
Universidade Federal de Ouro Preto
Instituto de Ciências Exatas e Aplicadas

Departamento de Computação e Sistemas

Desenvolvimento de uma Aplicação
Servidora para Coleta Automática de

Dados para o Aplicativo de
Monitoramento de Crimes

BHSafezone em Belo Horizonte

Gustavo Silva da Fonseca

TRABALHO DE
CONCLUSÃO DE CURSO

ORIENTAÇÃO:
Alexandre Magno de Sousa

Abril, 2025
João Monlevade–MG

Gustavo Silva da Fonseca

Desenvolvimento de uma Aplicação Servidora
para Coleta Automática de Dados para o
Aplicativo de Monitoramento de Crimes

BHSafezone em Belo Horizonte

Orientador: Alexandre Magno de Sousa

Monografia apresentada ao curso de Sistemas de In-
formação do Instituto de Ciências Exatas e Aplicadas,
da Universidade Federal de Ouro Preto, como requi-
sito parcial para aprovação na Disciplina “Trabalho de
Conclusão de Curso II”.

Universidade Federal de Ouro Preto
João Monlevade

Abril de 2025

MINISTÉRIO DA EDUCAÇÃO
UNIVERSIDADE FEDERAL DE OURO PRETO

REITORIA
INSTITUTO DE CIENCIAS EXATAS E APLICADAS
DEPARTAMENTO DE COMPUTACAO E SISTEMAS

FOLHA DE APROVAÇÃO

Gustavo Silva Fonseca

Desenvolvimento de uma Aplicação Servidora para Coleta Automática de Dados para

o Aplicativo de Monitoramento de Crimes BHSafezone em Belo Horizonte

Monografia apresentada ao Curso de Sistemas de Informação da Universidade Federal
de Ouro Preto como requisito parcial para obtenção do título de Bacharel em Sistemas de Informação.

Aprovada em 11 de Abril de 2025.

Membros da banca

Doutor - Professor Alexandre Magno de Sousa - Orientador - Universidade Federal de Ouro Preto
Doutor - Professor Carlos Henrique Gomes Ferreira - Universidade Federal de Ouro Preto

Doutora - Professora Helen de Cássia Sousa da Costa Lima - Universidade Federal de Ouro Preto

Professor Alexandre Magno de Sousa, orientador do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de
Conclusão de Curso da UFOP em 02/05/2025.

Documento assinado eletronicamente por Alexandre Magno de Sousa, PROFESSOR DE MAGISTERIO SUPERIOR, em 07/05/2025,
às 15:50, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site http://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0906143 e o código CRC E1E0AA20.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.005740/2025-96 SEI nº 0906143

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163
Telefone: (31)3808-0819 - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0

Este trabalho é dedicado, primeiramente, a Deus, por me dar força e sabedoria para
enfrentar os desafios ao longo desta jornada. Aos meus pais, pelo amor, apoio

incondicional e incentivo constante, que foram fundamentais para a realização deste
projeto.

Agradecimentos

Agradeço primeiramente ao meu orientador, Alexandre Magno, pelo apoio, paciência
e orientação ao longo do desenvolvimento deste trabalho, e por não me deixar desistir do
TCC nos momentos mais difíceis.

Aos meus amigos e colegas, que de diversas formas contribuíram com sugestões,
discussões e apoio durante todo o processo.

A minha família, pelo incentivo e suporte incondicional, essenciais para que eu
pudesse concluir esta jornada.

Por fim, agradeço às instituições e fontes de dados que possibilitaram a realização
deste estudo, fornecendo informações essenciais para a construção do sistema.

A todos que, direta ou indiretamente, contribuíram para a realização deste trabalho,
meus sinceros agradecimentos.

“Science without religion is lame, religion without science is blind.”

— Albert Einstein (1879 – 1955)

Resumo
Este trabalho apresenta o desenvolvimento de um sistema de monitoramento de crimes em
Belo Horizonte, baseado na coleta automatizada de mensagens de grupos do WhatsApp.
Para isso, foi implementado um framework modular utilizando NodeJS com o NestJS,
permitindo a integração com bancos de dados MongoDB e Firestore para armazenamento
e sincronização eficiente das informações. O sistema é composto por diferentes serviços que
realizam desde a filtragem inicial das mensagens até a estruturação e organização dos dados
para inserção no banco. A identificação de crimes ocorre em duas etapas: primeiramente,
um serviço de filtragem desenvolvido em NodeJS analisa as mensagens e detecta possíveis
crimes com base em um dicionário de palavras-chave; em seguida, um modelo de Machine
Learning, implementado em Python, realiza a classificação detalhada, garantindo maior
precisão na categorização das ocorrências. Para possibilitar análises detalhadas, os dados
são organizados hierarquicamente no Firestore, estruturados por regiões, bairros e períodos
de tempo, permitindo consultas flexíveis e facilitando o acompanhamento da criminalidade.
Além disso, a solução adota uma abordagem de automação para garantir que as mensagens
sejam processadas continuamente, sem necessidade de intervenção manual. A arquitetura
desenvolvida proporciona escalabilidade e adaptabilidade, tornando o sistema versátil para
possíveis expansões e aplicações em outros contextos de monitoramento de dados.

Palavras-chave: Framework. Automação. NestJS. MongoDB. Firestore. Integração. Coleta
Automática. Monitoramento de Crimes. WhatsApp.

Abstract
This work presents the development of a crime monitoring system in Belo Horizonte
based on the automatic collection of messages from WhatsApp groups. For this purpose, a
modular framework was implemented using Node.js with the NestJS framework, integrated
with MongoDB and Firestore for efficient data storage and synchronization. The system
consists of several services that are responsible for filtering, structuring and organizing
the data before it is inserted into the database. Crimes are identified in two steps: (1)
first, a filtering service developed in NestJS analyzes the messages and identifies possible
crimes based on a predefined dictionary of keywords; then (2) a Machine Learning model
implemented in Python classifies the messages in detail, ensuring greater accuracy in the
categorization of crimes. To enable detailed analysis, the data in Firestore is organized
hierarchically and broken down by region, neighborhood and time period, allowing for
flexible queries and facilitating crime monitoring. The system also takes an automated
approach to ensure continuous processing of messages without manual intervention. The
developed architecture offers scalability and adaptability, making the system versatile for
potential extensions and applications in other data monitoring contexts.

Keywords: Framework. Automation. NestJS. MongoDB. Firestore. Integration. Automatic
Data Collection. Crime Monitoring. WhatsApp.

Lista de ilustrações

Figura 1 – Desenho do framework do sistema para monitoramento de crimes em
Belo Horizonte. 28

Figura 2 – Fluxo de processamento das mensagens no sistema. 30
Figura 3 – Filtro por palavras relacionadas a crimes. 31
Figura 4 – Classificador de crime. 31
Figura 5 – Busca pela localização do crime. 32
Figura 6 – Envio do resultado para o Firestore. 33
Figura 7 – Representação do processo de divisão do dataset em treino, teste e

validação. Fonte: Patrício (2023). 37
Figura 8 – Interfaces do aplicativo. Fonte: Patrício (2023) 47

Lista de abreviaturas e siglas

API Application Programming Interface

URL Uniform Resource Locator

LGPD Lei Geral de Proteção de Dados

PLN Processamento de linguagem natural

SVM Support Vector Machine

TF-IDF Term Frequency–Inverse Document Frequency

REM Reconhecimento de Entidades Mencionadas

BH Belo Horizonte

Sumário

1 INTRODUÇÃO . 13
1.1 Motivação e Justificativa . 14
1.2 Definição do Problema . 15
1.3 Objetivos Gerais e Específicos . 16
1.4 Resultados e Contribuições . 17
1.5 Estrutura da Monografia . 18

2 REVISÃO DA LITERATURA . 20
2.1 Monitoramento e Previsão de Eventos do Mundo Real em Mídias

Sociais Online . 20
2.2 Ferramentas Semelhantes . 21
2.3 Trabalhos Relacionados . 22
2.4 Considerações Finais . 24

3 METODOLOGIA E DESENVOLVIMENTO 25
3.1 Tecnologias utilizadas . 25
3.2 Estudo das Etapas . 26
3.3 Reestruturação do Framework . 28
3.4 Busca e Identificação de Grupos no WhatsApp 29
3.5 Fluxo das Mensagens no Sistema . 30
3.6 Coleta de Dados . 33
3.7 Filtragem de Palavras Relacionadas à Crimes 34
3.8 Classificação de Crimes . 36
3.9 Processo de Busca da Localização . 39
3.10 Integração dos Dados . 41
3.11 Considerações Finais . 42

4 RESULTADOS . 44
4.1 Coleta e Armazenamento de Mensagens 44
4.2 Adaptação dos Códigos Classificador e Busca de Localização 45
4.3 Integração com o Firestore . 46
4.4 Visualização no BHSafezone . 46
4.5 Considerações Finais . 48

5 CONCLUSÃO E TRABALHOS FUTUROS 49
5.1 Contribuições . 50

5.2 Limitações do Trabalho . 51
5.3 Trabalhos Futuros . 52

REFERÊNCIAS . 54

6 APÊNDICE . 57

13

1 Introdução

O crescente aumento da criminalidade em grandes centros urbanos exige a adoção
de tecnologias para o monitoramento e análise de padrões de segurança. Diversos estudos
têm explorado a utilização de mídias sociais e outras fontes abertas como ferramentas de
coleta de dados para auxiliar na análise de comportamentos criminosos e no fornecimento de
informações em tempo real para autoridades de segurança pública. Silva T.; Stabile (2016)
destacam o uso de plataformas digitais para o monitoramento de segurança, abordando
técnicas de análise de dados extraídos de mídias sociais como uma forma eficaz de detectar
e mapear atividades suspeitas em tempo real. Complementando essa abordagem, Alves,
Ribeiro e Rodrigues (2020) propõem o uso de métricas urbanas e técnicas de aprendizado
estatístico para prever crimes, integrando dados de múltiplas fontes, incluindo mídias
sociais, para melhorar a precisão das previsões.

A extração automatizada de informações de fontes abertas é uma área amplamente
explorada, como abordado por Ferreira, Duarte e Ugulino (2022), que apresentam técnicas
para a extração de estatísticas de segurança pública a partir de dados de mídias digitais. Tais
abordagens têm sido fundamentais para melhorar a tomada de decisões no planejamento
de ações preventivas e reativas. Complementarmente, Kumar e Singh (2022) enfatizam a
importância de algoritmos de deep learning para a análise de grandes volumes de dados
em tempo real, destacando sua aplicação na detecção de padrões criminais em plataformas
como Twitter e WhatsApp.

Teles e Silva (2021) investigam a coleta de dados utilizando técnicas de web scraping,
uma prática fundamental para a obtenção de informações de diversas fontes digitais. Essas
abordagens são essenciais para a criação de bancos de dados atualizados, os quais são
posteriormente utilizados para análise de padrões e eventos de segurança pública. A
utilização dessas técnicas de coleta automatizada foi igualmente explorada por Chen e Liu
(2023), que demonstram como o web scraping pode ser aplicado de maneira eficiente para
o monitoramento de plataformas sociais e sites de notícias, com o objetivo de detectar
incidentes relacionados à criminalidade em grandes cidades.

Por fim, Zandavalle (2016) analisa a opinião pública e como sua interpretação pode
influenciar a percepção da segurança em diferentes regiões. A análise de sentimentos tem
sido amplamente aplicada para compreender a opinião das pessoas sobre temas como
violência e segurança pública, com contribuições importantes de Ribeiro e Almeida (2023)
no campo da análise de dados textuais para a interpretação de tendências sociais. As
ferramentas de análise de opinião pública, como as propostas por Lima e Costa (2023),
permitem uma melhor compreensão dos sentimentos da população e podem ser utilizadas

Capítulo 1. Introdução 14

para aprimorar os sistemas de monitoramento de segurança.

Dessa forma, o presente trabalho busca integrar as metodologias mencionadas,
propondo uma solução que combine a coleta de dados em tempo real, a análise de
sentimentos e o uso de técnicas avançadas de Machine Learning para a classificação de
informações, com o objetivo de fornecer uma ferramenta eficiente no monitoramento
de crimes em Belo Horizonte. A integração de novas fontes de dados, como grupos do
WhatsApp, Telegram e sites de notícias locais, aliada a técnicas de Processamento de
linguagem natural (PLN) e aprendizado de máquina, permitirá a criação de um sistema
robusto e atualizado, capaz de fornecer insights valiosos para a segurança pública.

1.1 Motivação e Justificativa
A segurança pública é um dos maiores desafios enfrentados por cidades de grande

porte, como Belo Horizonte. O aumento dos índices de criminalidade e a crescente demanda
por soluções eficazes para o monitoramento de crimes exigem a utilização de tecnologias
avançadas. Nesse contexto, a aplicação de metodologias para o processamento de dados em
tempo real provenientes de fontes abertas, como redes sociais, mensageiros instantâneos
e sites de notícias, surge como uma solução inovadora. A motivação principal deste
trabalho é contribuir para o desenvolvimento de um sistema inteligente de monitoramento
e mapeamento de crimes, utilizando dados extraídos de plataformas digitais para detectar,
classificar e disseminar informações sobre incidentes de segurança.

Diversos estudos indicam que o uso de mídias sociais tem se mostrado uma ferra-
menta poderosa para o monitoramento de atividades criminosas. Silva T.; Stabile (2016)
destacam que as redes sociais oferecem uma grande quantidade de dados em tempo real,
que podem ser analisados para identificar padrões de comportamento relacionados à crimi-
nalidade. A extração automatizada de informações, como proposto por Ferreira, Duarte e
Ugulino (2022), permite não só a coleta de dados, mas também a geração de estatísticas e
relatórios de segurança que podem subsidiar ações mais eficientes das autoridades responsá-
veis. Complementando essa abordagem, Alves, Ribeiro e Rodrigues (2020) propõem o uso
de métricas urbanas e técnicas de aprendizado estatístico para prever crimes, integrando
dados de múltiplas fontes, incluindo mídias sociais, para melhorar a precisão das previsões.
Assim, a utilização dessas tecnologias no contexto de Belo Horizonte é especialmente
relevante, considerando a crescente preocupação com a segurança pública e a necessidade
de aprimorar as estratégias de prevenção e combate ao crime.

Além disso, a aplicação de técnicas de web scraping, abordada por Teles e Silva
(2021), e o uso de análise de sentimentos, conforme descrito por Zandavalle (2016), permite
uma compreensão mais profunda da percepção pública em relação à segurança e violência
na cidade. Ao analisar mensagens de grupos de WhatsApp, Telegram e notícias de mídia,

Capítulo 1. Introdução 15

é possível identificar rapidamente áreas de risco e fornecer informações críticas em tempo
hábil para as autoridades locais. A motivação central deste trabalho é utilizar essas
metodologias para criar um sistema ágil e eficiente que possa fornecer dados atualizados
sobre ocorrências de crimes, alimentando um banco de dados que permita a visualização
em tempo real e o mapeamento de incidentes.

A justificativa para o desenvolvimento deste projeto está no fato de que, apesar
dos avanços na utilização de tecnologias para a segurança pública, ainda há uma lacuna
significativa no uso de dados extraídos de plataformas digitais, especialmente para o
monitoramento de crimes em tempo real em cidades específicas como Belo Horizonte. A
proposta deste trabalho visa preencher essa lacuna, oferecendo uma solução que combine as
melhores práticas de coleta e análise de dados com o poder de técnicas de Machine Learning
para a classificação de informações relacionadas à criminalidade. Com isso, pretende-se não
apenas melhorar a eficácia do monitoramento de crimes, mas também fornecer ferramentas
que ajudem na tomada de decisões mais assertivas por parte das autoridades públicas,
promovendo um ambiente urbano mais seguro para a população. Estudos recentes, como
o de Chen e Liu (2023), demonstram a eficácia de técnicas de aprendizado de máquina
para prever hotspots de criminalidade, enquanto Ribeiro e Almeida (2023) destacam a
importância da análise de sentimentos em redes sociais para a detecção de eventos de
segurança pública. Essas abordagens reforçam a relevância e a viabilidade do presente
trabalho.

1.2 Definição do Problema
A crescente onda de violência e criminalidade nas grandes cidades brasileiras, como

Belo Horizonte, tem gerado uma pressão cada vez maior sobre as autoridades de segurança
pública para o desenvolvimento de soluções mais eficientes no monitoramento de atividades
criminosas e no planejamento de estratégias de prevenção. Tradicionalmente, os sistemas
de monitoramento de crimes dependem de informações provenientes de registros policiais,
câmeras de segurança e outros meios convencionais. Contudo, esses sistemas têm limitações,
como o tempo de resposta e a falta de dados em tempo real, que podem comprometer a
eficácia das ações de segurança (ALVES; RIBEIRO; RODRIGUES, 2020).

