bit a bit com base na prioridade das mensagens, garantindo que apenas a de

maior prioridade continue sendo transmitida. A subcamada LLC, por sua vez, é responsável

pela formatação dos quadros de mensagem, controle de fluxo e reconhecimento de dados

recebidos, garantindo que todas as unidades da rede recebam informações consistentes e

sincronizadas (corrigan, 2016).



23

2.2.2 Estrutura de Mensagens e Identificadores

O protocolo do CAN organiza a comunicação entre dispositivos por meio de

quadros de mensagem (frames), que contêm todos os elementos necessários para garantir

a integridade, a priorização e a confiabilidade da transmissão. Diferente de protocolos

tradicionais de rede que utilizam comunicação ponto a ponto com endereços espećıficos, é um

barramento orientado a mensagens. Isso significa que os dispositivos não são identificados

por endereços únicos, mas sim por identificadores de mensagem, que indicam o tipo e a

prioridade da informação transmitida. Existem dois tipos tipos de mensagems, o primeiro

padrão com identificador de 11 bits, observada na Figura 2 e a mensagem extendida,

geralmente usada em equipamentos pesados com identificador de 29 bits, de acordo com a

Figura 3 (corrigan, 2016).

Figura 2 – CAN padrão: identificador de 11 bits

Fonte: Corrigan (2016)

Segundo o padrão ISO 11898-1:2015, o quadro de dados (data frame) é o tipo mais

comum de mensagem CAN e é composto por diversos campos que desempenham funções

espećıficas:

• SOF (Start of Frame) - bit dominante que indica o ińıcio da transmissão e sincroniza

os nós do barramento.

• Identificador - O identificador CAN padrão de 11 bits estabelece a prioridade da

mensagem. Quanto menor o valor binário, maior a sua prioridade.

• RTR (Remote Transmission Request) – O bit de solicitação de transmissão remota é

dominante quando informações são necessárias de outro nó. Todos os nós recebem

a solicitação, mas o identificador determina o nó espećıfico. Os dados de resposta

também são recebidos por todos os nós e utilizados por qualquer nó interessado.

Dessa forma, todos os dados utilizados em um sistema são uniformes.

• IDE (Identifier Extension) – Um bit de identificador único dominante significa que

um identificador CAN padrão, sem extensão, está sendo transmitido.

• r0 - Bit reservado (para posśıvel utilização em futuras alterações da norma).

• DLC (Data Length Code) – O código de comprimento de dados de 4 bits contém o

número de bytes de dados que estão sendo transmitidos.
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• Data Field - contém os dados da aplicação (até 64 bits).

• CRC (Cyclic Redundancy Check) – A verificação de redundância ćıclica de 16 bits (15

bits mais o delimitador) contém a soma de verificação (número de bits transmitidos)

dos dados da aplicação anteriores para detecção de erros.

• ACK (Acknowledge) – Cada nó que recebe uma mensagem correta sobrescreve este

bit recessivo na mensagem original com um bit dominante, indicando que uma

mensagem sem erros foi enviada. Caso um nó receptor detecte um erro e deixe este

bit recessivo, ele descarta a mensagem e o nó transmissor repete a mensagem após a

rearbitragem. Dessa forma, cada nó confirma (ACK) a integridade de seus dados. O

ACK tem 2 bits, um é o bit de confirmação e o segundo é um delimitador.

• EOF (End of Frame) – Este campo de fim de quadro de 7 bits marca o final de um

quadro (mensagem) CAN e desabilita o preenchimento de bits, indicando um erro

de preenchimento quando dominante.

• IFS (Interframe Space) – espaço de 7 bits contém o tempo necessário para que o

controlador mova um quadro recebido corretamente para sua posição na área do

buffer de mensagens.

Figura 3 – CAN estendido: identificador de 29 bits

Fonte: Corrigan (2016)

Conforme mostrado na Figura 3 a mensagem CAN estendida é igual à mensagem padrão,

com a adição de:

• SRR (Substitute Remote Request) – O bit de solicitação remota substituta substitui

o bit RTR na posição padrão da mensagem, funcionando como um espaço reservado

no formato estendido.

• IDE (Identifier Extension) – Um bit recessivo na extensão do identificador indica

que mais bits de identificador se seguem. A extensão de 18 bits segue o IDE.

• r1 – Após os bits RTR e r0, um bit de reserva adicional foi inclúıdo antes do bit

DLC.

A priorização de mensagens é uma das caracteŕısticas que tornam o protocolo CAN

adequado para sistemas cŕıticos em tempo real. O processo de arbitragem garante que,
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quando dois ou mais nós tentam transmitir simultaneamente, apenas o quadro com o

identificador de maior prioridade continue no barramento, enquanto os demais aguardam

o próximo ciclo de transmissão. Essa arbitragem é não destrutiva, ou seja, nenhuma

mensagem é perdida durante o processo, preservando a integridade dos dados transmitidos.

2.2.3 Mecanismos de Comunicação e Controle de Acesso

A comunicação baseia-se em um modelo multimestre, em que qualquer nó pode

iniciar uma transmissão sempre que o barramento estiver livre. Para coordenar o acesso de

múltiplos dispositivos sem comprometer a integridade dos dados, este controle é atingido

por meio do CSMA/CD +AMP.

De acordo com Corrigan (2016), durante a arbitragem, cada transmissor envia

bits de seu identificador e simultaneamente lê o valor real presente no barramento. O

bit dominante (ńıvel lógico 0) sempre sobrepõe o bit recessivo (ńıvel lógico 1). Assim, se

um nó transmite um bit recessivo e detecta um bit dominante, ele reconhece que existe

outra mensagem com prioridade superior e automaticamente cessa sua transmissão. O

nó vencedor, aquele cuja sequência de bits se mantém dominante por toda a fase de

identificação, continua enviando seu quadro até o final. Esse mecanismo assegura que

mensagens cŕıticas, como as relacionadas à segurança, sejam sempre processadas primeiro.

O sistema de comunicação do CAN, portanto, é determińıstico e tempo-real, já que

a prioridade das mensagens é conhecida e constante. Além disso, o barramento permite que

todos os nós recebam todas as mensagens transmitidas, reforçando o caráter orientado a

broadcast do protocolo. Essa caracteŕıstica simplifica a arquitetura de sistemas distribúıdos

e aumenta a confiabilidade, pois qualquer unidade pode atuar como transmissor ou receptor

conforme a necessidade da aplicação (lawrenz, 2013).
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Figura 4 – Trafico de informações na CAN

Fonte: Corrigan (2016)

Em uma aplicação prática, por exemplo, um sensor de temperatura pode enviar

uma atualização usada para ajustar a velocidade de um ventilador. Se um sensor de pressão

tentar transmitir ao mesmo tempo, o processo de arbitragem garante que apenas uma

mensagem seja enviada. No caso da Figura 4, o nó A conclui o envio de sua mensagem

enquanto os nós B e C confirmam o recebimento correto; em seguida, B e C iniciam a

arbitragem, C vence por prioridade e transmite sua mensagem, que é reconhecida por A e

B, permitindo que B continue com a sua. Também é importante observar a polaridade

oposta entre a entrada e a sáıda no barramento.

2.2.4 Mecanismos de Detecção e Correção de Erros

São mecanismos que garantem, ainda mais confiabilidade e robustez na comu-

nicação mesmo em ambientes com rúıdo elétrico, vibração ou interferência eletromagnética,

condições comuns em véıculos e máquinas industriais. Essa robustez é obtida por meio de

um conjunto de mecanismos de detecção e confinamento de erros, definidos pelo padrão

ISO 11898-1:2015 e detalhados por Corrigan (2016).

Esses mecanismos incluem verificações cont́ınuas dos bits enviados e recebidos,

controle de sequências de bits para manter a sincronização, validação por meio de códigos

de redundância ćıclica (CRC) e checagem da estrutura e do reconhecimento das mensagens

transmitidas. Em conjunto, essas técnicas permitem identificar e interromper imediatamente

qualquer transmissão corrompida, assegurando que apenas quadros válidos circulem pelo
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barramento Corrigan (2016).

Esses métodos são complementados por um sistema de confinamento de falhas

(fault confinement), que diferencia nós operacionais de nós com falhas recorrentes por

meio de contadores de erro de transmissão e recepção. Quando os limites definidos pela

norma ISO 11898-1:2015 são excedidos, o nó é colocado automaticamente em modo de erro

passivo ou desconectado da rede (bus-off ), evitando que comprometa o funcionamento

geral. Esse modelo de autodiagnóstico mantém a operação da rede mesmo diante de falhas

localizadas, caracteŕıstica essencial em aplicações industriais e automotivas, nas quais a

confiabilidade e a segurança da comunicação são fundamentais (corrigan, 2016).

2.2.5 Aplicações

Desde sua introdução pela Robert Bosch GmbH na década de 1980, a CAN tornou-se

um dos sistemas de comunicação serial mais utilizados em aplicações automotivas, indus-

triais e embarcadas. Inicialmente concebido para substituir complexos chicotes elétricos

entre as unidades de controle de um véıculo, o CAN expandiu-se rapidamente para outros

setores devido à sua robustez, confiabilidade e baixo custo de implementação (corrigan,

2016).

No setor automotivo, a rede CAN é amplamente empregada para interconectar

ECUs (Electronic Control Units) responsáveis por funções cŕıticas, como o gerenciamento

do motor, freios ABS, airbags, controle de estabilidade, sistemas de injeção eletrônica e

painéis de instrumentação. A comunicação em tempo real entre essas unidades é essencial

para garantir a segurança, o desempenho e a eficiência energética do véıculo. Em véıculos

comerciais e máquinas fora-de-estrada, é utilizado para integrar sistemas de diagnóstico,

monitoramento de motores a diesel e controle de transmissão, assegurando que falhas sejam

detectadas e registradas de forma imediata (avatefipour; sargolzaei; abdelghani,

2018).

Na automação industrial, o CAN é empregado em sistemas distribúıdos que de-

mandam comunicação determińıstica e tolerante a falhas. Protocolos derivados como

CANopen e DeviceNet estendem o padrão ISO 11898, permitindo o controle de motores

elétricos, atuadores, sensores de pressão e temperatura, além de controladores lógicos

programáveis (CLPs). Essa padronização facilita a comunicação entre equipamentos de

diferentes fabricantes e viabiliza arquiteturas de controle descentralizadas, cada vez mais

utilizadas em linhas de produção automatizadas (etschberger, 2001).

O protocolo também se destaca em máquinas agŕıcolas, equipamentos de mineração

e véıculos de construção, onde as condições ambientais são severas e o rúıdo eletromagnético

elevado. Nesses casos, a sinalização diferencial e os mecanismos de detecção de erro garantem

a transmissão confiável de dados de telemetria, fundamentais para o monitoramento de
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parâmetros como rotação do motor (RPM), temperatura, pressão hidráulica e consumo de

combust́ıvel. Esses dados alimentam plataformas de manutenção preditiva, que permitem

identificar anomalias operacionais e otimizar os ciclos de manutenção dos equipamentos

(boland et al., 2021).

Além disso, o uso também se estende a setores como médico-hospitalar (sistemas de

ventilação e instrumentação cirúrgica), ferroviário, maŕıtimo e aeronáutico, em aplicações

que exigem alta confiabilidade, latência reduzida e sincronização precisa entre dispositivos

embarcados. Nessas áreas, o protocolo se consolidou como uma solução de comunicação

robusta para sistemas embarcados cŕıticos (lawrenz, 2013).

2.3 Métodos e Técnicas

Considerando a natureza temporal e multivariada das informações obtidas dos

equipamentos, é necessário empregar variáveis que representem de forma consistente o

comportamento operacional e o estresse mecânico ao longo do tempo.

As variáveis selecionadas foram escolhidas por serem as disponiveis no sistema

da empresa e por empiricamente possúırem relevância direta com o desempenho e a

integridade do motor, permitindo a construção de indicadores de esforço e eficiência. Entre

as principais variáveis monitoradas destacam-se:

• Hodômetro: mede a distância total percorrida pelo equipamento, servindo como

indicador de desgaste relacionado ao uso cont́ınuo e apoio para o planejamento de

manutenção preventiva.

• RPM (Rotações por Minuto): parâmetro essencial para a avaliação do regime de

operação do motor. Variações anormais de rotação podem indicar sobrecarga, falhas

mecânicas ou condução inadequada.

• Consumo Instantâneo de Combust́ıvel: reflete diretamente a eficiência energética

e o desempenho do motor. Aumentos inesperados podem sinalizar anomalias em

sistemas de injeção ou combustão, se comparado com as outras grandezas e estiver

fora das suas faixar normais de atuação.

• Volume Total de Combust́ıvel Acumulado: permite observar o comportamento

de consumo ao longo do tempo, contribuindo para análises de eficiência e desgaste

progressivo do equipamento.

• Hoŕımetro: registra o tempo total de operação do motor, sendo utilizado para

o controle de ciclos de manutenção e monitoramento do tempo de vida útil dos

componentes cŕıticos.
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• Temperatura do Motor: variável para a avaliação do estado térmico do sistema.

Picos de temperatura podem indicar falhas no sistema de arrefecimento ou sobrecarga

operacional.

Essas variáveis são coletadas em tempo real a partir do barramento CAN do

equipamento e consolidadas em micro-lotes (processamento incremental de dados em

lotes de 100 amostras) para análise temporal, com um delay de meio segundo para cada

agrupamento ser inserido no modelo. A integração dessas informações em um modelo de

aprendizado de máquina, como o MLP, permite capturar relações não lineares entre as

variáveis e estimar o ı́ndice de estresse do motor (ESI).

A combinação entre o monitoramento cont́ınuo, o pré-processamento dos sinais e o

uso de algoritmos de inteligência artificial possibilita a identificação de padrões complexos

de operação e a predição antecipada de falhas, reforçando a eficiência das estratégias de

manutenção preditiva.

2.4 Telemetria

A telemetria é uma tecnologia fundamental na Indústria 4.0, usada para monitora-

mento e controle remoto de sistemas, baseada na medição, coleta, transmissão e análise

de dados provenientes de equipamentos e sensores distribúıdos. Sua aplicação tornou-se

indispensável em contextos industriais, automotivos e de mineração, pois permite o acom-

panhamento cont́ınuo das condições de operação de máquinas e processos, viabilizando

ações proativas e a otimização da manutenção.

Conforme destacado por Rakholia et al. (2025), a telemetria é um dos pilares da

Indústria 4.0, uma vez que integra sensores inteligentes, redes de comunicação e algoritmos

de inteligência artificial para formar sistemas de manutenção preditiva e tomada de

decisão autônoma. Em tais sistemas, os dados são coletados por sensores embarcados e

transmitidos para plataformas de análise que executam algoritmos de aprendizado de

máquina ou inteligência artificial, capazes de identificar padrões e anomalias operacionais.

Essa abordagem permite prever falhas antes que elas ocorram, evitando paradas não

planejadas e reduzindo significativamente os custos de manutenção.

Na prática, a telemetria é implementada por meio de uma infraestrutura composta

por sensores f́ısicos, unidades de aquisição de dados e protocolos de comunicação que

realizam o transporte das informações em tempo real.

Conforme Gadiraju (2024), os sistemas de telemetria modernos utilizam arquiteturas

IoT (Internet das Coisas) combinadas a algoritmos de análise de séries temporais, que

realizam o processamento de dados em tempo real e a geração de alertas automáticos

quando parâmetros operacionais excedem limites predefinidos. Esse tipo de abordagem,
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chamada de telemetria inteligente (AI-powered telemetry), está se tornando cada vez mais

comum em ambientes industriais, pois permite decisões automatizadas baseadas em dados

e integração direta com plataformas de algoritimos de aprendizado de máquina. Além

disso, o uso de computação em nuvem tem ampliado as capacidades de processamento

desses sistemas, reduzindo a latência na comunicação e aumentando a escalabilidade das

soluções de monitoramento remoto.

Segundo Avatefipour, Sargolzaei e Abdelghani (2018), a rede CAN é amplamente

utilizada em sistemas de telemetria, especialmente em véıculos e maquinários pesados,

devido à sua alta capacidade de comunicação em tempo real e robustez em ambientes

industriais adversos. Essa rede é ideal para a transmissão de dados de sensores, pois oferece

baixa latência e alta confiabilidade, caracteŕısticas essenciais para a manutenção.

A análise preditiva baseada em telemetria segue um fluxo de dados bem definido. O

processo começa com a coleta de dados por meio de sensores embarcados, os quais transmi-

tem essas informações em tempo real para servidores locais ou na nuvem. Em seguida, os

dados são processados por algoritmos de aprendizado de máquina, que identificam padrões

de degradação. Como resultado desse processamento, ações automatizadas são geradas,

como a emissão de alertas ou recomendações de manutenção.

Além do uso em véıculos e maquinários industriais, a telemetria também é am-

plamente aplicada em setores como energia, agricultura de precisão, saneamento e mo-

nitoramento ambiental, onde possibilita o controle remoto de equipamentos distribúıdos

geograficamente. No contexto deste trabalho, a telemetria é empregada como ferramenta

de aquisição e análise de dados operacionais de equipamentos a diesel, com o propósito de

antecipar falhas, otimizar a disponibilidade dos ativos e apoiar decisões estratégicas de

manutenção.

2.5 Modelo Multilayer Perceptron Regressor

O Multilayer Perceptron Regressor (MLP) é um modelo de aprendizado supervisio-

nado baseado em redes neurais artificiais do tipo feedforward, amplamente reconhecido

por sua capacidade de capturar padrões complexos e não lineares em conjuntos de dados.

Diferentemente de métodos estat́ısticos tradicionais, que geralmente assumem relações

lineares entre variáveis, o MLP possibilita a modelagem de fenômenos mais sofisticados ao

combinar múltiplas transformações não lineares. Essa caracteŕıstica o torna particularmente

adequado para aplicações envolvendo telemetria, como no caso deste trabalho, no qual as

variáveis extráıdas da rede CAN apresentam interações dinâmicas e não triviais decorrentes

do funcionamento real de equipamentos a diesel.