Nos últimos anos, o uso de plataformas digitais, como redes sociais e mensageiros
instantâneos, tem se mostrado uma fonte promissora de dados em tempo real sobre a
percepção pública e a ocorrência de crimes. No entanto, a coleta, o processamento e a análise
desses dados de forma eficiente ainda representam um grande desafio. As informações
compartilhadas nessas plataformas, como posts em redes sociais e mensagens em grupos
de WhatsApp e Telegram, podem fornecer detalhes sobre atividades criminosas ou regiões
de risco, mas são difíceis de serem interpretadas de maneira rápida e confiável sem o uso

Capítulo 1. Introdução 16

de tecnologias avançadas de análise de dados (FERREIRA; DUARTE; UGULINO, 2022).

A principal dificuldade reside na falta de ferramentas eficazes para realizar a
extração automatizada de dados, a identificação de conteúdos relevantes, a classificação
precisa de informações e a atualização em tempo real de bancos de dados de segurança.
Além disso, a necessidade de distinguir entre informações verdadeiras e falsas (fake news)
também representa um desafio significativo, pois o volume de dados disponíveis nessas
plataformas é massivo e muitas vezes contém conteúdo irrelevante ou impreciso (RIBEIRO;
ALMEIDA, 2023).

Portanto, o problema central deste trabalho é como integrar e analisar dados de
fontes digitais, como redes sociais, WhatsApp e Telegram, para fornecer informações
relevantes sobre crimes em tempo real em Belo Horizonte. A solução proposta busca
superar as limitações dos métodos tradicionais de monitoramento, utilizando técnicas
de web scraping, análise de sentimentos e Machine Learning para detectar e classificar
mensagens relacionadas a crimes. Isso permitirá que as autoridades de segurança pública
tenham acesso a dados mais precisos e rápidos, contribuindo para ações mais eficazes no
combate à criminalidade e na prevenção de novos incidentes (CHEN; LIU, 2023).

Estudos recentes, como o de Kumar e Singh (2022), demonstram que a aplicação
de técnicas de deep learning pode melhorar significativamente a precisão na detecção
de padrões criminais em grandes volumes de dados. Além disso, Lima e Costa (2023)
destacam a importância da integração de dados heterogêneos para o monitoramento de
segurança urbana, reforçando a relevância da abordagem proposta neste trabalho.

1.3 Objetivos Gerais e Específicos
O objetivo geral deste trabalho é desenvolver um sistema automático para monito-

ramento e mapeamento de crimes em Belo Horizonte, utilizando dados provenientes de
grupos de WhatsApp, com o objetivo de identificar, classificar e fornecer informações atuais
sobre ocorrências criminosas, contribuindo para a melhoria das estratégias de segurança
pública. Para alcançar o objetivo geral deste trabalho, os seguintes objetivos específicos
foram definidos:

1. Implementar um sistema de coleta de dados automatizada: utilizar técnicas de web
scraping para extrair informações de fontes digitais, como mensagens de grupos
WhatsApp; garantir que a coleta de dados seja contínua e em tempo real, permitindo
a atualização constante do banco de dados;

2. Desenvolver um mecanismo de filtragem de conteúdo: criar um serviço que utilize um
dicionário de palavras-chave relacionadas a crimes para filtrar mensagens relevantes;

Capítulo 1. Introdução 17

implementar uma solução eficiente para identificar automaticamente menções a tipos
de crimes, como furtos, roubos, homicídios e outros incidentes de segurança;

3. Aplicar técnicas de classificação de texto para distinguir entre mensagens verdadeiras
sobre crimes e mensagens irrelevantes ou falsas: utilizar o classificador originalmente
implementado para o trabalho de conclusão de curso Criação de um Aplicativo para
Mapeamento da Criminalidade da Cidade de Belo Horizonte por meio de Atividade
Crowdsourcing no Twitter Patrício (2023), adaptando-o para processar mensagens
coletadas do WhatsApp;

4. Adaptar o método de extração de localização utilizado no trabalho de conclusão de
curso de Guilherme Silva Patrício Patrício (2023), ajustando-o para processar as
mensagens coletadas do WhatsApp e associar a localização às ocorrências classificadas
como crimes;

5. Integrar os dados coletados e classificados com um sistema de mapeamento de
crimes: integrar a uma interface visual para o mapeamento de crimes em tempo
real, permitindo que as autoridades de segurança pública monitorem facilmente
as ocorrências e identifiquem áreas de risco; garantir que as informações estejam
disponíveis de forma intuitiva, com filtros por tipo de crime e localização;

6. Validar a precisão e eficácia do sistema: realizar testes e comparações entre os
dados coletados pelo sistema e as informações oficiais, avaliando a acurácia na
identificação de crimes e a relevância das informações fornecidas e ajustar o sistema
conforme necessário, garantindo a melhoria contínua da coleta de dados, filtragem e
classificação.

1.4 Resultados e Contribuições
Este trabalho resultou no desenvolvimento de uma aplicação servidora altamente

eficiente, projetada para coletar, classificar e armazenar mensagens de grupos do WhatsApp
de forma totalmente automatizada. A solução proposta fornece dados essenciais para um
sistema de monitoramento de crimes em Belo Horizonte, oferecendo uma alternativa
inovadora às abordagens anteriores que dependiam da extração manual ou de fontes de
dados menos dinâmicas. O sistema desenvolvido garante um fluxo contínuo de informações,
permitindo atualizações em tempo real e proporcionando uma visão mais precisa e oportuna
dos eventos relacionados à segurança pública.

Uma das principais contribuições deste projeto foi a reestruturação do framework,
o que o tornou mais modular, flexível e independente de intervenções manuais. Esse
aprimoramento permitiu a automação completa de todas as etapas do processo — desde a
coleta das mensagens até a classificação dos crimes e o armazenamento dos dados. Com

Capítulo 1. Introdução 18

essa autonomia, o sistema se tornou mais escalável, robusto e confiável, estabelecendo
uma base sólida para futuras expansões e integrações, sem a necessidade de ajustes ou
execuções manuais constantes.

Outro avanço significativo foi a adaptação do código de classificação, que se mostrou
altamente versátil ao se ajustar facilmente a diferentes contextos. Esse aprimoramento
permitiu que o processo de classificação, inicialmente projetado para dados de redes sociais
como o X (Twitter), fosse adaptado para os grupos de WhatsApp, que apresentam carac-
terísticas distintas, como um volume de dados menor e menos estruturado. A flexibilidade
do código foi fundamental para garantir a precisão e a relevância na classificação das
mensagens, demonstrando sua eficácia ao lidar com diferentes fontes de informação.

Além disso, a integração do banco de dados Firestore foi um ponto crucial para o
sucesso da solução. A utilização do Firestore permitiu não só o armazenamento eficiente
dos dados, mas também a recuperação rápida e contínua das informações em tempo real.
Essa integração garantiu que o aplicativo BHSafezone (PATRíCIO, 2023) tivesse acesso a
dados sempre atualizados, refletindo as ocorrências mais recentes e proporcionando uma
visão mais dinâmica e precisa da criminalidade na cidade.

Dessa forma, o presente trabalho contribui significativamente para a área de
monitoramento de crimes, propondo uma solução inovadora, automatizada e adaptável a
diferentes fontes de dados. O sistema desenvolvido oferece uma base sólida para futuras
pesquisas e aprimoramentos, ampliando o impacto positivo do uso de tecnologias na
segurança pública e no monitoramento de ocorrências criminosas.

1.5 Estrutura da Monografia
A monografia está estruturada de forma a apresentar de maneira clara e objetiva

o desenvolvimento e os resultados obtidos com o sistema de monitoramento de crimes
em Belo Horizonte, utilizando dados de grupos públicos de WhatsApp. A estrutura está
organizada da seguinte forma:

O próximo capítulo apresenta a Fundamentação Teórica, discutindo os principais
conceitos e estudos relacionados ao monitoramento de crimes, ao uso de redes sociais
para coleta de dados, ao Processamento de Linguagem Natural (PLN) e às técnicas de
aprendizado de máquina aplicadas à análise de texto. Essa revisão serve como base teórica
para a construção da metodologia e para contextualizar a relevância do tema. Em seguida,
a Metodologia é descrita detalhadamente, abordando os métodos de coleta de dados, o
pré-processamento das mensagens, a aplicação do filtro de palavras-chave e a classificação
das mensagens por meio de técnicas de aprendizado de máquina. Também são apresentadas
as ferramentas e tecnologias utilizadas, além das questões éticas e legais envolvidas no
uso dos dados. Na sequência, os Resultados e Contribuições são expostos, analisando a

Capítulo 1. Introdução 19

precisão do modelo de classificação, a integração com o sistema de mapeamento de crimes
e a validação dos dados. As contribuições do estudo para a segurança pública e para o
PLN são enfatizadas. Por fim, o capítulo de Conclusões e Trabalhos Futuros sintetiza os
principais resultados, destacando as limitações da pesquisa e sugerindo possíveis direções
para aprimoramentos, como melhorias no sistema de classificação, expansão para outras
plataformas de redes sociais e integração com sistemas de segurança pública em larga
escala.

20

2 Revisão da Literatura

Este capítulo apresenta uma revisão da literatura sobre o uso de redes sociais e
aplicativos de mensagens como fontes de dados para monitoramento de eventos do mundo
real. Além disso, discute sistemas e aplicações semelhantes, bem como trabalhos correlatos
que fundamentam este estudo.

2.1 Monitoramento e Previsão de Eventos do Mundo Real em
Mídias Sociais Online
O monitoramento de redes sociais tem se consolidado como uma ferramenta indis-

pensável para a detecção, análise e compreensão de eventos do mundo real, abrangendo
desde crises humanitárias até desastres naturais e ocorrências criminais Silva T.; Stabile
(2016). A popularização dessas plataformas e o grande volume de dados gerados diariamente
pelos usuários possibilitam a extração de informações valiosas em tempo real, permitindo
identificar padrões, tendências e até prever certos tipos de eventos Teles e Silva (2021).
Essa capacidade de análise em larga escala tem despertado o interesse de pesquisadores e
autoridades em diversas áreas, incluindo segurança pública, gestão de crises e políticas
urbanas. Estudos recentes indicam que, ao utilizar técnicas de mineração de dados e
processamento de linguagem natural, é possível transformar postagens e interações em
redes sociais em fontes de informação relevantes para a tomada de decisões em situações
emergenciais Wang e Taylor (2020). No contexto de desastres naturais, por exemplo,
sistemas baseados na coleta e análise de dados dessas plataformas já foram empregados
para monitorar o impacto de terremotos, enchentes e incêndios florestais, auxiliando no
direcionamento de recursos e na comunicação com a população afetada Chen, Liu e Zhang
(2021). Além disso, a análise automatizada de grandes volumes de postagens tem sido
utilizada para avaliar o sentimento público em relação a eventos críticos, permitindo uma
resposta mais ágil e eficiente por parte das autoridades e da sociedade civil.

Aplicativos de comunicação instantânea, como WhatsApp e Telegram, também
desempenham um papel significativo na disseminação de informações sobre eventos emer-
gentes, muitas vezes funcionando como fontes primárias de relatos em tempo real. Diferente-
mente das redes sociais abertas, essas plataformas possibilitam a comunicação direta entre
usuários por meio de mensagens privadas ou em grupos fechados, o que contribui para uma
rápida propagação de informações, especialmente em contextos de crise Ferreira, Duarte e
Ugulino (2022). No entanto, essa característica também apresenta desafios significativos
para a coleta, análise e verificação dos dados compartilhados, uma vez que o conteúdo

Capítulo 2. Revisão da Literatura 21

trafegado nesses aplicativos não é indexado publicamente e muitas mensagens podem ser
imprecisas, exageradas ou até falsas. A falta de transparência e a dificuldade de acesso a
essas informações tornam mais complexa a utilização desses dados para monitoramento e
tomada de decisão.

Pesquisas indicam que a combinação de múltiplas fontes de dados – incluindo redes
sociais abertas, notícias verificadas e informações extraídas de grupos privados – pode
aumentar a confiabilidade na detecção de eventos Zandavalle (2016). Essa abordagem
integrada permite mitigar os riscos associados à desinformação e melhorar a precisão das
análises. Além disso, técnicas como a análise de sentimentos e a detecção de padrões
linguísticos vêm sendo amplamente utilizadas para compreender a percepção pública sobre
questões de segurança e criminalidade, auxiliando na identificação de áreas com maior
incidência de ocorrências e na formulação de políticas públicas mais eficazes Ribeiro e
Almeida (2023). Dessa forma, o estudo e a implementação de sistemas capazes de coletar
e processar informações provenientes de aplicativos de mensagens instantâneas tornam-se
cada vez mais relevantes para o monitoramento de eventos críticos e para a segurança
pública.

2.2 Ferramentas Semelhantes
Diferentes aplicações já foram desenvolvidas com o objetivo de monitorar e mapear

ocorrências criminais, utilizando dados de redes sociais, sistemas colaborativos e registros
oficiais. Essas ferramentas desempenham um papel importante na segurança pública,
permitindo que a população tenha acesso a informações relevantes sobre crimes em suas
localidades. Entre os exemplos mais significativos, destacam-se:

O Radar do Roubo Oliveira e Lopes (2022) é uma plataforma colaborativa que
permite que vítimas de roubos e furtos registrem e compartilhem a localização dos crimes,
disponibilizando um mapa interativo em tempo real. De forma semelhante, o portal Onde
Fui Roubado Ondefuiroubado.com.br (2023) oferece um espaço onde usuários podem relatar
crimes e visualizar estatísticas de segurança, fornecendo uma visão detalhada sobre as áreas
mais afetadas. O CrimeSpotter Advertising (2023), por sua vez, permite a visualização
de crimes em diversas regiões e alerta os usuários sobre áreas potencialmente perigosas.
No entanto, essas soluções dependem majoritariamente das informações fornecidas pelos
usuários, o que pode resultar em dados incompletos ou imprecisos.

Além dessas iniciativas, algumas ferramentas utilizam registros criminais de órgãos
oficiais para mapear a criminalidade. O E-Roubo Celular SP AkumaEX (2020), por
exemplo, exibe um mapa com os locais de roubos de celulares na cidade de São Paulo,
com base nos boletins de ocorrência da Secretaria da Segurança Pública. No entanto, a
atualização mensal dos dados pode comprometer a identificação de padrões em tempo real.

Capítulo 2. Revisão da Literatura 22

De forma similar, o Crime Map LTD (2023) utiliza registros policiais para exibir um mapa
interativo da criminalidade, possibilitando o acompanhamento da quantidade e dos tipos
de crimes ocorridos em determinada região. Entretanto, a dependência de informações
oficiais pode impactar a frequência e a abrangência das atualizações.

Outras abordagens incluem o uso de redes sociais e participação colaborativa para o
monitoramento da criminalidade. O Fogo Cruzado Cruzado (2022) é um exemplo relevante
nesse contexto, pois coleta e analisa informações sobre tiroteios enviadas por usuários,
utilizando geolocalização para mapear os incidentes em tempo real. Já o Citizen Citizen
(2021) é amplamente utilizado nos Estados Unidos e fornece alertas instantâneos sobre
incidentes, extraindo informações de redes sociais e chamadas de emergência. Além disso,
permite que os próprios usuários reportem eventos, criando uma rede colaborativa de
monitoramento. O SpotCrime SpotCrime (2021), por sua vez, combina dados reportados
por usuários e agências de segurança pública para exibir um mapa interativo, oferecendo
alertas personalizados de acordo com a localização do usuário.

Esses aplicativos demonstram a viabilidade de soluções que combinam participação
social e análise automatizada para o monitoramento da criminalidade. No entanto, a
maioria depende de dados estruturados de fontes oficiais ou relatos diretos dos usuários, o
que pode limitar a precisão e a atualização em tempo real das informações. Nesse contexto,
este trabalho propõe uma abordagem alternativa, baseada na extração automatizada de
dados de redes sociais e aplicativos de mensagens, ampliando as possibilidades de análise e
fornecendo um monitoramento mais dinâmico e abrangente da criminalidade.