A arquitetura de um MLP é composta por uma camada de entrada, uma ou mais

camadas ocultas e uma camada de sáıda. Cada neurônio recebe valores da camada anterior,
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realiza uma combinação linear desses valores e aplica uma função de ativação responsável

por introduzir a não linearidade no modelo. Formalmente, dada a entrada

x = [x1, x2, . . . , xn], (2.1)

o valor intermediário calculado por um neurônio j é expresso por

zj =
∑
i

wijxi + bj, (2.2)

em que wij representa os pesos aprendidos durante o treinamento e bj corresponde ao

termo de viés. Em seguida, aplica-se uma função de ativação ϕ(zj), produzindo a sáıda do

neurônio. Neste estudo, utilizou-se a função ReLU (Rectified Linear Unit), definida como

ϕ(z) = max(0, z), (2.3)

a qual foi escolhida devido à sua eficiência computacional, estabilidade durante o processo

de otimização e capacidade de mitigar o problema do gradiente dissipativo, frequentemente

observado em funções tradicionais como sigmoide e tangente hiperbólica (glorot; bordes;

bengio, 2011).

Na camada de sáıda, utilizada para resolver o problema de regressão, aplica-se

uma transformação linear dos valores provenientes da última camada oculta, gerando uma

estimativa cont́ınua para o alvo. Dessa forma, o MLP implementa uma composição sucessiva

de operações lineares e não lineares que permite aproximar funções altamente complexas.

Esse comportamento está associado ao Teorema da Aproximação Universal, segundo o

qual redes neurais com ao menos uma camada oculta são capazes de aproximar qualquer

função cont́ınua sob determinadas condições. Assim, a escolha do MLP fundamenta-se não

apenas em sua popularidade, mas sobretudo em sua capacidade comprovada de representar

relações não lineares presentes nas variáveis operacionais analisadas.

O treinamento do modelo é realizado por meio do algoritmo de retropropagação de

erro (backpropagation), combinado a um otimizador baseado em gradiente descendente. O

erro entre as previsões do modelo e os valores reais é quantificado pela função de perda

Mean Squared Error (MSE), definida por

L =
1

N

N∑
k=1

(yk − ŷk)
2. (2.4)

O objetivo é ajustar pesos e vieses de forma a minimizar essa função. Para garantir

estabilidade e reduzir o risco de sobreajuste, foram adotados mecanismos como early

stopping e validação cruzada, que interrompem o treinamento quando o erro de validação

deixa de apresentar redução significativa.

Com base nos testes exploratórios realizados (descritos posteriormente), definiu-

se como arquitetura ideal uma rede composta por duas camadas ocultas com 64 e 32
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neurônios, respectivamente. Essa configuração apresentou bom equiĺıbrio entre capacidade

de aprendizado e custo computacional, além de desempenho satisfatório em termos de erro

médio quadrático e capacidade de generalização. A adoção da função ReLU contribuiu para

uma convergência mais rápida e consistente, reforçando a eficiência do modelo no contexto

da regressão aplicada aos sinais provenientes da rede CAN. A seleção dessa arquitetura

também encontra respaldo na literatura, que recomenda o uso de camadas ocultas contendo

dezenas de neurônios para problemas de regressão não linear de complexidade moderada.

Dessa forma, o MLP Regressor utilizado neste trabalho constitui um componente

central da metodologia proposta, permitindo não apenas a estimativa do indicador opera-

cional ESI, mas também a identificação de padrões subjacentes nos dados de telemetria,

essenciais para a construção de um sistema robusto de manutenção preditiva.

2.6 Algoritmo K-means

O algoritmo K-means é uma técnica de aprendizado não supervisionado amplamente

utilizada para agrupamento de dados (clustering), cujo objetivo é particionar um conjunto

de observações em grupos que apresentam caracteŕısticas semelhantes. Diferentemente

de métodos supervisionados, como o MLP utilizado para regressão neste trabalho, o

K-means não depende de variáveis-alvo. Ele analisa exclusivamente os próprios padrões dos

dados de entrada para identificar estruturas, similaridades e tendências operacionais. Essa

caracteŕıstica o torna especialmente útil em contextos nos quais se deseja compreender o

comportamento natural do equipamento, estabelecer regimes de operação e diferenciar

padrões normais e anômalos sem depender de diagnósticos prévios.

O K-means opera por meio da minimização da soma das distâncias entre os pontos

e seus centróides, buscando formar grupos internamente coesos e externamente separados.

Dado um número pré-definido de grupos k, o algoritmo inicia selecionando centróides

iniciais e alterna entre duas etapas principais: (i) atribuição de cada ponto ao centróide

mais próximo e (ii) recomputação dos centróides como a média dos pontos atribúıdos.

Esse processo é repetido de forma iterativa até que haja convergência. Matematicamente,

deseja-se minimizar a seguinte função de custo:

J =
k∑

i=1

∑
x∈Si

∥x− µi∥2, (2.5)

em que Si representa o conjunto de pontos pertencentes ao cluster i e µi é o centróide

correspondente, calculado como a média dos pontos do cluster. O uso da distância Euclidi-

ana ao quadrado como métrica reforça a sensibilidade do algoritmo a variações abruptas

nos dados, o que exige cuidados importantes no pré-processamento das variáveis, como

normalização e suavização.
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No presente estudo, o K-means foi aplicado para identificar padrões operacionais a

partir das variáveis de telemetria suavizadas. A utilização de técnicas de suavização, como

a média móvel de três registros, torna-se essencial porque os valores de telemetria coletados

via rede CAN apresentam flutuações rápidas e rúıdo intŕınseco. Embora reflitam pequenas

irregularidades naturais do sistema, essas flutuações não caracterizam mudanças reais

no regime operacional. Como o critério central do K-means se baseia na distância entre

pontos, oscilações de alta frequência podem induzir agrupamentos artificiais e instáveis.

A suavização reduz essas oscilações e permite ao algoritmo captar a tendência real dos

dados, favorecendo a formação de clusters mais consistentes e interpretáveis.

Além disso, a escolha do K-means se justifica pelo fato de que as variáveis analisadas

apresentam relações não supervisionadas que refletem diferentes modos de operação, como

regime leve, moderado e pesado. O K-means é adequado para identificar esses regimes

porque sua formulação favorece a separação de grupos com baixa variância interna. Ao

final do processo, os centróides podem ser interpretados como “perfis médios de uso”,

fornecendo uma visão clara de como o equipamento opera ao longo do tempo. Esses perfis

são particularmente úteis para apoiar estratégias de manutenção preditiva, pois permitem

correlacionar regimes operacionais com o esforço estimado e com o indicador ESI produzido

pelo modelo de aprendizado de máquina.

A escolha do número de clusters foi orientada pela análise rápida em uma sala de

controle, para ser algo intuitivo em qual faixa de operação o equipamento está em cada

momento. Observou-se que utilizar k = 3 forneceu um bom equiĺıbrio entre simplicidade e

expressividade, permitindo distinguir claramente três modos de operação relevantes para a

análise: condição leve, condição nominal e condição de alto esforço. Esse particionamento

é coerente com a dinâmica natural de sistemas a diesel, nos quais a variação entre

estados operacionais tende a se organizar em faixas relativamente estáveis, e não de forma

completamente cont́ınua.

Assim, o K-means desempenha um papel fundamental na metodologia deste traba-

lho. Ele não apenas complementa o modelo MLP ao fornecer uma interpretação qualitativa

dos dados operacionais, como também auxilia no entendimento dos padrões de uso que

influenciam o desgaste e o esforço aplicado ao equipamento. Ao segmentar o comporta-

mento da máquina em regimes distintos, torna-se posśıvel analisar como diferentes perfis

de operação impactam o ESI e, consequentemente, desenvolver estratégias de manutenção

preditiva mais inteligentes e contextualizadas.

2.7 Trabalhos relacionados

Estudos recentes têm explorado a integração entre Internet das Coisas, inteligência

artificial e telemetria veicular para aprimorar estratégias de manutenção preditiva em



34

frotas automotivas. Esses trabalhos fornecem contribuições significativas que servem de

referência para o desenvolvimento deste projeto, o qual se propõe a aplicar tais tecnologias

no monitoramento de equipamentos a diesel por meio da rede CAN e da análise preditiva

de dados operacionais.

O estudo de Massaro, Selicato e Galiano (2019) propõe uma arquitetura embarcada

de baixo custo para monitoramento de frotas de ônibus, composta por uma placa eletrônica

inteligente conectada à rede CAN (SAE J1939) e equipada com módulos de comunicação

IoT. A solução coleta dados de sensores embarcados e os envia para uma plataforma

em nuvem, onde algoritmos de aprendizado de máquina, como redes neurais artificiais

(MLP) e agrupamento K-means, realizam previsões de falhas mecânicas e classificações de

comportamento de condução. O sistema apresentou resultados promissores, reduzindo o erro

médio quadrático das previsões e aumentando a confiabilidade na detecção de anomalias de

motor. Os autores destacam a relevância da integração entre dados telemétricos em tempo

real e modelos de IA embarcados, demonstrando o potencial da manutenção preditiva em

frotas urbanas.

Já o trabalho de Syed (2024) amplia a discussão ao propor um sistema de análise

preditiva e diagnóstico em tempo real voltado especificamente para frotas escolares movidas

a diesel. A pesquisa aborda a utilização de dados de telemetria de alta frequência (sub-

minuto) provenientes de sensores de motor, emissões e posicionamento GPS, processados

em um modelo de aprendizado de máquina de código aberto. A solução busca reduzir

o tempo ocioso dos véıculos, otimizar o consumo de combust́ıvel e prever falhas com

antecedência suficiente para intervenção programada. O autor demonstra que a aplicação

de algoritmos de mineração de dados e regressão em conjuntos extensos de registros

de telemetria permite o desenvolvimento de sistemas sustentáveis de manutenção, que

aumentam a vida útil do motor e diminuem as emissões poluentes. O estudo reforça

também a importância do uso de análise de dados em larga escala (big data) e ferramentas

de visualização para apoiar decisões operacionais em frotas públicas.

Embora ambos os trabalhos apresentem resultados relevantes, eles concentram-se

em contextos de transporte coletivo com foco em frotas de ônibus urbanos e escolares,

enquanto o presente projeto amplia o escopo para equipamentos a diesel em ambientes

industriais e de mineração, nos quais as condições de operação são significativamente mais

severas e os sensores ligados a rede CAN captam parâmetros distinto. Diferentemente das

abordagens embarcadas em microcontroladores e ECUs integradas, este trabalho propõe

uma arquitetura modular e escalável, capaz de funcionar inicialmente por meio de arquivos

CSV simulando o fluxo em tempo real de uma aplicação, facilitando assim a possibilidade

de migração futura para streaming MQTT ou integração via API em tempo real.

Assim, a presente pesquisa se diferencia dos estudos anteriores ao buscar uma

abordagem generalista e extenśıvel, voltada para a previsão de desgaste do equipamento e
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identificar padões na forma de condução dos operadores de forma cont́ınua, servindo como

base para sistemas de gestão de ativos industriais baseados em dados.
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3 Metodologia

Este capitulo tem como objetivo detalhar a metodologia usada para viabilizar o uso

de técnicas de aprendizado de máquina voltado para manutenção, preditiva com integração

a IoT.

3.1 Metodologia proposta

Este estudo tem como objetivo investigar a viabilidade e a eficiência da manutenção

preditiva em equipamentos a diesel, com base na coleta de dados operacionais através de

sensores de telemetria e a utilização de redes CAN. A escolha dessa abordagem se justifica

pela crescente importância das tecnologias da Indústria 4.0, que, através da Internet das

Coisas (IoT) e da análise de dados em tempo real, possibilitam a otimização dos processos

de manutenção e podendo gerar KPIs para percepções de como é o uso dos operadores e

desgaste do equipamento.

A pesquisa foi conduzida utilizando uma abordagem quantitativa e experimental,

onde foram coletados dados reais de equipamentos operando em condições t́ıpicas de tra-

balho, como escavadeiras e tratores. A análise preditiva é realizada por meio de algoritmos

de aprendizado de máquina, com o objetivo de desenvolver modelos que possam prever

falhas e otimizar as intervenções de manutenção. Esses modelos foram validados por meio

da comparação de resultados preditivos com dados históricos de falhas e manutenções

realizadas em equipamentos similares.

A escolha de uma metodologia experimental permite uma avaliação prática da

eficiência da manutenção preditiva, destacando os benef́ıcios e as limitações da aplicação

dessa tecnologia em ambientes industriais. O desenvolvimento e a implementação de uma

plataforma para coleta, processamento e análise de dados, assim como a aplicação dos

modelos preditivos.

3.1.1 Coleta e pré-processamento de dados

A etapa de coleta e pré-processamento de dados consiste em captar os sinais

provenientes do barramento CAN do equipamento, que representam variáveis operacionais

como rotação, temperatura, tensão e consumo. Após a aquisição, os dados são submetidos a

um processo de limpeza e padronização, no qual colunas são uniformizadas, valores ausentes

tratados, timestamps consolidados para garantir a coerência temporal das amostras. Por

fim, os registros são organizados em micro-lotes, simulando um fluxo cont́ınuo de ingestão
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de dados, o que permite preservar a integridade temporal e preparar a base para análises

e modelos de aprendizado de máquina em tempo quase real.

3.1.2 Geração de Features Derivadas

A etapa de geração de features derivadas envolve o enriquecimento do conjunto de

dados original por meio do cálculo de médias móveis, desvios padrão, percentis, defasagens

(lags) e derivadas temporais para cada variável operacional. Esses indicadores estat́ısticos

permitem capturar tendências, flutuações e padrões de comportamento do equipamento

ao longo do tempo. Em seguida, todas as variáveis transformadas são consolidadas em

um dataset unificado (all feature.csv), devidamente estruturado e pronto para as etapas

subsequentes de modelagem preditiva e análise de KPIs de desempenho.

3.1.3 Desenvolvimento e Treinamento de Modelos de IA

A fase de desenvolvimento e treinamento de modelos de IA contempla, primeiro, o

ajuste de um MLP Regressor para prever o ESI (Engine stress index ) a partir das features

operacionais derivadas, capturando relações não lineares e efeitos temporais relevantes. Em

paralelo, um algoritmo classificador é treinado para identificar clusters de comportamento

do operador (driver clusters) com base nos descritores estat́ısticos (médias móveis, desvios,

percentis, lags), permitindo segmentar padrões de uso que influenciam desgaste e eficiência.

Todos os modelos e respectivos scalers (normalizações/padronizações) são regis-

trados no MLflow, garantindo rastreamento de experimentos, versionamento de artefatos,

reprodutibilidade dos resultados e facilitação da implantação em produção (via model

registry e inference pipelines). Essa governança viabiliza comparações entre execuções,

auditoria de métricas e rollbacks controlados durante o ciclo de vida do modelo.

3.1.4 Cálculo de Métricas Derivadas e KPIs

A etapa de cálculo de métricas derivadas e KPIs consiste em gerar, para cada

registro de operação, o valor da predição do ESI e o Efficiency Score, permitindo quantificar

o desempenho operacional em tempo cont́ınuo. Em seguida, todos os KPIs são consolidados

no arquivo kpis.csv, reunindo o ESI observado e predito, os clusters de comportamento do

operador, os ı́ndices de eficiência operacional e as métricas estat́ısticas temporais calculadas

nas fases anteriores. Essa consolidação possibilita a análise temporal da performance dos

equipamentos, a comparação entre operadores e a identificação de padrões recorrentes de

operação, que podem ser utilizados para suporte à decisão e otimização das estratégias de

manutenção preditiva.
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3.1.5 Validação e Análise de Resultados

A etapa de validação e análise de resultados tem como objetivo verificar o desem-

penho dos modelos desenvolvidos e interpretar seus resultados com foco em correlação

em manutenção preditiva. Nessa fase, avalia-se a capacidade do MLP Regressor em re-

produzir o ESI heuŕıstico, utilizando métricas quantitativas como Mean Squared Error

(MSE) e Root Mean Squared Error (RMSE) para mensurar a precisão das predições. Em

paralelo, realiza-se a análise da distribuição dos clusters obtidos pelo modelo K-Means,

correlacionando-os com indicadores de desempenho operacional dos equipamentos. Essa

análise integrada fornece insights sobre a eficiência dos operadores, identifica padrões de

estresse do motor e contribui para o aperfeiçoamento das estratégias de manutenção predi-

tiva e otimização de processos, reforçando a confiabilidade e a disponibilidade operacional

da frota.

3.2 Dados

Esta seção apresenta os detalhes de como os dados utilizados nesse trablaho foram

adquiridos e tratados.

3.2.1 Fonte

Os dados utilizados neste trabalho foram obtidos a partir da telemetria de um

equipamento Volvo FMX 500, ano 2023, durante o periodo de 01/07/2025 até 30/09/2025,

pertencente à frota operacional de uma mina cuja produção principal é de ferro. Inicialmente,

os registros foram exportados em formato Excel (.xlsx) e, após o pré-processamento,

consolidados em arquivos CSV para posterior análise. A coleta das informações foi realizada

diretamente pelo barramento CAN-bus dos véıculos, garantindo a captura cont́ınua e precisa

de variáveis cŕıticas de operação. Cada registro corresponde a uma leitura instantânea do

equipamento, incluindo timestamp gerado a cada 30 segundos enquanto o equipamento está

com o motor ligado, e a identificação do operador responsável pela operação, permitindo

análises temporais detalhadas e a avaliação do desempenho individual.

3.2.2 Pré-processamento de dados

Antes de iniciar a modelagem preditiva, foi necessário realizar um pré-processamento

dos dados coletados. Esse procedimento garante que o modelo MLP aprenda padrões válidos

e evita que informações inconsistentes comprometam a análise. Na Figura 5, é posśıvel

visualizar o conjunto de dados após a etapa de limpeza, evidenciando a padronização e a

remoção de registros inadequados.

• Normalização e padronização de colunas.
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– Todos os nomes de colunas foram padronizados, removendo espaços, caracteres

especiais e quebras de linha.

– O timestamp de cada registro foi consolidado na coluna DataHora, obtida a

partir da combinação das colunas Data e Hora quando necessário, garantindo

que cada registro possua referência temporal única.

– normalizado as grandezas usadas entre 0 e 1 utilizando a função MinMaxScaler

da bilioteca scikit-learn para garantir que a amplitude dos valores não influencie

de forma desigual a aprendizagem do modelo.

• Exclusão de colunas desnecessárias.

– Algumas colunas do arquivo bruto de registro de telemetria, como ”Grupo

Equipamento”e ”Tipo Equipamento”, foram consideradas irrelevantes, pois

estou fazer a modelagem toda em cima de apenas um modelo de equipamento

e para a análise de eficiência do operador.

• Preenchimento de valores ausentes.

– Os dados coletados apresentavam eventuais valores ausentes ou inconsistentes,

principalmente em sinais de sensores devido a leituras perdidas ou falhas

temporárias.