2.3 Trabalhos Relacionados
O monitoramento de redes sociais online tornou-se uma ferramenta indispensável

para identificar e analisar eventos do mundo real, tais como crises humanitárias, catástrofes
naturais e crimes (MREDULA et al., 2022). Isto atraiu a atenção de investigadores e
autoridades em áreas como segurança pública, política urbana e gestão de crises (Md
Suhaimin et al., 2023). Estudos recentes mostram que as publicações e interações nas
redes sociais podem ser transformadas em fontes valiosas de informação para a tomada
de decisões em situações de emergência (OGIE et al., 2022). Os aplicativos de mensa-
gens instantâneas, tais como WhatsApp e Telegram, também desempenham um papel
importante na divulgação de informações do mundo real e são frequentemente fontes
primárias de reportagens em tempo real. Ao contrário das redes sociais abertas, estas
aplicações permitem a comunicação direta através de mensagens privadas ou grupos, o
que coloca desafios para a recolha e análise de informações, uma vez que o conteúdo
não é indexado publicamente e muitas mensagens podem ser imprecisas ou mesmo falsas
(NOBRE; FERREIRA; ALMEIDA, 2022).

Capítulo 2. Revisão da Literatura 23

Pesquisas indicam que a integração de várias fontes de dados, incluindo redes
sociais abertas, notícias verificadas e informações de grupos privados, pode aumentar a
confiabilidade da identificação de eventos (MREDULA et al., 2022; VENÂNCIO et al.,
2024). Essa abordagem integrada mitiga os riscos associados à desinformação e melhora a
precisão da análise. Consequentemente, o estudo e a implementação de sistemas capazes de
coletar e processar informações de aplicativos de mensagens instantâneas estão se tornando
cada vez mais importantes para o monitoramento de eventos críticos e para a segurança
pública.

Vários trabalhos abordam métodos para extrair e analisar dados relacionados
à segurança pública. Aghababaei e Makrehchi (2018) propõe um modelo para prever
tendências criminais com base na mineração de dados de tweets publicados na região de
Chicago e dados adicionais sobre taxas de criminalidade. O modelo destina-se a apoiar
sistemas de apoio à decisão, que permitem pesquisas direcionadas para identificar as causas
da criminalidade e ajudar as autoridades policiais e os responsáveis pela aplicação da
lei. No entanto, eles utilizaram dados desatualizados. Vomfell, Hardle e Lessmann (2018)
propôs modelos preditivos que integram dados de redes sociais, locais públicos e corridas de
táxi em Nova Iorque, Estados Unidos. A análise, que combinou técnicas de aprendizagem
automática e econometria espacial, mostrou que o uso de múltiplas fontes de dados pode
melhorar significativamente a previsão da criminalidade, embora o curto período de análise
tenha sido uma limitação. Da mesma forma, Williams, Burnap e Sloan (2017) investigou
as possibilidades de usar Big Data para prever a criminalidade em Londres, Inglaterra,
usando dados online das redes sociais. Seguindo a Teoria das “janelas quebradas”, eles
descobriram que tweets indicando desordem social estavam correlacionados com o crime,
particularmente em áreas com baixo índice de criminalidade. O estudo mostrou uma
abordagem inovadora para analisar tweets, mas também apontou a necessidade de uma
melhor visualização dos dados. Além disso, Ristea, Andresen e Leitner (2018) investigou
a relação entre eventos desportivos, redes sociais e crime, particularmente em dias de
jogos de hóquei no gelo em Vancouver, Canadá. A pesquisa identificou um aumento
na criminalidade nos dias de jogos com uma análise espacial que revelou as áreas mais
afetadas. Essa abordagem forneceu informações valiosas sobre como certos eventos podem
influenciar a criminalidade em diferentes regiões. No entanto, Gerber (2014) investigou
o uso de tweets geolocalizados para prever a criminalidade em Chicago, Estados Unidos,
aplicando técnicas de análise linguística e modelagem estatística. O estudo mostrou que
a incorporação de informações da plataforma X pode melhorar a precisão das previsões
de criminalidade, destacando o potencial das redes sociais online como uma ferramenta
poderosa para a segurança pública. Não obstante, Ferreira, Duarte e Ugulino (2022) propõe
um modelo para a extração automática de estatísticas de segurança pública a partir de
fontes informais, como a plataforma X. Os autores propõem uma metodologia que se
baseia principalmente na descoberta de conhecimento com algoritmos de mineração de

Capítulo 2. Revisão da Literatura 24

texto e um pipeline automatizado. No entanto, a abordagem foca apenas na cidade do Rio
de Janeiro, Brasil. Por sua vez, Nascimento et al. (2025) explora o uso de técnicas de web
scraping para coletar dados de segurança pública de fontes não estruturadas (por exemplo,
sites e blogs que discutem questões de segurança pública) e propõe uma abordagem de
extração eficiente. Apesar de sua eficiência, o método é limitado à criação de um corpus
textual a partir de sites, exigindo ajustes constantes para permanecer funcional quando as
estruturas dos sites mudam. Por fim, Prathap e Ramesha (2018) destaca a importância da
análise de sentimentos para analisar as percepções sobre crimes nas redes sociais online
para compreender as tendências de segurança usando a localização geográfica. No entanto,
não aborda diretamente uma recolha de dados automatizada contínua.

Em contraste com as abordagens anteriores, que geralmente dependem de platafor-
mas abertas (como a plataforma X, fóruns ou sites públicos, etc...), o sistema desenvolvido
neste trabalho coleta mensagens automaticamente em tempo real, mesmo de ambientes sem
APIs públicas, como o WhatsApp. Isso representa um avanço significativo, pois permite o
monitoramento contínuo e descentralizado de denúncias de crimes, melhora a atualização
do banco de dados e reduz significativamente a necessidade de intervenção manual.

Este projeto propõe um sistema completo e automatizado para a coleta de dados
em tempo real, com foco principalmente em mensagens de grupos do WhatsApp, uma
fonte de dados ainda pouco explorada no meio acadêmico para esse fim. A aplicação do
lado do servidor foi desenvolvida usando NestJS, com dados armazenados em bases de
dados como MongoDB e Firestore. Isso permite flexibilidade, escalabilidade e sincronização
com sistemas externos, como uma aplicação de registo de crimes.

2.4 Considerações Finais
Este capítulo apresentou um panorama teórico sobre a importância do monito-

ramento de eventos em redes sociais e aplicativos de mensagens, bem como exemplos
de sistemas existentes e trabalhos acadêmicos que embasam esta pesquisa. A revisão
de literatura demonstra a relevância do tema e destaca a necessidade de desenvolver
ferramentas mais eficazes para coleta, filtragem e análise automatizada dessas informações.
Nos próximos capítulos, serão detalhadas a metodologia e as soluções propostas para
enfrentar esses desafios.

25

3 Metodologia e Desenvolvimento

O objetivo deste trabalho é o desenvolvimento de um sistema para monitoramento
de crimes em Belo Horizonte, utilizando dados provenientes de fontes como WhatsApp.
Inicialmente, a proposta envolvia a coleta de tweets geolocalizados de usuários da cidade
para mapear a ocorrência de crimes. Contudo, após mudanças na plataforma do X/Twitter,
não foi possível dar continuidade ao desenvolvimento de coletas na plataforma, sendo
assim necessitando uma nova fonte de coleta.

Diante desse cenário, o foco do projeto foi ampliado, incluindo fontes de dados
alternativas, como grupos de WhatsApp. Foi desenvolvido um sistema que automatiza a
coleta, processamento e classificação de dados relacionados a crimes, utilizando técnicas
de filtragem e Machine Learning para identificar e classificar ocorrências criminais. A
arquitetura do sistema foi reestruturada para garantir que ele operasse de forma autônoma,
sem a necessidade de intervenção manual para rodar os scripts.

Neste capítulo, são apresentadas as etapas de desenvolvimento do sistema, abran-
gendo o estudo das fases de implementação, a reestruturação do framework, a otimização do
código e a integração das fontes de dados. Além disso, é detalhado o fluxo das mensagens,
descrevendo cada etapa pelo qual uma mensagem passa dentro do sistema. Também são
abordados os processos de busca e identificação de grupos no WhatsApp, o processo da
coleta de dados em tempo real, filtro por palavras relacionadas e o processamento das
mensagens para a classificação de crimes. Por fim, discute-se a integração do sistema de
monitoramento com a base de dados e a visualização das informações em tempo real,
concluindo a descrição do desenvolvimento do sistema.

A metodologia adotada neste trabalho será estruturada para o desenvolvimento de
um sistema de monitoramento de crimes em Belo Horizonte, utilizando exclusivamente
dados extraídos de grupos públicos de WhatsApp. O processo será dividido em várias
etapas, que incluem desde o estudos de cada etapa até a validação do sistema, com foco
na identificação de mensagens relacionadas a crimes e sua classificação.

3.1 Tecnologias utilizadas
A seguir são descritas as ferramentas e tecnologias utilizadas no desenvolvimento

do aplicativo proposto por este trabalho e suas respectivas finalidades de uso:

1. Git1: utilizado para manter o registro das alterações feitas no código-fonte do
1 <https://git-scm.com/doc>.

https://git-scm.com/doc

Capítulo 3. Metodologia e Desenvolvimento 26

aplicativo.

2. GitHub2: utilizado para o controle de versões e hospedagem do código-fonte do
projeto;

3. MongoDB3: utilizado para armazenar as mensagens coletadas dos grupos e os demais
arquivos gerados a partir dos filtros, classificação e análises;

4. Linguagem Python4: utilizado para a classificação das mensagens coletadas e para a
busca da localização mencionada nos textos;

5. Node.js5: utilizado como ambiente de execução para o desenvolvimento do backend
do sistema;

6. NestJS6: utilizado como framework para a construção da API do sistema, permitindo
uma estrutura modular e escalável;

7. Cloud Firestore7: utilizado para armazenar os dados de criminalidade os quais
alimentam as informações exibidas no aplicativo.

Para a execução do serviço de coleta e processamento dos dados, foi utilizado um
notebook Dell Inspiron 14, com as seguintes especificações técnicas:

• Processador: Intel Core i5 de 5ª geração;

• Memória RAM: 8GB;

• Placa de Vídeo: NVIDIA GeForce 620 dedicada;

• Sistema Operacional: Zorin OS.

3.2 Estudo das Etapas
O estudo das etapas envolveu uma análise detalhada sobre como o sistema seria

desenvolvido de forma eficiente e autônoma. Inicialmente, foi conduzido um levantamento
aprofundado sobre possíveis fontes de dados que pudessem fornecer informações relevantes
em tempo real, com mínima ou nenhuma necessidade de intervenção manual. Entre as
alternativas exploradas, foram considerados grupos públicos no Telegram, sites de jornais
de notícias e a antiga API do Twitter. No entanto, todas essas opções apresentaram
2 <https://docs.github.com/pt>.
3 <https://www.mongodb.com/docs/>.
4 <https://www.python.org/doc/>.
5 <https://nodejs.org/en/docs/>.
6 <https://docs.nestjs.com/>.
7 <https://firebase.google.com/docs/firestore?hl=pt-br>.

https://docs.github.com/pt
https://www.mongodb.com/docs/
https://www.python.org/doc/
https://nodejs.org/en/docs/
https://docs.nestjs.com/
https://firebase.google.com/docs/firestore?hl=pt-br

Capítulo 3. Metodologia e Desenvolvimento 27

limitações técnicas, econômicas ou estruturais que inviabilizaram sua utilização no escopo
deste projeto.

A busca por grupos no Telegram, por exemplo, mostrou-se pouco frutífera. Apesar
da plataforma permitir acesso mais aberto aos dados por meio de bots e bibliotecas
específicas, a dificuldade esteve em localizar grupos que tivessem, de forma contínua e
consistente, o compartilhamento de informações relacionadas à criminalidade. A maioria
dos grupos encontrados estava inativa, ou possuía conteúdos não relacionados ao tema, o
que comprometeria a qualidade e a efetividade da coleta automatizada.

Também foi cogitada a coleta de dados diretamente em sites de jornais locais. No
entanto, essa abordagem apresentou diversos obstáculos técnicos. As páginas dos portais
de notícia geralmente não seguem um padrão único e estão em constante reformulação,
dificultando a construção de um scraper estável. Tecnologias como JavaScript dinâmico,
lazy loading, e alterações frequentes no layout dos sites tornaram o processo frágil e de
difícil manutenção. Além disso, o conteúdo relevante está muitas vezes fragmentado entre
diferentes páginas ou embutido em elementos difíceis de rastrear automaticamente, o que
exigiria grande esforço técnico e constante atualização do código de coleta.

A API do Twitter, que já foi uma fonte amplamente utilizada para coleta de dados
sociais, tornou-se inviável após a mudança de política da empresa, que passou a cobrar
valores elevados pelo acesso. Atualmente, o plano mais acessível (Basic) custa US$ 100
por mês, limitando severamente o número de requisições e dificultando a construção de
um sistema contínuo e confiável de coleta. Para uma aplicação com o objetivo de auxiliar
a população na prevenção de crimes e contribuir com a segurança pública, esse custo é
incompatível com a proposta de acessibilidade e utilidade social.

Diante dessas dificuldades, optou-se pelo uso do WhatsApp como principal fonte
de dados. Essa escolha foi motivada pelo fato de que, em diversos contextos brasileiros, o
WhatsApp é uma das ferramentas de comunicação mais utilizadas pela população, inclusive
para o compartilhamento de ocorrências em tempo real, como crimes, acidentes e situações
de risco. Estudos recentes, como o de Pires et al. (2023), apontam o WhatsApp como
um canal fundamental para o monitoramento de eventos do mundo real, sobretudo em
comunidades que utilizam grupos públicos para alertas e mobilização social.

Além disso, o uso de grupos do WhatsApp apresenta vantagens técnicas importantes:
os dados coletados são geralmente estruturados em mensagens de texto curtas e diretas,
muitas vezes acompanhadas de localização, imagens ou relatos imediatos de testemunhas.
Essa característica torna o processo de análise e classificação mais eficiente e com maior
potencial de utilidade para o sistema proposto.

Portanto, a escolha do WhatsApp não foi arbitrária, mas sim resultado de uma
análise comparativa entre diversas alternativas, levando em consideração aspectos técnicos,

Capítulo 3. Metodologia e Desenvolvimento 28

Figura 1 – Desenho do framework do sistema para monitoramento de crimes em Belo
Horizonte.

sociais e econômicos. A implementação do sistema de coleta sobre essa plataforma repre-
senta um avanço significativo em relação a outros trabalhos da área, que em sua maioria
ainda dependem de fontes abertas ou dados previamente disponíveis, não explorando o
potencial da coleta automatizada e contínua em ambientes fechados como o WhatsApp.

3.3 Reestruturação do Framework
A reestruturação do framework foi uma etapa essencial para garantir que o sistema

pudesse operar de maneira autônoma, eliminando a necessidade de intervenção manual
para a execução dos scripts. Inicialmente, o sistema possuía um fluxo de trabalho mais
rígido, exigindo a execução manual de certas etapas para coleta e processamento dos dados.
Com o estudo detalhado das etapas envolvidas, foi possível redesenhar sua arquitetura
para otimizar a integração das fontes de dados externas, permitindo que o processamento
e a classificação das informações ocorressem de forma contínua e automatizada.

A nova estrutura do framework foi projetada para refletir a interação entre os
diferentes módulos do sistema. Como ilustrado na Figura 1, o fluxo de dados inicia-se com
a coleta das mensagens em tempo real, seguida pelo processamento dessas informações,
que inclui a filtragem de palavras-chave relacionadas a crimes e a classificação automática
dos dados. Em seguida, as informações estruturadas são armazenadas no banco de dados
e integradas ao sistema de monitoramento, garantindo que os usuários tenham acesso a
dados atualizados e confiáveis.

A modularidade do novo framework também trouxe benefícios significativos para a
escalabilidade do sistema. Com essa abordagem, tornou-se possível adicionar novas fontes
de dados sem comprometer a estrutura existente, além de permitir ajustes e melhorias
em componentes específicos conforme necessário. Essa flexibilidade é fundamental para
garantir a evolução contínua do sistema, permitindo que ele se adapte a novas demandas e
tecnologias sem a necessidade de reestruturações drásticas.

Capítulo 3. Metodologia e Desenvolvimento 29

3.4 Busca e Identificação de Grupos no WhatsApp
A busca e identificação dos grupos no WhatsApp foi uma etapa essencial para a

coleta de dados relacionados a crimes em Belo Horizonte. O processo de busca foi realizado
em duas frentes principais: a primeira envolveu a pesquisa de grupos no Google, enquanto
a segunda consistiu em uma busca na plataforma X/Twitter.

Inicialmente, foi realizada uma busca no Google por grupos de notícias sobre
Belo Horizonte, com foco naqueles que pudessem fornecer informações relevantes sobre
ocorrências de crimes na cidade. A partir dessa pesquisa, foram identificados os grupos
BHAZap e Por Dentro de Minas, que se mostraram promissores devido ao seu conteúdo
relacionado a acontecimentos da cidade, incluindo notícias sobre segurança e criminalidade.
Para garantir a qualidade e a confiabilidade das informações, foi adotado o critério de
selecionar apenas grupos em que o administrador fosse o único responsável por enviar
mensagens, evitando a dispersão de informações irrelevantes.