– Foi adotado um método de preenchimento forward-fill , onde valores ausentes

ou anômalos (por exemplo, leituras muito discrepantes que indicam falhas no

sensor) são substitúıdos pelo último valor válido registrado.

Figura 5 – dados limpos

Fonte: Elaborado pelo autor.

3.3 ESI heuŕıstico

O ESI é um ı́ndice heuŕıstico desenvolvido para refletir o esforço do motor e o

estresse do equipamento durante a operação. Não é uma medição direta de grandezas

f́ısicas, mas sim uma combinação calculada das variáveis operacionais (RPM, consumo,

temperatura do motor). O objetivo do ESI é fornecer uma referência quantitativa para:

• Avaliar o esforço do motor em cada ponto do tempo

• Derivar métricas de eficiência do operador
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• Servir de target para o MLP, permitindo que a IA aprenda a reproduzir esse ı́ndice e

generalize para novos dados

O cálculo feito para obter o ESI é

ESI = 0.5×RPMnorm + 0.3× Consumonorm + 0.2× TempMotornorm (3.1)

A equação apresentada combina três variáveis operacionais normalizadas, rotação

do motor (RPMnorm), consumo instantâneo de combust́ıvel (Consumonorm) e temperatura

do motor (TempMotornorm) para o cálculo do ESI. A utilização das grandezas em formato

normalizado garante que todas as variáveis contribuam proporcionalmente para o ı́ndice,

evitando distorções causadas por diferenças de escala entre as medições.

Este será o alvo em que será treinado o algorit́ımo de MLP Regressor para fazer

sua previção em tempo real, em função das outras grandezas de entradas

3.4 Geração de recursos

Para garantir que o modelo preditivo fosse treinado em condições similares a um

ambiente de operação real, os dados foram processados em micro-loteses de 100 registros.

Essa abordagem simula a inserção cont́ınua de dados, caracteŕıstica de um sistema em

tempo real, permitindo que o pipeline seja escalável e preparado para streaming futuro

via API. Cada lotes representa uma sequência temporal de leituras do equipamento,

preservando a ordem cronológica e permitindo o cálculo de métricas dependentes de

histórico, como médias móveis e derivadas.

3.4.1 Recursos estat́ısticas derivados

A partir dos sinais coletados e do próprio ESI heuŕıstico, foram geradas diversas

features estat́ısticas e temporais com o objetivo de capturar tendências, variações e picos

operacionais. No geral, essas estat́ısticas foram calculadas a partir de janelas de três

registros, uma vez que um único registro é insuficiente para representar o comportamento

real do equipamento e pode refletir apenas uma variação momentânea. A janela de três

registros corresponde a aproximadamente um minuto e meio a dois minutos de operação,

permitindo capturar de forma mais robusta a tendência daquele peŕıodo e evitando

interpretações baseadas em flutuações pontuais. Essas features foram calculadas tanto

para os sinais principais quanto para o ESI, permitindo análises de tendência, volatilidade

e comportamento operacional. Elas também servem como entrada para o K-Means, que

agrupa os registros em clusters representativos do padrão de operação de cada operador.
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Tabela 1 – Descrição das features geradas para análise dos sinais

Tipo de Feature Descrição Justificativa cient́ıfica
* mean 3 Média móvel sobre 3 regis-

tros
Captura tendência recente do si-
nal; reduz rúıdo momentâneo

* std 3 Desvio padrão móvel sobre
3 registros

Mede a variabilidade do sinal,
permitindo identificar operações
instáveis

* pct90 3 Percentil 90 móvel sobre 3
registros

Detecta picos e condições extre-
mas do equipamento, importantes
para avaliar estresse do motor

* lag 1 Valor defasado de 1 registro Permite analisar mudanças ins-
tantâneas e calcular derivadas

* derivative Diferença entre registros con-
secutivos

Representa a taxa de variação do
sinal, capturando acelerações, fre-
nagens e mudanças bruscas de
operação

Fonte: Elaborado pelo autor.

3.5 Modelagem

O processo de modelagem preditiva deste trabalho foi estruturado para estimar

o ESI a partir das variáveis operacionais do equipamento, bem como identificar padrões

de operação dos operadores. Para isso, foram utilizados dois algoritmos de inteligência

artificial: o MLPRegressor, para predição do ESI, e o K-Means, para classificação dos

operadores, do caminhão de estudo, com base em features estat́ısticas derivadas.

3.5.1 Multi-Layer Perceptron Regressor

O MLP Regressor é uma rede neural feedforward que foi utilizada para aprender

a relação não linear entre sinais operacionais e o ESI normalizado. Este algoritimo foi

selecionado para este trabalho, pois de acordo com Qin et al. (2022), possui capacidade de

aprender relações não lineares complexas entre múltiplas variáveis cont́ınuas, caracteŕıstica

essencial para modelar a previsão do ESI a partir de sinais operacionais do equipamento.

Diferentemente de modelos lineares, o MLP é capaz de capturar interações entre RPM,

velocidade, consumo de combust́ıvel e temperatura do motor, que apresentam efeitos

combinados sobre o estresse do motor. As caracteŕısticas do MLPRegressor utilizado

foram:

• Target : ESI heuŕıstico, normalizado entre 0 e 1.

• Features de entrada: apenas sinais que refletem o esforço do motor e a operação do

equipamento, excluindo hodômetro e hoŕımetro, que são acumulativos.
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• Treinamento: o dataset foi dividido em conjuntos de treino e teste, mantendo a

integridade temporal dos registros.

• Persistência: o modelo treinado e sua escala foram registrados no MLflow, permitindo

que predições futuras possam ser realizadas em tempo real ou em novos datasets.

• Divisão do dataset : a base de dados foi separada com 80% usada para treinamento e

20% para teste

A literatura sugere que, para tarefas de regressão com redes MLP, arquiteturas com uma ou

duas camadas ocultas contendo dezenas a poucas centenas de neurônios podem apresentar

bom equiĺıbrio entre capacidade de aprendizagem e risco de sobreajuste (ramchoun et al.,

2016)

Antes do ińıcio do desenvolvimento completo do modelo, foram realizados testes

preliminares com diferentes configurações de camadas e neurônios na rede MLP Regressor,

com o objetivo de identificar uma arquitetura que equilibrasse precisão e generalização. Os

resultados comparativos, apresentados na Tabela 2, indicaram que arquiteturas com duas

camadas ocultas apresentaram desempenho superior às de camada única, especialmente

a configuração com 64 e 32 neurônios, que obteve um erro quadrático médio (MSE) de

aproximadamente 0,00067.

Essa escolha mostrou-se coerente com estudos prévios, como os de Ramchoun

et al. (2016), que relatam melhor desempenho em redes compostas por duas camadas

ocultas com dezenas de neurônios, oferecendo capacidade de aprendizado suficiente sem

incorrer em complexidade excessiva. Nos experimentos conduzidos, a arquitetura (64, 32)

apresentou redução consistente no erro médio quadrático (MSE) ao longo das validações,

sem divergência significativa entre o erro de treino e o de validação, indicando boa

capacidade de generalização. Além disso, arquiteturas mais profundas, como a de (128, 64,

32), embora tenham alcançado MSE inferior, não apresentaram um ganho expressivo o

bastante para justificar o aumento do custo computacional e o maior risco de sobreajuste

associado a modelos com maior número de parâmetros. Assim, a arquitetura (64, 32) foi

selecionada por oferecer um equiĺıbrio adequado entre desempenho, simplicidade e robustez

para um conjunto de dados de média complexidade como o derivado da telemetria CAN.

Tabela 2 – Resultados comparativos das arquiteturas MLP testadas.

Arquitetura (camadas ocultas) Função de Ativação MSE Médio
(32,) ReLU 0.00243
(64, 32) ReLU 0.00067
(128, 64, 32) ReLU 0.00015
(64,) ReLU 0.00986
(64, 64) ReLU 0.00130

Fonte: Elaborado pelo autor.
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Tendo em vista os resultados obtidos nos testes preliminares, o modelo final

foi configurado com duas camadas ocultas de 64 e 32 neurônios, estrutura escolhida por

equilibrar desempenho e generalização, permitindo capturar relações não lineares complexas

entre os sinais operacionais e o ESI (Equipment Stress Index) sem elevar excessivamente

a complexidade computacional. A função de ativação ReLU (Rectified Linear Unit) foi

adotada por apresentar maior eficiência computacional e convergência mais estável durante

o treinamento, conforme destacado por Glorot, Bordes e Bengio (2011), que demonstraram

o bom desempenho da ReLU em redes profundas ao mitigar o problema do gradiente

dissipativo caracteŕıstico de funções sigmoides e hiperbólicas. O número máximo de épocas

foi definido em 500, de modo a garantir a convergência do processo de aprendizado. O

target foi convertido em um array unidimensional (ravel) para compatibilidade com a

função de regressão do MLP. Essas escolhas equilibram capacidade de aprendizado e risco

de overfitting, considerando o tamanho do dataset.

O desempenho do MLP foi avaliado utilizando as métricas de erro médio quadrático

(MSE) e raiz do erro médio quadrático (RMSE), amplamente utilizadas em regressão

cont́ınua.

As expressões matemáticas utilizadas são:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (3.2)

onde:

• n — número total de amostras do conjunto de dados;

• yi — valor real do ESI da primeira até a i-ésima amostra;

• ŷi — valor previsto pelo modelo para ESI até a i-ésima amostra;

• (yi − ŷi)
2 — erro quadrático associado a cada previsão.

3.5.2 K-Means

O K-Means é um algoritmo de aprendizado não supervisionado, utilizado para

agrupar registros em clusters baseados na similaridade de features. Ele foi usado para

identificar padrões operacionais distintos entre operadores, a partir de features estat́ısticas

derivadas do comportamento do equipamento.

O K-Means busca minimizar a soma das distâncias quadráticas entre cada ponto

e o centroide do cluster ao qual ele pertence. A equação matemática do algoŕıtimo é

representada a seguir
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argmin
C

k∑
i=1

∑
x∈Ci

∥x− µi∥2

(3.3)

onde:

• k — número de clusters (neste trabalho, definido empiricamente como 3);

• Ci — conjunto de pontos pertencentes ao cluster i;

• µi — centróide do cluster i;

• x — vetor de features (caracteŕısticas) de um ponto.

• Entrada (X): vetor de features estat́ısticas derivadas de cada lotes, incluindo, por

exemplo, RPM mean 3, velocidade std 3 e consumo mean 3. Essas variáveis repre-

sentam medidas agregadas de tendência e dispersão dos sinais originais e podem

incluir, adicionalmente, derivadas, defasagens (lags) e percentis das variáveis princi-

pais.

• Sáıda (y): ı́ndice do cluster (0, 1, 2) ao qual cada registro é atribúıdo, conforme

resultado do agrupamento obtido pelo modelo (driver cluster).

O algoritmo foi escolhido por sua simplicidade e interpretabilidade, sendo de fácil

implementação, eficiente computacionalmente e capaz de fornecer resultados intuitivos

na análise dos clusters. Além disso, apresenta excelente compatibilidade com features

estat́ısticas, lidando naturalmente com médias, desvios e derivadas que refletem o com-

portamento dos operadores ao longo do tempo. Por fim, oferece suporte direto à análise

do operador, uma vez que cada cluster representa um padrão operacional predominante,

permitindo avaliar a eficiência e a consistência de cada condutor com base no ESI e nas

métricas derivadas.

3.6 Pipeline

O pipeline desenvolvido para este trabalho foi estruturado de forma modular e

escalável, seguindo o padrão da arquitetura hexagonal (ports and adapters). Essa escolha
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garante que a lógica central do sistema seja isolada de dependências externas, como bancos

de dados, APIs, arquivos CSV ou sistemas de monitoramento em tempo real, facilitando

manutenção, testes e evolução futura.

3.6.1 Arquitetura hexagonal

A arquitetura do sistema foi organizada conforme proposto por (martin, 2017) segundo

o paradigma de Clean Architecture, dividida em três camadas principais: Core, Ports e

Adapters. Essa estrutura visa manter baixo acoplamento e alta coesão entre os componentes,

garantindo que mudanças externas não impactem a lógica de modelagem ou o cálculo dos

indicadores de desempenho (KPIs).

O Core (domı́nio central) representa o núcleo da aplicação, concentrando toda a

lógica de negócio e os processos de aprendizado de máquina relacionados aos indicadores.

Essa camada é responsável por executar o pré-processamento dos dados brutos, garantindo

sua qualidade e integridade para as etapas subsequentes. Em seguida, realiza a geração

de features temporais e estat́ısticas, enriquecendo o conjunto de dados com informações

derivadas que capturam padrões de comportamento operacional. O treinamento dos

modelos de IA, como o MLP Regressor e o K-Means, também ocorre nesse domı́nio,

permitindo tanto a previsão do ESI quanto a segmentação de perfis de operação. Por fim,

esta camada é encarregado de efetuar a predição do ESI em tempo cont́ınuo e o cálculo

do Efficiency Score, consolidando indicadores fundamentais para o monitoramento da

aplicação.

Os Ports (interfaces) constituem a camada responsável por definir os contratos

de comunicação entre o Core e o ambiente externo, garantindo que a lógica de negócio

permaneça independente da infraestrutura. Nessa camada são especificadas as interfaces

padronizadas para leitura de dados provenientes de diferentes fontes, como arquivos CSV,

APIs ou fluxos de streaming, bem como para a gravação de features e KPIs gerados

pelo processamento interno. Além disso, os ports também contemplam as operações de

registro e versionamento de modelos de aprendizado de máquina, assegurando integração

transparente com ferramentas externas, como o MLflow. Essa abordagem favorece o

desacoplamento, a testabilidade e a substituição modular de componentes, conforme os

prinćıpios da arquitetura hexagonal.

Os Adapters (implementações concretas) constituem a camada responsável por

conectar os ports do sistema aos serviços e fontes de dados externas, atuando como ponte

entre a lógica de negócio e a infraestrutura. Essa camada abrange tarefas como a leitura de

micro-loteses de arquivos CSV, que simulam a ingestão cont́ınua de dados da telemetria, a

gravação das features derivadas em diretórios locais (data/features), o registro de modelos

e scalers no MLflow, assegurando rastreabilidade e versionamento e a exportação dos KPIs

consolidados para arquivos (data/kpis/kpis.csv). Essa solução facilita análise e visualização
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de desempenho. Essa separação arquitetural desacopla totalmente a lógica de processamento

da infraestrutura subjacente, promovendo escalabilidade, facilidade de manutenção e reuso

modular dos componentes, conforme os prinćıpios da Clean Architecture e da engenharia

de software orientada a domı́nios. Essa separação desacopla a lógica de processamento da

infraestrutura, promovendo maior escalabilidade, facilidade de manutenção e reuso dos

componentes.

3.6.2 Fluxo de dados do pipeline

O pipeline desenvolvido segue um fluxo linear, porém modular, composto pelas seguintes

etapas principais:

1. Ingestão de dados: os registros provenientes do equipamento são lidos em micro-loteses

de 100 linhas, simulando um ambiente de dados em tempo real.

2. Pré-processamento: inclui a limpeza e padronização das colunas, o tratamento de

valores ausentes e a criação do campo de carimbo temporal (DataHora).

3. Geração de features: cálculo de estat́ısticas temporais para cada sinal (* mean 3,

* std 3, * pct90 3, * lag 1, * derivative) e para o indicador ESI.

4. Treinamento de modelos:

• MLP Regressor : aprende a reproduzir o ESI heuŕıstico, gerando a predição

pred esi;

• K-Means: identifica padrões operacionais e agrupa os registros em clusters (driver cluster)

para medir o estilo de sua condução.

5. Scoring : aplicação dos modelos treinados sobre os loteses processados, resultando nos

valores de pred esi e efficiency score.

6. Persistência:

• Modelos e scalers registrados no MLflow;

• KPIs finais armazenados em kpis.csv.
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3.6.3 Justificativas técnicas

O sistema foi projetado com base em prinćıpios de modularidade e escalabilidade, incorpo-

rando conceitos de micro-loteses, features temporais e arquitetura hexagonal.

Com o objetivo de tentar simular a ingestão de dados em tempo real, utilizando

dados historicos, os micro-loteses foram criados. Esses são estruturas de processamento que

permitem se assemelhar a ingestão cont́ınua de dados em sistemas que operam com fluxos

telemétricos, possibilitando o tratamento incremental das informações sem sobrecarregar

a memória. Essa abordagem divide o conjunto de dados em pequenos lotes processados

sequencialmente, o que reduz o consumo de recursos computacionais e mantém a ordem

temporal dos registros, aspecto fundamental para o cálculo de features derivadas, como

médias móveis e variações instantâneas, e para a análise do comportamento operacional

do operador ao longo do tempo. Dessa forma, os micro-loteses viabilizam um equiĺıbrio

entre desempenho, precisão temporal e escalabilidade no pipeline.

As features temporais representam variáveis derivadas que capturam o compor-

tamento dinâmico e recente dos equipamentos, refletindo tendências, variações e picos

operacionais observados ao longo do tempo. Elas são calculadas a partir de janelas desli-

zantes e estat́ısticas como médias móveis, desvios padrão e gradientes, permitindo que o

modelo aprenda padrões de evolução e resposta do sistema sob diferentes condições de

operação. Essas features são empregadas de forma integrada tanto pelo MLP Regressor,

responsável pela previsão cont́ınua do ESI, quanto pelo K-Means, utilizado na clusterização

dos registros com base em comportamento estat́ıstico. Essa abordagem garante consistência

e coerência entre as tarefas de predição e segmentação.

A arquitetura hexagonal (Ports and Adapters) viabiliza a escalabilidade do sistema

ao desacoplar a lógica central da infraestrutura: a mesma aplicação que hoje lê arquivos CSV

pode, amanhã, consumir fluxos em tempo real (Kafka, WebSocket ou API) sem qualquer

alteração no domı́nio. Esse desenho também eleva a testabilidade, Pois cada módulo de

ingestão, geração de features, treinamento e scoring é isolado. por interfaces, permitindo

testes unitários e mocks de dependências externas de maneira simples e confiável.