A segunda parte da busca envolveu a utilização do X/Twitter, onde foram pesqui-
sados grupos de notícias sobre Belo Horizonte, com o intuito de encontrar comunidades
ativas na discussão de questões relacionadas à segurança pública. Nessa busca, foram
identificados os grupos DeFato, Agito Mais, JCO e JCA, que também apresentavam
discussões relevantes sobre os temas de interesse. Assim como na busca no Google, os
grupos selecionados seguiam o critério de permitir apenas o envio de mensagens pelo
administrador, o que contribuiu para a filtragem de conteúdos de alta qualidade.

Além disso, todos os grupos selecionados possuíam sites associados a suas atividades
e eram fontes confiáveis de notícias, garantindo que as informações extraídas para o
monitoramento de crimes fossem precisas e atualizadas. Esses sites estavam relacionados a
veículos de comunicação reconhecidos e respeitados, o que aumentou a credibilidade do
conteúdo dos grupos.

Após a identificação e validação dos grupos, iniciou-se a coleta de dados dessas
comunidades, com foco nas mensagens relacionadas a crimes, ocorrências policiais e outros
temas ligados à segurança pública. Essa estratégia de busca permitiu a inclusão de uma
variedade de fontes de dados, ampliando a abrangência do sistema de monitoramento e
aumentando a quantidade de informações disponíveis para o processamento e análise.

A busca e identificação de grupos foi, portanto, um passo fundamental para garantir
a diversidade e a relevância dos dados coletados, além de assegurar que o sistema fosse
alimentado com informações confiáveis e atualizadas sobre o contexto de criminalidade em
Belo Horizonte.

Capítulo 3. Metodologia e Desenvolvimento 30

3.5 Fluxo das Mensagens no Sistema
O fluxo das mensagens no sistema segue uma sequência estruturada de etapas, ga-

rantindo que os dados coletados sejam processados, analisados e armazenados corretamente.
A metodologia adotada permite a automação do processo, desde a captura das mensagens
até a disponibilização das informações no aplicativo para consulta pelos usuários. A Figura
2 ilustra esse processo de forma detalhada.

Figura 2 – Fluxo de processamento das mensagens no sistema.

Após a coleta e armazenamento da mensagem no banco de dados, ela passa por
mais quatro processos até atingir o objetivo final de visualização no aplicativo BHSafezone
(PATRíCIO, 2023). A seguir, cada etapa será detalhada:

1. Filtro por palavras relacionadas a crime: A primeira etapa consiste na filtragem
por palavras relacionadas a crimes. Para isso, é utilizado um dicionário de crimes
construído com dados da Secretaria de Estado de Justiça e Segurança Pública de
Minas Gerais. Conforme ilustrado na Figura 3, quando uma palavra relacionada a
crime é encontrada no texto, ela é armazenada no banco de dados, no campo crime,
e o processo segue para a próxima etapa. Caso nenhuma palavra seja identificada,
a propriedade is_crime no banco de dados é definida como 0 e a mensagem é
classificada com classified = 1.

Capítulo 3. Metodologia e Desenvolvimento 31

Figura 3 – Filtro por palavras relacionadas a crimes.

2. Classificador: A próxima etapa envolve o uso do classificador. Inicialmente, o
classificador é treinado utilizando uma base de dados manualmente criada, onde as
mensagens são classificadas como 0 (não é crime) ou 1 (é crime), com base em um
arquivo CSV. Após o treinamento, o classificador realiza a busca no banco de dados
por mensagens que ainda não foram classificadas, ou seja, aquelas com classified
= 0. O classificador então analisa as mensagens e, após determinar o resultado,
os dados são atualizados no banco de dados. Se necessário, o campo is_crime é
ajustado para 0 ou 1, conforme o resultado da classificação. O fluxo dessa etapa
pode ser visualizado na Figura 4.

Figura 4 – Classificador de crime.

3. Busca pela localização: A terceira etapa do processo consiste na busca pela locali-
zação do crime. Inicialmente, o sistema realiza a busca da localização diretamente

Capítulo 3. Metodologia e Desenvolvimento 32

no corpo da mensagem. Quando as informações são encontradas, elas são salvas no
banco de dados nos campos region e bairro, conforme ilustrado na Figura 5. Caso
a localização não seja encontrada no texto, o sistema verifica a presença de alguma
URL. Se uma URL for identificada, é realizada uma requisição e, em seguida, uma
busca na resposta da requisição para extrair a localização.

Figura 5 – Busca pela localização do crime.

4. Envio do resultado para o Firestore: A última etapa consiste no envio das
mensagens classificadas como crime para o banco de dados Firestore, desde que ainda
não tenham sido integradas. Nesse processo, os dados são organizados conforme
seus respectivos filtros, incluindo região, bairro, região por período, geral e geral por
período, como ilustrado na Figura 6. Após o envio, a mensagem é atualizada no
MongoDB, alterando o campo integrated para 1, indicando que foi corretamente
processada e integrada ao Firestore.

Capítulo 3. Metodologia e Desenvolvimento 33

Figura 6 – Envio do resultado para o Firestore.

3.6 Coleta de Dados
A coleta de mensagens do WhatsApp é realizada por meio da biblioteca whatsapp-web.js8,

que corresponde à ETAPA 2 do processo representado na Figura 1. Essa ferramenta
permite a extração automatizada de mensagens compartilhadas em grupos públicos. Cada
grupo possui um identificador único (ID), que varia de acordo com o usuário. A obtenção
das mensagens pode ser feita individualmente para cada grupo, garantindo que o sistema
consiga segmentar os dados de forma estruturada e eficiente.

Embora o serviço fornecido pela whatsapp-web.js ainda esteja em desenvolvi-
mento e apresente algumas limitações, ele atende perfeitamente ao propósito de capturar
mensagens de grupos do WhatsApp. O processo de obtenção das mensagens ocorre por
meio da função getChatById (linha 46 do código 6.1), que localiza o grupo específico a
partir do seu ID. Em seguida, a função fetchMessages (linha 48 do código 6.1) recupera as
mensagens mais recentes compartilhadas no grupo. Esse fluxo é essencial para garantir
que o sistema sempre colete dados atualizados sobre ocorrências mencionadas nos grupos
monitorados.

Cada grupo do WhatsApp possui um serviço de coleta específico — como ilustrado
no Código 6.2 —, sendo exemplos os grupos BHAZap, Por Dentro de Minas, DeFato, Agito
Mais, JCO e JCA, cada um com um identificador único. Para cada serviço, é realizada
a busca pelas últimas mensagens recebidas, garantindo que não haja duplicações com
base no conteúdo textual. Uma vez obtidas, as mensagens são armazenadas no banco
de dados MongoDB, juntamente com metadados relevantes para análises futuras. Esses
metadados incluem informações como a origem da mensagem (grupo de onde foi extraída) e
8 Repositório oficial da biblioteca whatsapp-web.js: <https://wwebjs.dev/>

https://wwebjs.dev/

Capítulo 3. Metodologia e Desenvolvimento 34

a propriedade classified, inicialmente definida como 0, conforme mostrado no Código 6.2.
Esse campo indica que a mensagem ainda não passou pelo processo de classificação, o qual
será realizado nas etapas posteriores do fluxo de processamento.

Os dados coletados e armazenados no banco MongoDB seguem a estrutura descrita
na Tabela 1.

Campo Descrição
_id Identificador único gerado pelo MongoDB
title Título da mensagem do grupo
description Descrição da mensagem do grupo
body Corpo da mensagem extraída do grupo
origin Grupo do WhatsApp de onde a mensagem foi coletada
classified Indica se a mensagem foi classificada (‘0‘ para não clas-

sificada, ‘1‘ para classificada)
is_crime Indica se a mensagem foi identificada como crime (‘0‘

para não, ‘1‘ para sim)
crime Palavra-chave relacionada ao crime identificado na men-

sagem
found_location Indica se a localização foi identificada (‘0‘ para não, ‘1‘

para sim)
region Região da localização do crime mencionado na mensagem
bairro Bairro associado à localização do crime
integrated Indica se a mensagem foi integrada ao Firestore (‘0‘ para

não, ‘1‘ para sim)

Tabela 1 – Estrutura dos dados armazenados no MongoDB.

Esse serviço é executado automaticamente todos os dias às 10 horas, garantindo
a coleta contínua das mensagens sem necessidade de intervenção manual. Cada grupo
monitorado é acionado por controladores específicos, que seguem uma lógica semelhante
para garantir a extração eficiente das informações. Como apresentado no código 6.3,
a coleta de mensagens é a ETAPA 02 do fluxo do sistema e desempenha um papel
fundamental na obtenção de dados relevantes para o monitoramento da criminalidade em
Belo Horizonte.

3.7 Filtragem de Palavras Relacionadas à Crimes
A filtragem de palavras-chave, correspondente à ETAPA 3 do processo represen-

tado na Figura 1, desempenha um papel essencial na triagem e organização das mensagens,
sendo um dos componentes fundamentais para o bom desempenho do sistema. Utilizando
um dicionário de palavras associadas a crimes, como “roubo”, “furto”, “homicídio”, entre
outras, o sistema é capaz de identificar atividades criminosas nas mensagens. Esse processo
assegura que apenas as mensagens que realmente contêm termos relacionados a crimes

Capítulo 3. Metodologia e Desenvolvimento 35

avancem para as etapas subsequentes de processamento e classificação, aumentando a
precisão do sistema.

A Tabela 2 apresenta o dicionário de crimes utilizado no sistema, que lista os
termos mais comuns associados a cada tipo de crime. Esses termos são fundamentais para
a busca de correspondências nas mensagens coletadas. Quando uma correspondência é
identificada, a mensagem é então associada ao crime correspondente.

Tabela 2 – Dicionário de crimes e termos comuns relacionados. Fonte: Patrício (2023).

Crime Termos Comuns
Roubo roubo, roubado, roubada
Furto furto, furtado, furtada, batedor de carteira, trombadi-

nha
Assalto assalto, assaltada, assaltado, arrastão
Feminicídio feminicídio
Estupro estupro, estuprado, estuprada, violentado, violentada,

violência sexual, abuso sexual, abusada, abusado, im-
portunação sexual

Extorsão extorsão, coagido, coagir
Lesão Corporal lesão corporal, briga, confronto, agressão, agredida,

agredido, confusão, violência doméstica
Sequestro sequestro, perseguição
Homicídio homicídio, assassinado, assassinada
Tráfico de Drogas tráfico de drogas, tráfico, drogas, maconha, entorpe-

cente, cocaína, LSD, ecstasy, heroína
Tentativa de Homicídio tentativa de homicídio, baleado, baleada
Depredação depredação, pichações, pichação, vandalismo, vandali-

zação
Incêndio incêndio, incendiar, incendiou, incendiaram

O sistema foi projetado para ser altamente eficiente, permitindo o processamento
de grandes volumes de dados sem prejudicar o desempenho. A flexibilidade do serviço
também garante que novas palavras ou expressões associadas a crimes possam ser facilmente
integradas ao sistema, mantendo-o sempre atualizado e adaptável. Além disso, a filtragem
dos dados organizou as informações, facilitando a interpretação das mensagens e a extração
de insights valiosos.

Em resumo, a filtragem de palavras-chave foi um passo crucial para o desen-
volvimento do sistema, assegurando que apenas as mensagens mais relevantes fossem
selecionadas para uma análise mais aprofundada.

Capítulo 3. Metodologia e Desenvolvimento 36

O código 6.4 implementa o serviço responsável pela filtragem.

3.8 Classificação de Crimes
Neste projeto, utilizou-se um modelo de classificação binária baseado em técnicas

de Machine Learning, com o objetivo de identificar automaticamente se uma mensagem
coletada de grupos do WhatsApp se refere ou não a um crime. O algoritmo escolhido foi o
Support Vector Machine (SVM), amplamente reconhecido por sua robustez em tarefas de
classificação e por sua capacidade de encontrar um hiperplano ótimo que separa os dados
em diferentes categorias com a maior margem possível. No contexto deste trabalho, as
categorias de interesse são: crime e não crime.

O modelo adotado é uma adaptação direta do classificador previamente desenvolvido
por Patrício (2023) em outro projeto, já em produção e com desempenho validado. Tal
reaproveitamento garante maior confiabilidade à aplicação e economia de tempo, uma vez
que os principais componentes do pipeline de classificação – como o CountVectorizer9, o
TfidfTransformer10 e o próprio classificador (clf) – já haviam sido treinados e salvos
utilizando a biblioteca joblib, possibilitando sua reutilização direta no novo fluxo da
aplicação principal. O código-fonte responsável pelo carregamento do treinamento encontra-
se no Apêndice deste trabalho, na Listagem 6.5.

O processo de treinamento do modelo seguiu uma abordagem supervisionada,
utilizando um conjunto de dados composto por mensagens reais coletadas de grupos do
X/Twitter, previamente rotuladas como crime = 1 ou não crime = 0. Para garantir a
qualidade do treinamento e a capacidade de generalização do modelo, a base foi dividida
em três subconjuntos: treinamento, validação e teste, como ilustrado na Figura 7.
9 <https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

CountVectorizer.html>.
10 <https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.

TfidfTransformer.html>.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html

Capítulo 3. Metodologia e Desenvolvimento 37

Figura 7 – Representação do processo de divisão do dataset em treino, teste e validação.
Fonte: Patrício (2023).

A divisão da base em subconjuntos segue práticas comuns no treinamento de
modelos de aprendizado supervisionado. O conjunto de treinamento é utilizado para
ajustar os parâmetros do modelo, enquanto o conjunto de validação permite monitorar
o desempenho durante o processo e realizar ajustes que evitem o fenômeno conhecido
como overfitting. Por fim, o conjunto de teste serve como avaliação final da capacidade de
generalização do modelo, ou seja, sua habilidade de classificar corretamente dados que ele
nunca viu anteriormente.

Durante o treinamento, foi necessário lidar com o problema de classes desbalancea-
das, uma vez que mensagens não relacionadas a crimes tendem a ser majoritárias. Para
mitigar esse viés, aplicaram-se técnicas simples de balanceamento, como a subamostragem
da classe majoritária e o uso de ponderação de classes no treinamento do SVM.

Além disso, os dados passaram por um rigoroso processo de pré-processamento,
com etapas como remoção de pontuações e acentuações, conversão para caixa baixa,
remoção de stopwords e lematização. Após essa limpeza, os textos foram transformados
em representações numéricas por meio do CountVectorizer, que gera uma matriz de
frequência de palavras, seguido pelo TfidfTransformer, que ajusta essa frequência com
base na importância das palavras em todo o corpus TF-IDF

Capítulo 3. Metodologia e Desenvolvimento 38

Para garantir a robustez do modelo, foram realizados experimentos com diferen-
tes sementes de aleatoriedade, validação cruzada e ajuste de hiperparâmetros com o
GridSearchCV. Após a escolha da configuração ideal, o modelo foi treinado com todo o
conjunto de dados e os seguintes artefatos foram salvos:

• modelo_classificador.pkl: arquivo contendo o classificador treinado (SVM);

• count_vectorizer.pkl: objeto responsável por transformar texto em vetores de
contagem;

• tfidf_transformer.pkl: transformador que aplica a técnica TF-IDF às contagens.

Esses arquivos foram carregados na aplicação principal para permitir a classificação
automática das mensagens em tempo real.

Após a avaliação do modelo e sua aprovação para uso em produção, foi realizada
sua integração com a base de dados MongoDB, mais especificamente com a coleção
denominada whatsapps, responsável por armazenar todas as mensagens coletadas de
grupos públicos. Cada nova mensagem inserida na base possui, por padrão, o campo
classified definido como 0, indicando que ainda não passou pelo processo de classificação.
O sistema responsável por essa etapa, correspondente à ETAPA 4 da Figura 1, implementa
um fluxo automatizado composto pelas seguintes fases:

1. O sistema consulta todas as mensagens da coleção whatsapps cujo campo classified
é igual a 0;

2. Cada mensagem é submetida ao pipeline de pré-processamento, vetorização e trans-
formação TF-IDF, de forma idêntica à realizada durante o treinamento;

3. O classificador SVM analisa a mensagem e determina se ela está relacionada a um
crime ou não;

4. O resultado da classificação é salvo na própria coleção, com as seguintes alterações:

• O campo classified é alterado para 1, marcando a mensagem como proces-
sada;

• O campo is_crime é definido como 1 para mensagens classificadas como crime,
e 0 caso contrário;

• Para mensagens consideradas crimes, o campo found_location é inserido e
recebe o valor 0, indicando que a extração de local ainda não foi realizada e
deverá ocorrer na próxima etapa do fluxo.