Além disso, a arquitetura favorece a reprodutibilidade do ciclo de Machine Learning

Operations (MLOps) ao padronizar a persistência de modelos, scalers e KPIs no MLflow

e em artefatos CSV, garantindo rastreabilidade de versões, comparação transparente de

execuções e implantação controlada em produção. Em conjunto, esses prinćıpios reduzem o

custo de mudança, aceleram a evolução do produto e reforçam a confiabilidade operacional

do pipeline
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3.7 Ferramentas e Bibliotecas Utilizadas

O desenvolvimento do pipeline proposto neste trabalho foi sustentado por um

ecossistema bibliotecas Python voltadas para ciência de dados, aprendizado de máquina e

engenharia de software. O gerenciamento de dependências, ambiente virtual e versionamento

de pacotes foi realizado por meio da ferramenta Poetry, que garante reprodutibilidade e

isolamento do ambiente de desenvolvimento.

3.7.1 Gerenciamento de Ambiente – Poetry

O Poetry é uma ferramenta moderna de gerenciamento de pacotes e ambientes

virtuais para projetos em Python, projetada para oferecer maior controle, segurança

e reprodutibilidade em aplicações de desenvolvimento e pesquisa. Sua utilização neste

projeto possibilitou o controle de versões, por meio do registro automático de todas as

dependências no arquivo pyproject.toml, garantindo que o ambiente de execução possa

ser reproduzido integralmente em qualquer outro sistema. Além disso, o Poetry assegura

o isolamento do ambiente, uma vez que cada dependência é instalada em um ambiente

virtual próprio, evitando conflitos entre versões de bibliotecas.

3.7.2 Bibliotecas Utilizadas

As bibliotecas selecionadas foram escolhidas por sua maturidade, compatibilidade

e relevância cient́ıfica para análise de dados, modelagem e registro de experimentos. A

biblioteca Pandas (v2.3.3) foi utilizada para manipulação e análise de dados tabulares,

sendo responsável por operações de limpeza, filtragem, junção e agregação de dados

provenientes dos arquivos CSV. Sua interface DataFrame foi amplamente empregada no pré-

processamento e na geração das features estat́ısticas conforme, descrito na documentação

oficial da biblioteca (the pandas development team, 2025). A NumPy (v1.26),

por sua vez, é uma biblioteca fundamental para operações matemáticas vetorizadas e

manipulação de arrays, servindo de base para os cálculos estat́ısticos e operações de alto

desempenho realizadas nos módulos de features e modelagem (numpy developers, 2024).

A Scikit-learn (v1.5) foi a principal biblioteca de aprendizado de máquina

utilizada neste trabalho, sendo responsável pela implementação dos dois algoritmos centrais

do projeto: o MLPRegressor, um modelo de rede neural artificial utilizado para prever o

ESI, e o K-Means, um algoritmo de aprendizado não supervisionado para a clusterização

dos padrões de operação dos motoristas. Além disso, o Scikit-learn foi empregado para

normalização dos dados (usando MinMaxScaler e StandardScaler) e cálculo das métricas

de desempenho (scikit-learn developers, 2024).

O MLflow (v2.22.2), uma ferramenta de gerenciamento e rastreamento de expe-

rimentos de machine learning (MLOps), foi utilizado para registrar e versionar os modelos
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treinados (MLP e K-Means), armazenar parâmetros, métricas (como MSE ) e artefatos

associados, além de controlar as versões em produção e o histórico de execuções, garantindo

rastreabilidade cient́ıfica. O MLflow foi configurado localmente, permitindo a criação

automática de experimentos e o registro dos modelos (mlflow contributors, 2025).

Para a visualização e análise gráfica dos resultados, foi empregada a biblioteca

Matplotlib (v3.8), possibilitando a geração de gráficos estat́ısticos, bem como a análise

de correlações e comparações entre operadores e clusters. A biblioteca foi utilizada prin-

cipalmente nas etapas de análise descritiva e apresentação dos resultados, em razão de

sua flexibilidade, sintaxe acesśıvel e ampla aceitação na literatura cient́ıfica (matplotlib

development team, 2024).

O SciPy (v1.13), complementar ao NumPy, foi empregado para operações

matemáticas avançadas, suporte à geração de estat́ısticas e cálculos de derivadas temporais

das variáveis. Já o PyArrow (v16.0) foi utilizado para suporte à leitura e escrita

de grandes volumes de dados e compatibilidade futura com ambientes distribúıdos e

DataFrames otimizados (scipy developers, 2024).



50

4 Resultados

O presente caṕıtulo apresenta os resultados obtidos a partir do pipeline desenvolvido,

incluindo a análise do ESI, a clusterização dos operadores e o Efficiency Score. O objetivo

é demonstrar, de forma quantitativa e visual, o desempenho operacional do equipamento

e dos operadores, validando o modelo de esforço do equipamento e destacando padrões

relevantes de operação.

Durante o peŕıodo analisado, entre 01/07/2025 e 30/09/2025, o equipamento foi

operado por 37 operadores diferentes, permitindo avaliar não apenas o comportamento

do equipamento, mas também a variação de eficiência e padrões de operação entre os

operadores.

4.1 Avaliação do MLP Regressor

A avaliação do modelo MLP Regressor tem como objetivo verificar sua capacidade de

reproduzir o comportamento do ı́ndice heuŕıstico de estresse do motor (ESI), quantificando

a precisão do aprendizado e a consistência temporal das predições.

4.1.1 Métricas de Desempenho

Os resultados obtidos indicaram um MSE = 0.0018, correspondendo a um RMSE

≈ 0.042, o que representa um erro médio de aproximadamente 4,2% em relação à escala

normalizada (0–1). Em tarefas de regressão cont́ınua, valores de erro abaixo de 5%

são usualmente interpretados como indicadores de boa capacidade preditiva. Assim, o

desempenho observado caracteriza um ńıvel de erro baixo, evidenciando que o modelo

conseguiu capturar de forma consistente as dinâmicas subjacentes à variação do ı́ndice de

estresse do motor.

Na Figura 6 foi feito um ajuste para uma escala de 400 para 1, com objetivo de

possibilitar uma visualização mais clara. Assim se pode obsevar pequenas variações entre

o valor real e a sáıda do modelo.
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Figura 6 – ESI real vs. ESI predito com médias

Fonte: Elaborado pelo autor.

A observação do comportamento do modelo, em que o descolamento entre os valores

heuŕısticos e previstos aumenta à medida que o ESI se eleva, é um ponto importante a ser

analisado. A crescente diferença entre os valores previstos e os valores heuŕısticos pode ser

atribúıda a caracteŕısticas não lineares dos dados à medida que o equipamento se aproxima

de condições operacionais mais extremas, onde o comportamento do sistema torna-se

mais complexo e dif́ıcil de modelar. Isso pode indicar que, em valores mais altos de ESI,

o modelo precisa de mais dados representativos e variação nos parâmetros para captar

adequadamente os padrões de funcionamento, o que talvez não esteja sendo totalmente

representado no conjunto de treinamento.

Além disso, o fato de o modelo mostrar uma tendência para errar para mais

(superestimação) quando o ESI ultrapassa 0,4 pode ser um reflexo da distribuição dos

dados no conjunto de treino. Em modelos como o MLP, quando os dados para certas faixas

de valores são limitados ou mal distribúıdos, o modelo tende a generalizar de maneira

tendenciosa. Isso significa que o modelo pode estar projetado para prever o valor médio de

ESI de maneira mais conservadora em faixas mais altas, já que não há dados suficientes

ou representativos de falhas reais nessas condições mais extremas. Uma posśıvel solução

para mitigar esse viés seria realizar um reajuste do modelo, talvez alterando a distribuição

do conjunto de dados para incluir mais exemplos de condições cŕıticas ou ajustando os

pesos do modelo para essas faixas de valores mais elevadas.
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4.1.2 Analise de operadores

A análise dos valores de ESI mostra que os operadores causam ńıveis médios de

estresse do motor entre 0,26 e 0,54, com picos individuais chegando a 0,89 em alguns casos.

Essa variação indica que, embora a maioria opere dentro de uma faixa intermediária de

esforço do motor, há diferenças percept́ıveis de desempenho entre os condutores.

De forma geral, o conjunto indica uma tendência de ESI moderado, com predo-

minância de valores médios em torno de 0,43–0,46, o que sugere boa estabilidade operacional

da frota. Os casos extremos, tanto de ESI muito alto quanto muito baixo, são pontuais e

úteis para análises espećıficas de comportamento de condução. Assim, o ESI se mostra

uma métrica eficaz para comparar a eficiência operacional entre operadores e identificar po-

tenciais oportunidades de treinamento ou ajuste de parâmetros de operação, contribuindo

para a redução do desgaste mecânico e aumento da vida útil dos equipamentos.

Na Tabela 3 são apresentados os 4 outliers, os dois com a maior média e os dois

com a menor média, dentre os 37 operadores do peŕıodo analisado.

Tabela 3 – Operadores com maiores e menores valores médios de ESI

Operador ESI médio ESI máximo Categoria
Operador 1 0.543 0.889 Maior
Operador 2 0.533 0.871 Maior
Operador 3 0.262 0.617 Menor
Operador 4 0.226 0.584 Menor

Fonte: Elaborado pelo autor.

4.1.3 Pontuação de eficiência individual

Além do ESI heuŕıstico, foi definida uma grandeza derivada denominada Efficiency Score,

destinada a quantificar a eficiência relativa do operador em termos de estresse imposto ao

motor durante a operação.

O Efficiency Score é calculado a partir do valor da predição do ESI (pred esi)

gerado pelo modelo MLP, conforme a expressão 4.1 :

Efficiency Score = 100 - (pred esi ×100)

(4.1)

O Efficiency score é interpretado da seguinte forma:
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• Valores próximos a 100 indicam operação eficiente, com menor estresse do motor;

• Valores menores indicam maior esforço ou operação mais agressiva, refletindo aumento

de estresse mecânico.

Enquanto o ESI fornece um indicador cont́ınuo do esforço aplicado ao motor, o

Efficiency Score converte essa informação em uma métrica mais intuitiva e comparável

entre operadores. Essa transformação possibilita:

• A análise direta da eficiência de cada operador ao longo do tempo;

• A complementação dos clusters obtidos pelo algoritmo K-Means;

• A facilitação da visualização e interpretação cient́ıfica dos resultados.

A introdução do Efficiency Score permite avaliar a precisão do modelo preditivo, além de

fornecer insights operacionais concretos, relacionando o comportamento do operador ao

esforço imposto ao equipamento de forma quantitativa.

o EfficiencyScore médio dos operadores foi 0,636 e será importante para fazer

medições e análises quando essa aplicação for levada para um sistema em tempo real.

4.2 Análise de clusters K-means

Após a etapa de modelagem supervisionada, foi aplicada uma abordagem não

supervisionada utilizando o algoritmo K-Means para identificar agrupamentos naturais

nos dados operacionais. O objetivo principal desta etapa é caracterizar diferentes perfis

de condução e padrões de uso do caminhão, permitindo uma análise comportamental dos

operadores e das condições de operação do motor a partir de variáveis derivadas do sinal

da rede CAN.

4.2.1 Definição e Critério de Escolha do Número de Clusters

O modelo K-Means foi configurado para gerar três clusters (k = 3). Esse número

foi escolhido com base em uma combinação de critérios de interpretabilidade operacional.

Testes iniciais com valores de k entre 2 e 5 indicaram que a configuração com três

agrupamentos representava de forma adequada a variabilidade dos comportamentos de

condução, evitando a segmentação excessiva dos dados e preservando a coerência estat́ıstica

entre os grupos.

Sob a ótica da gestão de frotas, a divisão em três clusters mostrou-se suficiente para

representar, de maneira clara e interpretável, os principais perfis de operação observados,

conforme a Tabela 4 :
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Tabela 4 – Descrição dos clusters operacionais identificados pelo algoritmo K-Means

Cluster Descrição

0 –leve Operação em baixa rotação e velocidade, com carga reduzida.

1 – inter-
mediário

Operação estável, dentro das faixas normais de carga e tempe-
ratura.

2 – severo Operação em altos ńıveis de RPM, consumo e temperatura,
indicando posśıvel sobrecarga mecânica ou condução agressiva.

Assim, a definição de três agrupamentos mantém o equiĺıbrio entre a interpretação

prática e a representatividade estat́ıstica, permitindo uma segmentação funcional do

comportamento operacional dos equipamentos.

4.2.2 Resultados dos clusters

Na Figura 7 se observa que a maioria dos registros está na no cluster 1, seguindo

da 0 e depois da 2.

Figura 7 – Porcentagem de registros de cada cluster

Fonte: Elaborado pelo autor.

A Figura 8 apresenta a distribuição dos valores de ESI para cada cluster identificado.

Percebe-se uma relação crescente entre o ESI e os clusters, indicando que, conforme o

equipamento realiza maior esforço, tende a ser classificado em clusters de ńıveis mais

elevados. Esse comportamento confirma a coerência do agrupamento com o propósito da

análise, refletindo a relação esperada entre esforço operacional e ESI.
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Figura 8 – Gráfico de distribuição do registro de cluster e ESI

Fonte: Elaborado pelo autor.

4.2.3 Aplicação dos cluster

Os resultados obtidos pelos clusters oferecem uma base anaĺıtica valiosa para o

monitoramento e a gestão operacional da frota. A segmentação permite acompanhar

em tempo real o comportamento de condução, associando cada operador ao cluster

correspondente conforme seu padrão de operação. Além disso, possibilita a detecção

precoce de anomalias, especialmente quando um operador transita com frequência para o

cluster severo, indicando condições de uso potencialmente prejudiciais ao motor.

Essas informações também podem orientar programas de treinamento operacional,

ao identificar estilos de condução menos eficientes e promover boas práticas que reduzam

o consumo e o desgaste mecânico. Por fim, os clusters servem como suporte à priorização

da manutenção preventiva, uma vez que permitem correlacionar a carga operacional de

cada grupo com o risco de falhas, contribuindo para a otimização de recursos e aumento

da confiabilidade dos equipamentos.

4.3 Modelos

Após o treinamento e desenvolvimento dos dois modelos utilizados nesse trabalho

sobre aprendizado máquina: o MLP regressor e o K-Means Clustering. Ambos foram

implementados utilizando a biblioteca Scikit-learn e configurados de modo a atender

os objetivos de predição e agrupamento definidos.
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O MLPRegressor foi responsável por estimar o ESI a partir das variáveis operacio-

nais derivadas e normalizadas, gerando o valor predito (pred esi). Já o algoritmo K-Means

foi empregado para identificar padrões de operação e agrupar os registros em três regimes

distintos de uso leve, intermediário e severo de acordo com as caracteŕısticas estat́ısticas

das variáveis.

Após o processo de treinamento, ambos os modelos foram salvos em formato .pkl

(pickle), permitindo sua reutilização em etapas futuras sem a necessidade de reexecução

do treinamento. O uso desse formato oferece diversas vantagens, tais como a reproduti-

bilidade, que garante que os mesmos pesos, parâmetros e hiperparâmetros utilizados no

treinamento original sejam preservados, assegurando resultados consistentes entre diferen-

tes execuções. Além disso, a eficiência é aprimorada, pois evita o retrabalho de reentreinar

os modelos sempre que uma nova análise é necessária, reduzindo significativamente o tempo

de processamento. O formato também facilita a integração, permitindo a incorporação

dos modelos em sistemas externos ou pipelines de produção, como aplicações de monitora-

mento em tempo real, APIs ou dashboards anaĺıticos. Por fim, a compatibilidade com

o MLflow é garantida, pois o formato .pkl é totalmente compat́ıvel com o ambiente

de rastreamento de experimentos utilizado, permitindo registrar os modelos, métricas e

artefatos de forma padronizada e versionada.

Com os modelos devidamente salvos e versionados, torna-se posśıvel realizar a

etapa de scoring, aplicando o MLPRegressor e o K-Means sobre novos conjuntos de

dados processados. Essa abordagem garante a continuidade do processo de análise e

possibilita a geração automática de indicadores como o pred esi, o Efficiency Score e os

KPIs consolidados do sistema.
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5 Conclusões e considerações para trabalhos

futuros

O objetivo deste trabalho, conforme apresentado na introdução, foi o desenvolvi-

mento de um modelo preditivo baseado em aprendizado de máquina, utilizando dados

extráıdos da rede CAN de um caminhão de carga, com o propósito de avaliar o estresse

do motor e o modo de condução dos operadores, fornecendo indicadores cont́ınuos de

desempenho e contribuindo para a otimização das operações em termos de segurança,

produtividade e manutenção preditiva.

Os resultados obtidos demonstraram que o objetivo proposto foi alcançado de

forma satisfatória. O modelo MLPRegressor apresentou um erro quadrático médio (RMSE)

de 4,2%, indicando boa precisão na predição do ESI heuŕıstico. Além disso, o algoritmo

K-Means foi capaz de agrupar adequadamente os operadores em três regimes distintos de

operação leve, intermediário e severo refletindo diferentes padrões de condução e ńıveis de

esforço do motor.

As estimativas de ESI obtidas com a MLP, da forma como foram apresentadas neste

trabalho, são um primeiro passo. Com o aprimoramento da abordagem aqui implementada,

objetiva-se, com a MLP, prever o ESI n-passos à frente, de forma a poder prever como

o ESI deverá evoluir à medida que o tempo passa. Tal ferramenta poderá, por exemplo,

alertar o operador da máquina de um posśıvel futuro sobreaquecimento do motor caso ele

siga operando a máquina da forma atual.

A abordagem proposta mostrou-se eficiente ao integrar técnicas de pré-processamento,

geração de features estat́ısticas e modelagem preditiva dentro de uma arquitetura modular e

escalável. O uso do MLflow para rastreamento de experimentos e o salvamento dos modelos

em formato .pkl garantiram reprodutibilidade, eficiência computacional e facilidade de

integração com aplicações futuras.

Com a disponibilidade de um volume maior de dados e variáveis relacionadas

ao desgaste real dos componentes, seria posśıvel desenvolver diretamente um modelo de

manutenção preditiva. Entretanto, o modelo proposto neste trabalho pode servir como uma

etapa preliminar a ser complementada em pesquisas futuras, auxiliando na identificação

de padrões de operação e no cálculo de indicadores que alimentem e aprimorem modelos

preditivos mais robustos.

Como trabalhos futuros, recomenda-se a integração do pipeline com fluxos de dados

em tempo real, por meio de protocolos como Kafka ou WebSocket, bem como a ampliação

do conjunto de variáveis monitoradas. A incorporação de novos algoritmos de aprendizado
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de máquina, tais como Random Forest, Árvores de Decisão e classificadores baseados em

Multilayer Perceptron (MLP), também representa uma direção promissora para aprimorar

a interpretabilidade e o desempenho do sistema.
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