Capítulo 3. Metodologia e Desenvolvimento 39

Esse processo é executado periodicamente, de forma automatizada, garantindo que
a base de dados esteja sempre atualizada com as classificações mais recentes, permitindo a
continuidade das etapas seguintes, como a extração de localizações e a geração de alertas.

O funcionamento do classificador pode ser resumido da seguinte forma: ao detectar
uma nova mensagem com classified = 0, o sistema carrega os modelos salvos previ-
amente (vetorizador, transformador TF-IDF e o classificador SVM), aplica os mesmos
passos de pré-processamento utilizados durante o treinamento, e em seguida realiza a
predição.

Se a mensagem for considerada relacionada a crime, o sistema a marca como tal,
e já a prepara para o módulo de extração de localização. Todo o processo foi desenhado
para garantir consistência, escalabilidade e performance, sendo capaz de processar grandes
volumes de mensagens com baixa latência, e com acurácia compatível com os padrões
esperados.

O código-fonte responsável pelo carregamento do classificador e pela interação com
a base de dados encontra-se no Apêndice deste trabalho, na Listagem 6.6. Nessa listagem,
são apresentados todos os passos realizados pelo script, incluindo o carregamento dos
modelos, a busca de mensagens no banco, o processo de classificação e a atualização dos
documentos no MongoDB.

Esse processo representa um avanço significativo na automação da análise de
informações provenientes de redes sociais e grupos de mensagens, permitindo que a
aplicação detecte padrões de comportamento criminoso em tempo real, de forma autônoma
e confiável.

3.9 Processo de Busca da Localização
Depois da classificação da mensagem do WhatsApp como crime, é necessário

identificar o local (e.g., bairro ou região da cidade) onde o ocorrido aconteceu, conforme
representado na ETAPA 5 da Figura 1. Para isso, foi feito um filtro composto de 3 etapas:

• Identificar se existe algum local presente no texto da publicação;

• Identificar se existem links para outras páginas no texto da publicação. Caso positivo,
identificar se existem locais presentes na página do endereço direcionado pelo link;

• Identificar o bairro e a região dos locais encontrados.

A primeira etapa é necessária para confirmar se realmente há um local presente
no texto da mensagem e qual a identificação desse local. Ao indicar a localização do
crime na publicação, muitas vezes é utilizado o nome popular do local ou apenas o nome

Capítulo 3. Metodologia e Desenvolvimento 40

de uma rua, avenida, praça ou viaduto. Caso o filtro fosse construído apenas com base
nos nomes dos bairros, além de deixar algumas publicações de fora, haveria o risco de a
coleta não ser precisa. Para resolver esse problema, foi utilizada a biblioteca de software
para processamento avançado de linguagem natural, spaCy11. Entre as funcionalidades
do spaCy, está o Reconhecimento de Entidades Mencionadas (REM). O REM é uma
supertarefa da extração de informações e visa localizar e classificar elementos do texto
em categorias pré-definidas, como nomes de pessoas, organizações, lugares, datas e outras
classes Carvalho (2012). Dessa forma, o spaCy foi usado para identificar entidades de
localização presentes no texto das mensagens.

A segunda etapa tem como objetivo identificar links externos presentes no texto da
publicação. Isso é relevante, pois algumas publicações consistem apenas em uma manchete
para a notícia completa, que pode ser encontrada no link. Para identificar corretamente o
local da ocorrência do crime, foi necessário detectar as mensagens que continham links e
capturar o texto da notícia presente na página de destino. Essa coleta foi realizada por
meio de web scraping no site de notícias para o qual o link apontava. Após obter o texto
do WhatsApp, o REM foi utilizado novamente para identificar entidades de localização
presentes nas páginas de notícias acessadas.

Com os locais identificados, a terceira etapa consistiu em determinar a região e o
bairro dos locais encontrados. Por exemplo, ao identificar o local “Praça da Liberdade”
entre as entidades, não é possível determinar onde exatamente essa praça está localizada
na cidade. Para isso, foi utilizada a API Geocoder da Prefeitura de Belo Horizonte12. A
API Geocoder é um serviço de endereços no formato de Web Service REST que possibilita
consultas a endereços na base da prefeitura da cidade de BH, retornando um objeto JSON
que contém, entre outros atributos, as coordenadas geográficas do endereço pesquisado.
Essa API permite diferentes tipos de consultas, e a consulta utilizada neste trabalho foi por
endereço textual. Com isso, ao realizar as consultas na API através do texto das entidades
de localização identificadas, foi possível determinar o bairro e a região correspondentes.
Em seguida, essas localizações foram salvas no banco de dados junto com suas respectivas
publicações.

Devido ao alto volume de requisições, a API da prefeitura restringiu o número de
consultas disponíveis. Para resolver esse problema, foi criado um dicionário em Python
contendo o nome de todos os bairros da cidade, juntamente com sua respectiva região. Dessa
forma, todas as pesquisas em que apenas o nome do bairro era identificado foram feitas
nesse dicionário, enquanto as pesquisas com outros tipos de localização (ruas, avenidas,
praças, viadutos) foram realizadas através da API Geocoder. Os algoritmos contendo as 3
etapas do filtro de localização estão disponíveis no Apêndice, na Listagem 6.7.
11 <https://spacy.io/>.
12 <http://geocoder.pbh.gov.br/geocoder/>.

https://spacy.io/
http://geocoder.pbh.gov.br/geocoder/

Capítulo 3. Metodologia e Desenvolvimento 41

Após a aplicação do filtro, dos 687 textos classificados como crimes, 379 mensagens
apresentaram regiões desconhecidas. Desse total, 146 mensagens eram de fora da região
metropolitana de Belo Horizonte, e as 233 mensagens restantes não foram localizadas em
bairros ou regiões dentro de Belo Horizonte. A distribuição dos dados é a seguinte:

Das 687 mensagens classificadas como crimes:

a) 379 mensagens com região desconhecida: 146 mensagens fora da região metropolitana
de BH; 233 mensagens de BH, mas sem local identificado;

b) 308 mensagens com localização identificada em BH: 120 mensagens indicaram bairros
e regiões específicas de Belo Horizonte; 188 mensagens estavam dentro da região
metropolitana de BH, mas sem especificação de bairro ou região exata.

Esses dados serão utilizados para a visualização de crimes por região e para a
exibição do total de crimes no aplicativo deste trabalho.

3.10 Integração dos Dados
A integração com o Firestore no sistema desenvolvido tem como objetivo armazenar

e organizar os dados coletados das mensagens do WhatsApp, garantindo que a informação
seja estruturada de forma eficiente para consultas e análises futuras. Essa funcionalidade
corresponde à ETAPA 6 do processo representado na Figura 1. O serviço responsável pela
conexão, apresentado no código 6.9 do Apêndice, inicializa a conexão ao banco de dados
utilizando as credenciais fornecidas no arquivo de configuração e disponibiliza métodos
para inserção e atualização dos registros, garantindo que os dados sejam armazenados
corretamente.

Os crimes são registrados no Firestore de maneira hierárquica, sendo organizados
em coleções separadas por região e por um agrupamento geral. Essa estrutura possibilita
consultas específicas e globais sobre a criminalidade. Dentro de cada coleção de região ou da
coleção geral, os crimes são armazenados como documentos, onde cada um representa um
tipo específico de crime e contém a quantidade de ocorrências registradas. Para manter a
consistência dos dados e evitar duplicações, a solução adota uma abordagem de atualização
ou inserção condicional, verificando se um documento correspondente já existe. Caso exista,
a contagem da ocorrência é incrementada; se não, um novo documento é criado.

Além dessa categorização por crimes, os registros também são organizados por
período de tempo. Em cada região e na coleção geral, há um documento específico
denominado time_series, que contém uma subcoleção onde os dados são estruturados
por mês e ano. Cada documento dentro dessa subcoleção representa um período e armazena

Capítulo 3. Metodologia e Desenvolvimento 42

as quantidades de crimes ocorridos nele, permitindo acompanhar a evolução das ocorrências
ao longo do tempo.

No caso das regiões, há uma subdivisão adicional por bairros, garantindo uma
granularidade maior na análise dos dados. Dentro de cada região, existe um documento
denominado “bairros”, que lista os bairros registrados e, para cada um deles, há uma
subcoleção que segue a mesma estrutura utilizada no nível regional. Cada bairro tem seus
crimes armazenados como documentos individuais, com o nome do crime e a quantidade
correspondente.

O serviço responsável pela estruturação dos dados para inserção no Firestore,
apresentado no código 6.8 do Apêndice, é encarregado de organizar e categorizar as
mensagens coletadas antes de enviá-las ao banco de dados. Ele recupera todas as mensagens
do banco de dados local que ainda não foram processadas e as insere no Firestore de
maneira estruturada. Durante esse processo, as mensagens são analisadas e distribuídas
corretamente entre as coleções regionais, de bairros e séries temporais. Após a conclusão
da integração de cada registro, a base local é atualizada para indicar que a mensagem já
foi processada, evitando duplicações futuras.

Essa organização garante que as consultas possam ser realizadas em diferentes níveis,
possibilitando a obtenção de informações detalhadas ou amplas conforme a necessidade.
A estrutura hierárquica por regiões e bairros permite análises localizadas, enquanto a
categorização por tempo facilita o acompanhamento da evolução da criminalidade. Além
disso, a coleção geral proporciona uma visão consolidada dos registros, permitindo uma
análise mais abrangente dos dados coletados.

3.11 Considerações Finais
Será dada especial atenção às questões éticas e legais relacionadas à coleta de dados.

O sistema de coleta será configurado para respeitar as diretrizes da LGPD, garantindo a
privacidade dos usuários e o uso responsável das informações. Além disso, será garantido
que a coleta ocorra apenas em grupos públicos do WhatsApp, sem violar a privacidade
dos participantes ou acessar grupos privados sem o consentimento adequado.

O desenvolvimento do sistema de monitoramento de crimes em Belo Horizonte,
utilizando dados provenientes de grupos de WhatsApp, representou uma evolução signi-
ficativa em relação à ideia inicial, que se baseava na coleta de tweets geolocalizados. A
adaptação para uma nova fonte de dados, aliada ao uso de técnicas de Machine Learning e
automação, permitiu a construção de uma plataforma robusta e eficiente para a análise de
ocorrências criminosas na cidade.

A escolha do WhatsApp como principal fonte de dados se deu por sua ampla

Capítulo 3. Metodologia e Desenvolvimento 43

adoção entre os brasileiros e sua relevância como meio de comunicação local, especialmente
em comunidades onde as informações sobre ocorrências cotidianas são frequentemente
compartilhadas de forma rápida e direta por meio de grupos públicos. Essa característica
o torna uma ferramenta estratégica para a coleta de dados relacionados à criminalidade
em tempo real.

Durante o processo de desenvolvimento, foram realizadas diversas melhorias no
sistema, incluindo a reestruturação do framework, otimização do código e integração
contínua com o banco de dados. A utilização do NestJS e MongoDB, junto ao Firestore
para o armazenamento em tempo real, garantiu uma base sólida e escalável para o sistema.
A automação da coleta e classificação das mensagens foi outro ponto crucial, pois permitiu
a atualização constante da base de dados sem a necessidade de intervenção manual.

Embora o sistema tenha sido projetado para oferecer informações em tempo real
sobre a criminalidade, um dos desafios encontrados foi a variabilidade e a qualidade
das informações disponíveis nos grupos de WhatsApp. A filtragem e classificação das
mensagens, mesmo com o uso de técnicas avançadas de Machine Learning, dependem da
qualidade e da precisão das informações fornecidas pelos usuários.

Com a conclusão deste projeto, o sistema se apresenta como uma ferramenta
importante para o monitoramento de crimes, com o potencial de fornecer dados em tempo
real para a população e autoridades. No entanto, o aprimoramento contínuo do modelo de
aprendizado e a expansão para novas fontes de dados podem tornar a solução ainda mais
robusta e eficiente.

Em suma, este projeto contribui para o avanço das soluções tecnológicas no campo
da segurança pública, trazendo inovações no uso de dados para monitoramento e mapea-
mento de crimes, com um impacto potencial no aumento da segurança e na redução da
criminalidade em Belo Horizonte.

44

4 Resultados

Este capítulo apresenta os resultados alcançados com a implementação e execução
do sistema de monitoramento de crimes, conforme os passos descritos no Capítulo 3. O
objetivo do sistema foi fornecer uma ferramenta eficiente para coletar, processar e analisar
mensagens de grupos de WhatsApp relacionadas à segurança pública, contribuindo para o
monitoramento e a prevenção da criminalidade em Belo Horizonte.

A Seção 4.1 descreve a coleta e o armazenamento das mensagens, explicando o
processo automatizado de extração das mensagens de grupos relevantes e sua organização
inicial. A Seção 4.2 detalha as adaptações realizadas no código do classificador e do
módulo de localização, que aprimoraram a precisão na categorização dos crimes e na
identificação de regiões mencionadas nas mensagens. Em seguida, a Seção 4.3 discute a
integração automática com o Firestore, garantindo que os dados sejam armazenados de
maneira estruturada e continuamente atualizados. Finalmente, a Seção 4.4 apresenta a
utilização dos dados processados no aplicativo BHSafeZone (PATRíCIO, 2023), que oferece
aos usuários informações em tempo real sobre a criminalidade na cidade, promovendo
uma maior segurança pública e uma comunicação mais eficiente entre a população e as
autoridades.

Ao longo deste capítulo, serão detalhadas as etapas do processo e discutidos os
principais resultados alcançados, destacando a eficácia do sistema desenvolvido na coleta,
organização e visualização das informações de segurança pública.

4.1 Coleta e Armazenamento de Mensagens
A coleta de dados foi uma das etapas iniciais e fundamentais para o sucesso do

sistema de monitoramento de crimes. Para realizar essa coleta de forma automatizada, foi
utilizada a biblioteca whatsapp-web.js, que possibilita a interação com a versão web do
WhatsApp. Essa abordagem foi escolhida por sua flexibilidade e capacidade de operação
em tempo real, sem a necessidade de acessar a API oficial do WhatsApp, o que aumenta a
liberdade e a escalabilidade da solução.

A coleta foi realizada em grupos específicos de WhatsApp que discutem questões
relacionadas à segurança pública e eventos criminosos em Belo Horizonte. O sistema foi
configurado para extrair as mensagens desses grupos de maneira contínua e automatizada,
o que garantiu a atualização constante dos dados coletados. Durante o período de coleta,
foram obtidas um total de 4313 mensagens. Essas mensagens foram analisadas quanto à
sua relevância para o sistema, buscando identificar informações sobre ocorrências criminosas,

Capítulo 4. Resultados 45

denúncias de segurança, e outros dados pertinentes ao monitoramento de crimes na cidade.

O processo de coleta foi estruturado de forma a garantir a integridade dos dados.
Para isso, mecanismos foram implementados para evitar a duplicação de mensagens,
garantindo que cada ocorrência fosse registrada uma única vez. Além disso, o sistema
assegurou que todas as mensagens fossem armazenadas com informações associadas como
remetente, data e hora de envio, links compartilhados e anexos, quando presentes. Esses
dados adicionais são valiosos para a contextualização das mensagens e para futuras análises.

A flexibilidade da abordagem de coleta em tempo real foi um dos principais pontos
positivos dessa etapa. Com a coleta contínua, foi possível garantir que o sistema estivesse
sempre alimentado com dados atualizados, proporcionando informações relevantes e atuais
para a análise de criminalidade. Essa integração em tempo real também permitiu uma maior
agilidade no processamento e no armazenamento dos dados no banco de dados, assegurando
que o sistema estivesse sempre pronto para fornecer informações de monitoramento de
crimes de forma imediata.

Em resumo, a coleta de dados foi realizada de forma eficiente e contínua, garantindo
que um volume significativo de mensagens fosse extraído e processado. A abordagem
adotada foi flexível o suficiente para se adaptar à dinâmica dos grupos de WhatsApp,
assegurando que as informações sobre segurança pública e ocorrências criminosas fossem
sempre atualizadas, e formando a base de dados necessária para as etapas seguintes do
sistema.

4.2 Adaptação dos Códigos Classificador e Busca de Localização
A adaptação do classificador de crimes e do sistema de busca por localização foi

um passo essencial na transição do monitoramento de mensagens do Twitter para o
WhatsApp. Essa mudança possibilitou a coleta e análise de um volume significativo de
dados, totalizando 4313 mensagens coletadas, das quais 687 foram classificadas como
crimes.

Os resultados apresentados nesta seção referem-se ao modelo desenvolvido por
Patrício (2023), que foi salvo e reutilizado neste trabalho na classificação de crimes e
atualmente está em produção. O modelo foi adaptado e incorporado com sucesso ao novo
sistema, garantindo que a classificação das mensagens do WhatsApp ocorra de maneira
automatizada e contínua, sem necessidade de intervenção manual.

O desempenho do classificador foi avaliado por meio de métricas estatísticas,
apresentando um desvio-padrão de 0,0049. O intervalo de confiança foi calculado entre
0,9528 e 0,9665, garantindo uma margem de erro reduzida. A acurácia do modelo atingiu
96%, enquanto a métrica F1-score foi de 0,9649, evidenciando a eficiência na classificação

Capítulo 4. Resultados 46

das mensagens como crimes.

Além da adaptação do classificador, o sistema de busca por localização também
foi ajustado para processar as mensagens coletadas e identificar padrões geográficos. Das
687 mensagens classificadas como crimes, 379 apresentavam uma região desconhecida.
Dentro desse grupo, 146 estavam fora da região metropolitana de Belo Horizonte, enquanto
233 eram de Belo Horizonte, mas sem um local específico identificado. Em contrapartida,
308 mensagens tiveram uma localização determinada dentro de Belo Horizonte, sendo
que 120 apontaram bairros e regiões específicas, enquanto 188 estavam dentro da região
metropolitana, mas sem especificação detalhada.

Esses resultados demonstram a eficácia das adaptações realizadas tanto no classi-
ficador quanto no sistema de busca por localização, permitindo uma identificação mais
precisa dos crimes reportados e de suas respectivas localizações dentro do contexto do
WhatsApp.

4.3 Integração com o Firestore
A integração com o Firestore foi um avanço significativo para a automação do

sistema, permitindo a atualização automática das informações classificadas e garantindo
que os dados estejam sempre acessíveis em tempo real. Esse desenvolvimento foi crucial
para otimizar o fluxo de informações, eliminando a necessidade de inserção manual e
reduzindo o tempo de processamento das mensagens coletadas.

A estrutura do Firestore, previamente definida, foi fundamental para essa integração.
Como o banco de dados foi projetado de forma a utilizar as próprias tabelas como filtros, a
organização e recuperação dos dados tornaram-se mais eficientes. Dessa forma, cada nova
mensagem classificada como crime é automaticamente armazenada com suas respectivas
informações detalhadas, facilitando consultas e análises posteriores.

Essa automação fortaleceu a consistência e confiabilidade do sistema, permitindo
que a base de dados se mantenha constantemente atualizada e pronta para alimentar o
aplicativo de monitoramento de crimes em Belo Horizonte.

4.4 Visualização no BHSafezone
A integração do sistema com o aplicativo BHSafezone (PATRíCIO, 2023) foi

concluída com sucesso, permitindo que os usuários tenham acesso, em tempo real, às
ocorrências registradas na cidade. A sincronização entre os dados processados e a interface
do aplicativo foi viabilizada através da migração das informações do banco de dados
MongoDB para o Firestore. Esse processo garante que as informações mais recentes
estejam sempre disponíveis para consulta.

Capítulo 4. Resultados 47

(a) Tela princi-
pal.

(b) Região. (c) Bairros
lista.

(d)Bairro:
tabela.

(e)Denúncias
form.

(f)Denúncias
card.

Figura 8 – Interfaces do aplicativo. Fonte: Patrício (2023)

A adaptação do sistema para se integrar com o Firestore foi necessária para
garantir uma sincronização eficiente e automática dos dados entre a aplicação servidora
e o aplicativo BHSafezone (PATRíCIO, 2023). O Firestore foi utilizado devido à sua
compatibilidade com a estrutura do aplicativo e sua capacidade de fornecer atualizações
em tempo real. Assim, as mensagens classificadas como crimes, juntamente com suas
respectivas localizações e categorias, são armazenadas no Firestore após passarem por
todas as etapas de processamento e validação. Dessa forma, o aplicativo exibe apenas
dados estruturados e relevantes aos usuários.

O BHSafezone (PATRíCIO, 2023) disponibiliza as ocorrências por meio de um
mapa interativo, no qual cada crime identificado é exibido de acordo com sua localização
extraída das mensagens. Os usuários podem filtrar os registros por tipo de crime e período
de tempo, tornando a experiência de navegação mais personalizada e eficiente. Além disso,
a plataforma oferece estatísticas detalhadas sobre a criminalidade na região, auxiliando
tanto a população quanto as autoridades no monitoramento da segurança pública.

A Figura 8 apresenta algumas telas do aplicativo. A Tela Principal (Figura 8a)
oferece um panorama geral das funcionalidades do sistema, permitindo a visualização da
distribuição geográfica das ocorrências. A tela de Região (Figura 8b) permite visualizar os
números das ocorrências de acordo com o filtro desejado. A listagem de bairros (Figura
8c) possibilita que o usuário filtre as informações pelo bairro de interesse, enquanto a tela
de detalhes do bairro (Figura 8d) apresenta informações específicas sobre os crimes na
área selecionada. Já a tela de Denúncias (Figura 8e) permite o envio de novas ocorrências
pelos usuários, e a tela de Denúncias Detalhadas (Figura 8f) fornece um histórico das
submissões realizadas.

Essa etapa da integração garante que as informações coletadas sejam disponibiliza-
das de forma intuitiva e eficiente, consolidando o BHSafezone (PATRíCIO, 2023) como
uma ferramenta essencial para o monitoramento da criminalidade em Belo Horizonte.

Capítulo 4. Resultados 48

4.5 Considerações Finais
A principal contribuição deste trabalho foi a automação completa do processo de

coleta, classificação e armazenamento das mensagens, além da reestruturação do framework
para que todas as etapas fossem executadas de maneira eficiente e sem necessidade de
intervenção manual. Essas melhorias permitiram que o sistema fosse capaz de operar de
forma autônoma, garantindo uma coleta contínua de dados e uma atualização em tempo
real das informações sobre criminalidade em Belo Horizonte.

Um dos desafios enfrentados foi a adaptação da metodologia para lidar com a
natureza dos dados provenientes do WhatsApp. Diferente do X/Twitter, onde há uma
grande quantidade de contas oficiais, postagens frequentes e informações estruturadas, os
grupos de WhatsApp apresentam fluxos de mensagens menos regulares e um volume menor
de dados relevantes para a análise da criminalidade. Essa diferença exigiu a implementação
de estratégias mais robustas para garantir que as informações extraídas fossem pertinentes
e pudessem ser classificadas corretamente.

Além disso, a reestruturação do framework foi essencial para garantir que o sistema
fosse escalável e pudesse ser aprimorado no futuro sem a necessidade de grandes alterações
na base de código. A modularização das funções e a otimização do processamento permiti-
ram que novas funcionalidades fossem integradas com mais facilidade, além de garantir
maior estabilidade ao sistema como um todo.

A integração do Firestore como banco de dados principal também trouxe benefícios
significativos, permitindo que os dados fossem acessados em tempo real pelo aplicativo BH-
Safezone (PATRíCIO, 2023). Essa estrutura viabilizou a disponibilização das informações
de forma organizada e intuitiva, proporcionando aos usuários uma ferramenta eficiente
para monitoramento da criminalidade.

Por fim, os resultados alcançados demonstram que, apesar dos desafios inerentes
ao monitoramento de crimes por meio de mensagens no WhatsApp, a automação e a
reestruturação do sistema foram capazes de superar essas limitações e fornecer um fluxo
contínuo e confiável de informações. Com isso, o sistema desenvolvido representa uma
importante contribuição para a análise e o mapeamento da segurança pública, podendo
ser expandido e aprimorado para atender a novas demandas no futuro.

49

5 Conclusão e Trabalhos Futuros

Este trabalho apresentou o desenvolvimento de um sistema para coleta, processa-
mento e visualização de dados sobre criminalidade em Belo Horizonte, utilizando mensagens
de grupos de WhatsApp como fonte principal. A solução implementada foi estruturada
para garantir a extração eficiente das informações, sua classificação automatizada e a
disponibilização dos dados em tempo real no aplicativo BHSafezone (PATRíCIO, 2023).
Ao longo do desenvolvimento, diversas etapas foram analisadas e aprimoradas, desde a
reformulação do framework até a integração dos dados com o Firestore, garantindo maior
automação e acessibilidade às informações processadas.

O trabalho teve como objetivo geral o desenvolvimento de uma aplicação servidora
capaz de coletar e armazenar dados do WhatsApp como fonte principal para alimentar um
sistema de monitoramento da criminalidade em Belo Horizonte. Para atingir esse objetivo,
foram definidos objetivos específicos, os quais foram progressivamente alcançados ao longo
da implementação do projeto.

O primeiro objetivo foi a implementação de um sistema de coleta de mensagens
do WhatsApp. Esse processo foi realizado utilizando a biblioteca whatsapp-web.js, que
permitiu a captura das mensagens em grupos específicos, como BHAZap, Por Dentro de
Minas, DeFato, Agito Mais, JCO e JCA, de forma contínua e automatizada. O segundo
objetivo foi a adaptação dos códigos antigos, que eram focados no Twitter, para que
pudessem receber dados de uma estrutura diferente. O classificador foi treinado para
identificar padrões textuais relacionados a crimes, refinando suas previsões continuamente
a partir dos dados mais recentes. Esse classificador, desenvolvido e treinado no contexto
deste trabalho, foi implantado como um serviço funcional, sendo utilizado diretamente no
processamento das mensagens em produção. Dessa forma, não é mais necessário realizar o
treinamento sempre que o modelo for utilizado para classificar novas mensagens.

O terceiro objetivo consistiu na integração da aplicação servidora com o sistema de
mapeamento e monitoramento da criminalidade. Após o processamento das mensagens e
extração das informações relevantes, os dados estruturados foram armazenados no banco
de dados MongoDB e posteriormente enviados ao Firestore. Esse processo garantiu que
o aplicativo BHSafezone (PATRíCIO, 2023) pudesse consumir as informações em tempo
real, oferecendo aos usuários uma visualização detalhada das ocorrências registradas.

Além da adaptação do classificador, o sistema de busca por localização também foi
ajustado para processar as mensagens coletadas e identificar padrões geográficos. Dos 687
registros classificados como crimes, 379 apresentavam uma região desconhecida. Dentro
desse grupo, 146 mensagens estavam fora da região metropolitana de Belo Horizonte,

Capítulo 5. Conclusão e Trabalhos Futuros 50

enquanto 233 eram de Belo Horizonte, mas sem um local específico identificado. Em
contrapartida, 308 mensagens tiveram uma localização determinada dentro de Belo
Horizonte, sendo que 120 apontaram bairros e regiões específicas, enquanto 188 estavam
dentro da região metropolitana, mas sem especificação detalhada.

Com base nesses resultados, pode-se concluir que o sistema desenvolvido atingiu seus
objetivos, demonstrando viabilidade na aplicação de tecnologias de inteligência artificial
e processamento de linguagem natural para o monitoramento da criminalidade em Belo
Horizonte.

5.1 Contribuições
Este trabalho contribui significativamente para o campo da segurança pública e da

análise de dados em tempo real ao desenvolver uma solução inovadora para o monitoramento
da criminalidade em Belo Horizonte, utilizando mensagens de grupos de WhatsApp como
fonte de dados. A principal contribuição foi a criação de um sistema automatizado capaz
de coletar, processar e classificar mensagens de forma eficiente e autônoma, com o objetivo
de identificar ocorrências de crimes e gerar informações geográficas sobre essas ocorrências.

Além disso, a adaptação do classificador, treinado para identificar padrões textuais
relacionados a crimes, representou uma contribuição importante, pois garantiu a precisão
na identificação dos eventos, com uma taxa de acurácia de 96% e uma pontuação F1 de
0.9649. A implementação de um sistema de busca por localização, que permitiu identificar
as regiões associadas aos crimes, foi uma adição significativa, pois proporcionou uma
melhor organização e segmentação dos dados, facilitando a visualização de ocorrências
específicas no aplicativo BHSafezone (PATRíCIO, 2023).

A integração com o Firestore foi outro ponto relevante, permitindo que o sistema
oferecesse atualizações em tempo real, garantindo que as informações estivessem sempre
acessíveis para os usuários do aplicativo. Essa solução não só beneficiou a população,
oferecendo uma visualização detalhada das ocorrências, mas também contribuiu para a
eficiência no monitoramento da segurança pública em Belo Horizonte.

Vale destacar que, até o momento da realização deste trabalho, não foi identificado
nenhum outro aplicativo dedicado exclusivamente ao monitoramento da criminalidade na
cidade de Belo Horizonte com base em dados coletados de redes sociais ou mensageiros
instantâneos como o WhatsApp. Isso evidencia a contribuição da proposta e o seu potencial
de impacto positivo na gestão da segurança urbana local.

Em resumo, as contribuições deste trabalho estão relacionadas à implementação de
uma solução prática e eficaz para a coleta e análise de dados sobre criminalidade, utilizando
tecnologias avançadas como inteligência artificial, processamento de linguagem natural e

Capítulo 5. Conclusão e Trabalhos Futuros 51

bancos de dados em tempo real. Além disso, a pesquisa forneceu insights sobre a utilização
de fontes não convencionais de dados, como as mensagens de grupos de WhatsApp, para
auxiliar no monitoramento e na melhoria da segurança pública em áreas urbanas.

5.2 Limitações do Trabalho
Uma das principais limitações está relacionada à dependência da biblioteca whatsapp

-web.js para a coleta de mensagens. Como essa biblioteca simula a interface web do What-
sApp, eventuais mudanças na plataforma ou restrições impostas pelo WhatsApp podem
comprometer a continuidade da coleta de dados, exigindo manutenções frequentes ou a
busca por alternativas. A biblioteca utilizada, whatsapp-web.js, possui algumas limitações
quanto à captação de dados de grupos de WhatsApp que não possuem interação ativa e não
havendo uma forma de obter as mensagens de canais, onde havia mais disponibilidade de
noticias e jornais. Embora a solução tenha sido eficaz para a coleta contínua de dados em
grupos de WhatsApp específicos, há uma dependência da adesão dos grupos à plataforma
de coleta e à possibilidade de obter os dados a partir das interações dos usuários nesses
grupos. Expandir a coleta para uma maior variedade de grupos ou integrar outras fontes de
dados de grupos do WhatsApp poderia melhorar a amplitude da coleta, mas isso exigiria
ajustes na estratégia de integração da plataforma.

Apesar dos avanços alcançados, algumas limitações ainda estão presentes no sistema
desenvolvido. Uma das principais dificuldades está na obtenção de uma localização precisa
a partir das mensagens de WhatsApp, uma vez que nem todas as mensagens incluem
informações claras sobre o local do crime. Muitas vezes, as mensagens não especificam
o bairro ou a região de maneira direta, o que impacta diretamente na acuracidade dos
dados exibidos no mapa interativo do aplicativo BHSafezone (PATRíCIO, 2023). Essa
limitação foi particularmente evidente em relação a 379 registros classificados como crimes,
dos quais 233 estavam na cidade de Belo Horizonte, mas sem uma localização específica
identificada.

A classificação das mensagens também apresenta limitações, pois depende da
qualidade dos dados coletados. Mensagens irrelevantes ou com informações imprecisas
podem interferir na precisão do sistema. Embora o classificador tenha alcançado uma taxa
de acurácia de 96%, ainda existe a possibilidade de erros na classificação, especialmente
em mensagens ambíguas ou mal estruturadas. Além disso, o dicionário de palavras-chave
utilizado no filtro de crimes requer manutenção constante, pois a linguagem utilizada nas
mensagens pode mudar ao longo do tempo, o que implica a necessidade de atualização
periódica das palavras-chave para garantir a eficiência do filtro.

Finalmente, a integração com o Firestore, embora eficiente, ainda apresenta desafios
no que diz respeito à sincronização dos dados em tempo real. A otimização dessa integração

Capítulo 5. Conclusão e Trabalhos Futuros 52

é crucial para garantir que o sistema continue a fornecer dados atualizados com rapidez,
sem impactar o desempenho do aplicativo. Melhorias no gerenciamento de dados em
tempo real e na escalabilidade do sistema serão essenciais para que o aplicativo continue a
funcionar de forma eficiente à medida que mais dados sejam coletados.

5.3 Trabalhos Futuros
Com base nas limitações identificadas e nas oportunidades de aprimoramento,

diversos pontos podem ser explorados em trabalhos futuros para otimizar o desempenho e
a eficiência do sistema desenvolvido.

Uma das principais melhorias a serem consideradas é a implementação de um
serviço intermediário entre o aplicativo BHSafezone (PATRíCIO, 2023) e o banco de
dados. Atualmente, o aplicativo acessa diretamente os dados armazenados no Firestore,
o que, apesar de ser funcional, pode gerar desafios relacionados à segurança, controle de
acesso e escalabilidade. A criação de um serviço dedicado permitiria a implementação de
autenticação robusta, cache para otimizar as consultas e políticas de acesso mais refinadas.
Isso garantiria maior segurança no fornecimento das informações e facilitaria o controle
dos dados exibidos, permitindo também a inclusão de filtros mais detalhados e opções de
visualizações mais precisas.

Outra área promissora para o futuro é a expansão das fontes de dados utilizadas.
Atualmente, a coleta de informações é limitada a grupos do WhatsApp, o que pode
restringir a abrangência das ocorrências registradas. A integração com outras plataformas
de comunicação, como Telegram, além da incorporação de fontes de dados governamentais,
poderia oferecer uma visão mais abrangente e precisa da criminalidade. Isso permitiria ao
sistema coletar uma gama mais rica de dados e, consequentemente, aprimorar a análise
das ocorrências.

A extração de localização também pode ser aprimorada, utilizando técnicas mais
avançadas de PLN e geocodificação. O uso de algoritmos de aprendizado de máquina
pode ajudar na identificação automática de locais mencionados nas mensagens, mesmo
quando esses endereços estão mal especificados ou contêm ambiguidade. Essa abordagem
aumentaria a precisão das informações geográficas, permitindo uma visualização mais fiel
e detalhada das ocorrências no aplicativo.

Além disso, é recomendável desenvolver uma estratégia para a atualização automá-
tica do modelo de classificação de crimes à medida que o banco de dados é atualizado com
novas mensagens. Isso permitiria que o modelo se mantivesse constantemente treinado
com os dados mais recentes, aumentando sua capacidade de adaptação a novas formas de
linguagem, gírias ou padrões de relato presentes nas mensagens coletadas. Tal abordagem
tornaria o sistema mais preciso e resiliente ao longo do tempo, reduzindo a necessidade de

Capítulo 5. Conclusão e Trabalhos Futuros 53

reprocessamentos manuais e intervenções frequentes.

Por fim, a escalabilidade do sistema deve ser uma prioridade. A adoção de uma
arquitetura baseada em microsserviços e o uso de tecnologias como filas de mensagens
podem otimizar significativamente o processamento e o armazenamento dos dados. Esse tipo
de arquitetura facilita a distribuição de cargas de trabalho e torna o sistema mais eficiente
na coleta, processamento e disponibilização das informações. Além disso, a introdução de
uma infraestrutura mais escalável ajudaria a garantir a performance mesmo à medida que
o volume de dados aumentasse.

Essas melhorias permitirão que o sistema evolua para uma solução mais robusta,
confiável e eficiente para o monitoramento da criminalidade em Belo Horizonte.

54

Referências

ADVERTISING, I.-D. CrimeSpotter. 2023. <https://play.google.com/store/apps/details?
id=com.crimespotter>. Acesso em: 28-07-2023. Citado na página 21.

AGHABABAEI, S.; MAKREHCHI, M. Mining twitter data for crime trend prediction.
Intelligent Data Analysis, v. 22, n. 1, p. 117–141, 2018. Citado na página 23.

AKUMAEX. e-Roubo Celular SP. 2020. <https://play.google.com/store/apps/details?id=
com.akumaex.e_roubo_celular>. Acesso em: 28-07-2023. Citado na página 21.

ALVES, L. G. A.; RIBEIRO, H. V.; RODRIGUES, F. A. Crime prediction through urban
metrics and statistical learning. Physica A: Statistical Mechanics and its Applications,
Elsevier, v. 540, p. 123–138, 2020. Citado 3 vezes nas páginas 13, 14 e 15.

CARVALHO, W. S. Reconhecimento de entidades mencionadas em português utilizando
aprendizado de máquina. Tese (Doutorado) — Universidade de São Paulo, 2012. Citado
na página 40.

CHEN, X.; LIU, Y. Crime hotspot prediction using social media data and machine
learning: A case study in new york city. Computers, Environment and Urban Systems,
Elsevier, v. 99, p. 102–115, 2023. Citado 3 vezes nas páginas 13, 15 e 16.

CHEN, X.; LIU, Y.; ZHANG, Z. Covid-19 and social media: A systematic review of the
literature. Journal of Medical Internet Research, JMIR Publications, v. 23, n. 4, p. e24682,
2021. Citado na página 20.

CITIZEN. Citizen: Safety in real-time. 2021. Disponível em: <https://www.citizen.com/>.
Citado na página 22.

CRUZADO, F. Fogo Cruzado: Monitoramento de tiroteios. 2022. Disponível em:
<https://www.fogocruzado.org.br/>. Citado na página 22.

FERREIRA, F.; DUARTE, J.; UGULINO, W. Automated statistics extraction of public
security events reported through microtexts on social networks. In: Proc. of the XVIII
SBSI. New York, NY, USA: ACM, 2022. (SBSI ’22). Citado 5 vezes nas páginas 13, 14,
16, 20 e 23.

GERBER, M. S. Predicting crime using twitter and kernel density estimation. Decision
Support Systems, Elsevier, v. 61, p. 115–125, 2014. Citado na página 23.

KUMAR, S.; SINGH, S. K. Real-time crime detection using social media analytics: A
deep learning approach. Journal of Big Data, Springer, v. 9, n. 1, p. 1–20, 2022. Citado 2
vezes nas páginas 13 e 16.

LIMA, A.; COSTA, R. Integração de dados heterogêneos para monitoramento de
segurança urbana: Um estudo de caso em belo horizonte. In: Anais do XV Congresso
Brasileiro de Sistemas de Informação (CBSI). Juiz de Fora - MG: CBSI, 2023. Citado 2
vezes nas páginas 13 e 16.

https://play.google.com/store/apps/details?id=com.crimespotter
https://play.google.com/store/apps/details?id=com.crimespotter
https://play.google.com/store/apps/details?id=com.akumaex.e_roubo_celular
https://play.google.com/store/apps/details?id=com.akumaex.e_roubo_celular
https://www.citizen.com/
https://www.fogocruzado.org.br/

Referências 55

LTD, L. A. W. Crime Map. 2023. <https://play.google.com/store/apps/details?id=com.
londonappworks.cvu>. Acesso em: 28-07-2023. Citado na página 22.

Md Suhaimin, M. S. et al. Social media sentiment analysis and opinion mining in public
security: Taxonomy, trend analysis, issues and future directions. Journal of King Saud
University - Computer and Information Sciences, v. 35, n. 9, p. 101776, 2023. Citado na
página 22.

MREDULA, M. S. et al. A review on the trends in event detection by analyzing social
media platforms’ data. Sensors, n. 12, 2022. Citado 2 vezes nas páginas 22 e 23.

NASCIMENTO, M. et al. Extração de notícias sobre segurança pública para
desenvolvimento de corpora em português: uma análise preliminar em cidades do nordeste
brasileiro. In: Anais do VI WICS. Porto Alegre, RS, Brasil: SBC, 2025. Citado na página
24.

NOBRE, G. P.; FERREIRA, C. H.; ALMEIDA, J. M. A hierarchical network-oriented
analysis of user participation in misinformation spread on whatsapp. Information
Processing & Management, Elsevier, v. 59, n. 1, p. 102757, 2022. Citado na página 22.

OGIE, R. et al. Social media use in disaster recovery: A systematic literature review.
International Journal of Disaster Risk Reduction, v. 70, p. 102783, 2022. Citado na
página 22.

OLIVEIRA, I.; LOPES Átila. Um aplicativo móvel para o registro e mapeamento de
furtos e roubos em regiões metropolitanas. In: Anais da X Escola Regional de Computação
do Ceará, Maranhão e Piauí. Porto Alegre, RS, Brasil: SBC, 2022. p. 149–158. Citado na
página 21.

ONDEFUIROUBADO.COM.BR. Onde fui roubado. 2023. <https://www.ondefuiroubado.
com.br>. Acesso em: 28-07-2023. Citado na página 21.

PATRíCIO, G. S. Criação de um Aplicativo para Mapeamento da Criminalidade da
Cidade de Belo Horizonte por meio de Atividade Crowdsourcing no Twitter. 2023. Citado
16 vezes nas páginas 9, 17, 18, 30, 35, 36, 37, 44, 45, 46, 47, 48, 49, 50, 51 e 52.

PIRES, B. A. et al. A importância de grupos de whatsapp na detecção de eventos do
mundo real. In: Anais do Simpósio Brasileiro de Sistemas Colaborativos (SBSC). Porto
Alegre: SBC, 2023. Citado na página 27.

PRATHAP, B. R.; RAMESHA, K. Twitter sentiment for analysing different types of
crimes. In: 2018 Int. Conf. on Communication, Computing and Internet of Things
(IC3IoT). [S.l.: s.n.], 2018. Citado na página 24.

RIBEIRO, M.; ALMEIDA, V. Análise de sentimentos em redes sociais para detecção de
eventos de segurança pública. In: Anais do XXIV Simpósio Brasileiro de Computação
Aplicada à Segurança Pública (SBCASP). [S.l.]: SBC, 2023. Citado 4 vezes nas páginas
13, 15, 16 e 21.

RISTEA, A.; ANDRESEN, M. A.; LEITNER, M. Using tweets to understand changes in
the spatial crime distribution for hockey events in vancouver. The Canadian Geographer,
Wiley Online Library, v. 62, n. 3, p. 338–351, 2018. Citado na página 23.

https://play.google.com/store/apps/details?id=com.londonappworks.cvu
https://play.google.com/store/apps/details?id=com.londonappworks.cvu
https://www.ondefuiroubado.com.br
https://www.ondefuiroubado.com.br

Referências 56

SILVA T.; STABILE, M. Monitoramento e Pesquisa em Mídias Sociais. São Paulo, Brazil:
Uva Limão, 2016. Citado 3 vezes nas páginas 13, 14 e 20.

SPOTCRIME. SpotCrime: Crime mapping and alerts. 2021. Disponível em:
<https://www.spotcrime.com/>. Citado na página 22.

TELES, C. M.; SILVA, L. A. da. Análise de dados e segurança pública utilizando web
scraping e PLN. 2021. Citado 3 vezes nas páginas 13, 14 e 20.

VENÂNCIO, O. R. et al. Evidências de disseminação de conteúdo no telegram durante
o ataque aos órgãos públicos brasileiros em 2023. In: SBC. WebMedia. [S.l.], 2024. p.
385–389. Citado na página 23.

VOMFELL, L.; HARDLE, W. K.; LESSMANN, S. Improving crime count forecasts using
twitter and taxi data. Decision Support Systems, Elsevier, v. 113, p. 73–85, 2018. Citado
na página 23.

WANG, Y.; TAYLOR, J. E. Social media for emergency management: A systematic
review. Cities, Elsevier, v. 106, p. 102–115, 2020. Citado na página 20.

WILLIAMS, M. L.; BURNAP, P.; SLOAN, L. Crime sensing with big data: The
affordances and limitations of using open-source communications to estimate crime
patterns. The British Journal of Criminology, Oxford University Press, v. 57, n. 2, p.
320–340, 2017. Citado na página 23.

ZANDAVALLE, A. C. Monitoramento e Pesquisa em Mídias Sociais. [S.l.]: Editora
Comarte, 2016. Citado 3 vezes nas páginas 13, 14 e 21.

https://www.spotcrime.com/

57

6 Apêndice

Esta capítulo apresenta os principais trechos de código desenvolvidos ao longo
do projeto, que foram fundamentais para a coleta, processamento e classificação das
mensagens extraídas do WhatsApp. Os códigos incluídos abrangem desde o treinamento e
funcionamento do classificador até os serviços responsáveis pela extração de localização,
conexão com o banco de dados Firestore e envio dos dados processados. Abaixo, cada
componente é detalhado de forma individual, contribuindo para uma compreensão mais
completa da estrutura e funcionamento da aplicação.

Código 6.1 – Implementação da biblioteca whatsapp-web.js.
1 import { Injectable , OnModuleInit } from ’@nestjs / common ’;
2 import { Client , LocalAuth } from ’whatsapp -web.js’;
3 import * as qrcode from ’qrcode - terminal ’;
4 import * as fs from ’fs’;
5 import * as path from ’path ’;
6

7 @Injectable ()
8 export class WhatsappService implements OnModuleInit {
9 private client : Client ;

10

11 constructor () {
12 deleteFolders ();
13

14 this. client = new Client ({
15 authStrategy : new LocalAuth ({
16 clientId : ’bhsafezone - service ’,
17 }),
18 puppeteer : {
19 headless : true ,
20 },
21 });
22

23 this. client .on(’qr’, (qr) => {
24 qrcode . generate (qr , { small: true });
25 });
26

27 this. client .on(’ready ’, () => {
28 console .log(’WhatsApp client is ready!’);
29 });
30

31 this. client .on(’message ’, (message) => {
32 console .log(‘ Mensagem de ${ message .from }: ${ message .body }‘);
33 });

Capítulo 6. Apêndice 58

34

35 this. client .on(’error ’, (error) => {
36 console .error(’Erro no cliente :’, error);
37 });
38 }
39

40 onModuleInit () {
41 this. client . initialize ();
42 }
43

44 async fetchMessage (id: string): Promise <any > {
45 try {
46 const getChatById = await this. client . getChatById (id);
47

48 const messages = await getChatById . fetchMessages ({
49 limit: 1000 ,
50 fromMe : false ,
51 });
52

53 return messages ;
54 } catch (error) {
55 console .log ({ error });
56 return [];
57 }
58 }
59 }

Código 6.2 – Exemplo do serviço de coleta de mensagens.
1 import { Inject , Injectable } from ’@nestjs / common ’;
2 import { WhatsappService } from ’../../../../ system / whatsapp / whatsapp .

service ’;
3 import { WhatsAppRepository } from ’../../ repository / whatsapp . repository

’;
4

5 @Injectable ()
6 export class BhazapService {
7 constructor (
8 @Inject (WhatsappService)
9 private whatsappService : WhatsappService ,

10

11 @Inject (WhatsAppRepository)
12 private whatsAppRepository : WhatsAppRepository ,
13) {}
14

15 async execute (): Promise <void > {
16 const data = await this. whatsappService . fetchMessage (
17 ’120363372671317259 @g.us’,

Capítulo 6. Apêndice 59

18);
19

20 for (const item of data) {
21 if (item.body !== ’’) {
22 try {
23 await this. whatsAppRepository . create ({
24 ... item ,
25 origin : ’bhazap ’,
26 classified : 0,
27 });
28 } catch (error) {
29 console .log ({ error });
30 }
31 }
32 }
33 }
34 }

Código 6.3 – Exemplo de uso do cron job no NestJS.
1 import { Cron } from ’@nestjs / schedule ’;
2 import { CronEnum } from ’../../../../ common /enums/cron.enum ’;
3 import { BhazapService } from ’./ bhazap . service ’;
4

5 export class BhazapController {
6 constructor (private readonly bhazapService : BhazapService) {}
7

8 @Cron(CronEnum . EVERY_DAY_AT_10AM)
9 async sendMessage (): Promise <void > {

10 await this. bhazapService . execute ();
11 }
12 }

Código 6.4 – Filtro por palavras-chaves.
1 import { Injectable } from ’@nestjs / common ’;
2

3 @Injectable ()
4 export class FilterService {
5 private crimeDictionary : Record <string , string > = {
6 roubo: ’Roubo ’,
7 roubado : ’Roubo ’,
8 roubada : ’Roubo ’,
9 furto: ’Furto ’,

10 furtado : ’Furto ’,
11 furtada : ’Furto ’,
12 ’batedor de carteira ’: ’Furto ’,
13 trombadinha : ’Furto ’,

Capítulo 6. Apêndice 60

14 assalto : ’Assalto ’,
15 assaltada : ’Assalto ’,
16 assaltado : ’Assalto ’,
17 a r r a s t o : ’Assalto ’,
18 f e m i n i c d i o : ’ F e m i n i c d i o ’,
19 estupro : ’Estupro ’,
20 estuprado : ’Estupro ’,
21 estuprada : ’Estupro ’,
22 violentado : ’Estupro ’,
23 violentada : ’Estupro ’,
24 ’ v i o l n c i a sexual ’: ’Estupro ’,
25 ’abuso sexual ’: ’Estupro ’,
26 abusada : ’Estupro ’,
27 abusado : ’Estupro ’,
28 ’ i m p o r t u n a o sexual ’: ’Estupro ’,
29 e x t o r s o : ’ E x t o r s o ’,
30 coagido : ’ E x t o r s o ’,
31 coagir : ’ E x t o r s o ’,
32 ’ l e s o corporal ’: ’ L e s o Corporal ’,
33 briga: ’ L e s o Corporal ’,
34 confronto : ’ L e s o Corporal ’,
35 a g r e s s o : ’ L e s o Corporal ’,
36 agredida : ’ L e s o Corporal ’,
37 agredido : ’ L e s o Corporal ’,
38 c o n f u s o : ’ L e s o Corporal ’,
39 ’ v i o l n c i a d o m s t i c a ’: ’ L e s o Corporal ’,
40 sequestro : ’Sequestro ’,
41 p e r s e g u i o : ’Sequestro ’,
42 h o m i c d i o : ’ H o m i c d i o ’,
43 assassinado : ’ H o m i c d i o ’,
44 assassinada : ’ H o m i c d i o ’,
45 ’ t r f i c o de drogas ’: ’ T r f i c o de Drogas ’,
46 t r f i c o : ’ T r f i c o de Drogas ’,
47 drogas : ’ T r f i c o de Drogas ’,
48 maconha : ’ T r f i c o de Drogas ’,
49 entorpecente : ’ T r f i c o de Drogas ’,
50 c o c a n a : ’ T r f i c o de Drogas ’,
51 lsd: ’ T r f i c o de Drogas ’,
52 ecstasy : ’ T r f i c o de Drogas ’,
53 h e r o n a : ’ T r f i c o de Drogas ’,
54 ’tentativa de h o m i c d i o ’: ’Tentativa de H o m i c d i o ’,
55 baleado : ’Tentativa de H o m i c d i o ’,
56 baleada : ’Tentativa de H o m i c d i o ’,
57 d e p r e d a o : ’ D e p r e d a o ’,
58 p i c h a e s : ’ D e p r e d a o ’,
59 p i c h a o : ’ D e p r e d a o ’,
60 vandalismo : ’ D e p r e d a o ’,

Capítulo 6. Apêndice 61

61 v a n d a l i z a o : ’ D e p r e d a o ’,
62 i n c n d i o : ’ I n c n d i o ’,
63 incendiar : ’ I n c n d i o ’,
64 incendiou : ’ I n c n d i o ’,
65 incendiaram : ’ I n c n d i o ’,
66 };
67

68 containsCrime (text: string): string | undefined {
69 const lowerText = text. toLowerCase ();
70 for (const [term , crime] of Object . entries (this. crimeDictionary)) {
71 if (lowerText . includes (term)) {
72 return crime;
73 }
74 }
75 return undefined ;
76 }
77 }

Código 6.5 – Código do Treinamento do Classificador.
1 import pandas as pd
2 import numpy as np
3 import random
4 import math
5 import re
6 import unicodedata
7 import nltk
8 import joblib
9 from nltk. corpus import stopwords

10 from sklearn . feature_extraction .text import CountVectorizer ,
TfidfTransformer

11 from sklearn . model_selection import train_test_split , GridSearchCV
12 from sklearn . naive_bayes import MultinomialNB
13 from sklearn . metrics import f1_score
14

15

16 nltk. download (’stopwords ’)
17

18 # Stopwords personalizadas
19 stop_words = set(stopwords .words(’portuguese ’))
20 stop_words . update ([’https ’, ’co’, ’leia ’])
21

22 # P r - processamento
23 def remove_accents (text):
24 return ’’.join(c for c in unicodedata . normalize (’NFKD ’, text) if not

unicodedata . combining (c))
25

26 def clean_text (text):

Capítulo 6. Apêndice 62

27 text = re.sub(r’https ?://\S+| www \.\S+’, ’ ’, text)
28 text = re.sub(r’[,.:;!?/ < >() [\]{}|\\+\ -=%&# @\"\ ’*] ’, ’ ’, text)
29 text = re.sub(r’\d+’, ’’, text)
30 text = remove_accents (text)
31 text = text.lower ()
32 words = [w for w in text.split () if w not in stop_words]
33 return ’ ’.join(words)
34

35 # Carrega os dados
36 df = pd. read_csv (’src/ modules / classifier / services / tweetsNoticiaCrime .csv

’)
37

38 # Copia texto e limpa
39 df[’novo_texto ’] = df[’Tweet ’]. astype (str).apply(clean_text)
40

41 nao_crime = df[df[’Classe ’] == 0]
42

43 amostras = nao_crime . sample (n=279 , random_state =42, replace = True)
44

45 df = df[df[’Classe ’] != 0]
46

47 df = pd. concat ([df , amostras])
48

49 # Remove p o n t u a o
50

51 df[’novo_texto ’] = df[’novo_texto ’]. str. replace (’[,.:;!?]+ ’, ’ ’, regex=
True).copy ()

52

53 # Remove caracteres especiais
54 df[’novo_texto ’] = df[’novo_texto ’]. str. replace (’[/<>() |\+\ -\$%&#@

\’\"]+’, ’ ’, regex=True).copy ()
55

56 # remove Numeros
57 df[’novo_texto ’] = df[’novo_texto ’]. str. replace (’[0 -9]+ ’, ’’, regex=True

)
58

59 # StopWords
60 stop_words = [’em’,’sao ’,’ao’,’de’,’da’,’do’,’para ’,’c’,’kg’,’un’,’ml’,
61 ’pct ’,’und ’,’das ’,’no’,’ou’,’pc’,’gr’,’pt’,’cm’,’vd’,’com ’

,
62 ’sem ’,’gfa ’,’jg’,’la’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,
63 ’0’,’a’,’b’,’c’,’d’,’e’,’lt’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,
64 ’m’,’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’x’,’w’,’y’,’z’,
65 ’ate ’, ’eramos ’, ’estao ’, ’estavamos ’, ’estiveramos ’,
66 ’estivessemos ’, ’foramos ’, ’fossemos ’, ’ha’, ’hao ’,
67 ’houveramos ’, ’houverao ’, ’houveriamos ’, ’houvessemos ’,
68 ’ja’, ’nao ’, ’sera ’, ’serao ’, ’seriamos ’, ’so’, ’tambem ’,

Capítulo 6. Apêndice 63

69 ’tera ’, ’terao ’, ’teriamos ’, ’tinhamos ’, ’tiveramos ’,
70 ’tivessemos ’, ’voce ’, ’voces ’,"https","co","leia"]
71

72 for word in stopwords .words(’portuguese ’):
73 stop_words . append (word)
74

75 # Balanceamento simples
76 nao_crime = df[df[’Classe ’] == 0]. sample (n=279 , random_state =42, replace

=True)
77 df = pd. concat ([df[df[’Classe ’] != 0], nao_crime])
78

79 # C r i a o da f u n o CountVectorizer
80 cvt = CountVectorizer (strip_accents =’ascii ’, lowercase =True , stop_words =

stop_words)
81 X_cvt = cvt. fit_transform (df[’novo_texto ’])
82 tfi = TfidfTransformer ()
83 X_tfi = tfi. fit_transform (X_cvt)
84 entrada = X_tfi. toarray ()
85 saida = df[’Classe ’]
86

87 # Testes com m l t i p l o s random_state
88 random_list = []
89 melhores_param = []
90 melhores_scores = []
91

92 for _ in range (5):
93 seed = random . randint (0, 100)
94 random_list . append (seed)
95

96 X_train , _, y_train , _ = train_test_split (entrada , saida , test_size
=0.2 , random_state =seed)

97

98 clf = MultinomialNB ()
99 param_grid = {

100 ’alpha ’: [0.1 , 0.01 , 0.001] ,
101 ’fit_prior ’: [True , False],
102 ’class_prior ’: [(0.5 , 0.5) , (0.2 , 0.8)]
103 }
104

105 grid = GridSearchCV (clf , param_grid , cv=10, scoring =’f1’, verbose =0)
106 grid.fit(X_train , y_train)
107

108 melhores_param . append (grid. best_params_)
109 melhores_scores . append (grid. best_score_)
110

111 print(f"Seed: {seed} | Best Params : {grid. best_params_ } | F1 Score:
{grid. best_score_ :.4f}")

Capítulo 6. Apêndice 64

112

113 # Resultados finais
114 media = np.mean(melhores_scores)
115 std = np.std(melhores_scores)
116 conf_int = 2.131 * std / math.sqrt(len(melhores_scores))
117

118 print("\ nResumo Final:")
119 print("Seeds testadas :", random_list)
120 print(" Melhores p a r m e t r o s :", melhores_param)
121 print(f" M d i a F1: {media :.4f}")
122 print(f" Intervalo de c o n f i a n a (95%): [{ media - conf_int :.4f}, {media +

conf_int :.4f}]")
123

124 # A p s o melhor treinamento
125 melhor_index = np. argmax (melhores_scores)
126 melhor_seed = random_list [melhor_index]
127

128 # Refaz o melhor modelo com a melhor seed
129 X_train , _, y_train , _ = train_test_split (entrada , saida , test_size =0.2 ,

random_state = melhor_seed)
130

131 clf_final = MultinomialNB (** melhores_param [melhor_index])
132 clf_final .fit(X_train , y_train)
133

134 # Salva os modelos
135 joblib .dump(clf_final , ’src/ modules / classifier / services /

modelo_classificador .pkl ’)
136 joblib .dump(cvt , ’src/ modules / classifier / services / count_vectorizer .pkl ’)
137 joblib .dump(tfi , ’src/ modules / classifier / services / tfidf_transformer .pkl ’

)
138

139 print(" Modelos salvos com sucesso .")

Código 6.6 – Código do classificador.
1 import joblib
2 import re
3 import unicodedata
4 from nltk. corpus import stopwords
5 import pymongo
6

7 # Carregar o classificador , CountVectorizer e TfidfTransformer
8 clf = joblib .load(’src/ modules / classifier / services / modelo_classificador .

pkl ’)
9 cvt = joblib .load(’src/ modules / classifier / services / count_vectorizer .pkl ’

)
10 tfi = joblib .load(’src/ modules / classifier / services / tfidf_transformer .pkl

’)

Capítulo 6. Apêndice 65

11

12 # Stopwords
13 stop_words = set(stopwords .words(’portuguese ’))
14 stop_words . update ([
15 ’em’,’sao ’,’ao’,’de’,’da’,’do’,’para ’,’c’,’kg’,’un’,’ml’,’pct ’,’und ’

,’das ’,
16 ’no’,’ou’,’pc’,’gr’,’pt’,’cm’,’vd’,’com ’,’sem ’,’gfa ’,’jg’,’la’,’1’,’

2’,’3’,
17 ’4’,’5’,’6’,’7’,’8’,’9’,’0’,’a’,’b’,’c’,’d’,’e’,’lt’,’f’,’g’,’h’,’i’

,’j’,’k’,
18 ’l’,’m’,’n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’x’,’w’,’y’,’z’,’ate ’, ’

eramos ’,
19 ’estao ’, ’estavamos ’, ’estiveramos ’,’estivessemos ’, ’foramos ’, ’

fossemos ’,
20 ’ha’, ’hao ’,’houveramos ’, ’houverao ’, ’houveriamos ’, ’houvessemos ’,’

ja’,
21 ’nao ’, ’sera ’, ’serao ’, ’seriamos ’, ’so’, ’tambem ’,’tera ’, ’terao ’,
22 ’teriamos ’, ’tinhamos ’, ’tiveramos ’,’tivessemos ’, ’voce ’, ’voces ’,
23 "https","co","leia"
24])
25

26 def remove_accents (text):
27 text = unicodedata . normalize (’NFKD ’, text)
28 text = ’’.join ([c for c in text if not unicodedata . combining (c)])
29 return text
30

31 def format_text (text):
32 text = re.sub(r’https ?://\S+| www \.\S+’, ’ ’, text)
33 text = re.sub(r’[,.:;!?]+ ’, ’ ’, text)
34 text = re.sub(r’[/<>() |\+\ -\$%&#*@\’\"]+’, ’ ’, text)
35 text = re.sub(r ’[0-9]+’, ’’, text)
36 text = remove_accents (text)
37 text = re.sub(r ’\s+’, ’ ’, text).strip ().lower ()
38

39 return text
40

41 def classifica_crime (text , clf , cvt , tfi):
42 print(’text1:’, text)
43 text = format_text (text)
44 print(’text2:’, text)
45

46 X_cvt = cvt. transform ([text])
47 X_tfi = tfi. transform (X_cvt)
48

49 print(’X_tfi:’, X_tfi. toarray ())
50 classe = clf. predict (X_tfi)[0]
51 print(’ classe :’, classe)

Capítulo 6. Apêndice 66

52 return classe
53

54 def salva_e_classifica (data , mongo_db , mongo_db_coll , clf , cvt , tfi , **
mongo_conn_kw):

55 client = pymongo . MongoClient (** mongo_conn_kw)
56 db = client [mongo_db]
57 coll = db[mongo_db_coll]
58

59 for item in data:
60 if any(item.get(key) for key in [’body ’, ’title ’, ’description

’]):
61 texto = f"{item.get(’title ’, ’’)} {item.get(’description ’, ’

’)} {item.get(’body ’, ’’)}"
62 resul = classifica_crime (texto , clf , cvt , tfi)
63

64 if resul == 1:
65 coll. update_one (
66 {’_id ’: item[’_id ’]},
67 {’$set ’: {’ is_crime ’: 1, ’classified ’: 1, ’

found_location ’: 0}}
68)
69 else:
70 coll. update_one (
71 {’_id ’: item[’_id ’]},
72 {’$set ’: {’ is_crime ’: 0, ’classified ’: 1, ’

found_location ’: 0}}
73)
74 else:
75 print(’Sem dados v l i d o s para classificar :’, item)
76

77 def salva_Tweets_classificados_crime (clf , cvt , tfi):
78 client = pymongo . MongoClient ()
79 db = client ["bh - safezone "]
80 mycol = db[" whatsapps "]
81 data = mycol.find ({" classified ": {"$ne": 0}}) # Pega s os n o

classificados
82

83 t = data.clone ()
84 tt = data.clone ()
85 c = len(list(t))
86

87 if c >= 1:
88 salva_e_classifica (tt , "bh - safezone ", " whatsapps ", clf , cvt , tfi

)
89

90

91 salva_Tweets_classificados_crime (clf , cvt , tfi)

Capítulo 6. Apêndice 67

Código 6.7 – Busca pela localização do crime.
1 import pymongo
2 import re
3 import spacy
4 import requests
5

6 client = pymongo . MongoClient (" localhost " ,27017)
7

8 # R e l a o bairro / r e g i o
9

10 bairro_regiao = {
11 ’ A A R O REIS ’: ’NORTE ’,
12 ’ACABA MUNDO ’: ’CENTRO -SUL ’,
13 ’ACAIACA ’: ’NORDESTE ’,
14 ’ADEMAR MALDONADO ’: ’BARREIRO ’,
15 .
16 .
17 .
18 ’VILA NOVA CACHOEIRINHA I’: ’NOROESTE ’,
19 ’VILA S O GABRIEL ’: ’NORDESTE ’
20 }
21

22 # Lista de bairros
23 bairros = [’ a a r o reis ’,
24 ’acaba mundo ’,
25 ’acaiaca ’,
26 ’ademar maldonado ’,
27 ’aeroporto ’,
28 .
29 .
30 .
31 ’ u n i v e r s i t r i o ’,
32 ’vila de s ’,
33 ’vila nova cachoeirinha i’,
34 ’vila s o gabriel ’]
35

36

37 def encontra_Regiao (bairro):
38 regiao = bairro_regiao [bairro .upper ()]
39

40 return regiao
41

42 def regioes ():
43

44 reg = [["CENTRO -SUL"," R e g i o Centro -Sul"," R e g i o Centro -Sul de
Belo Horizonte "," R e g i o Centro Sul", " Regiao Centro -Sul da

capital "," R e g i o Centro -Sul de BH","Centro -Sul"," Centro Sul"],

Capítulo 6. Apêndice 68

45 ["LESTE"," R e g i o Leste"," R e g i o Leste de Belo Horizonte
","Leste"," R e g i o Leste da capital "," R e g i o Leste de

BH"],
46 [" NORDESTE "," R e g i o Nordeste "," R e g i o Nordeste de Belo

Horizonte "," R e g i o Nordeste da Capital "," R e g i o
Nordeste de BH"],

47 ["NORTE"," R e g i o Norte"," R e g i o Norte de Belo Horizonte
"," R e g i o Norte da Capital "," R e g i o Norte de BH"],

48 ["VENDA NOVA","Venda Nova"," R e g i o Venda Nova de Belo
Horizonte "," R e g i o Venda Nova da Capital "," R e g i o
Venda Nova de BH"],

49 [" PAMPULHA "," Regiao da Pampulha "," R e g i o da Pampulha de
Belo Horizonte "," R e g i o da Pampulha de BH"," Pampulha "
],

50 [" NOROESTE "," R e g i o Noroeste "," R e g i o Noroeste de Belo
Horizonte "," R e g i o Noroeste da Capital "," R e g i o
Noroeste de BH"],

51 ["OESTE"," R e g i o Oeste"," R e g i o Oeste de Belo Horizonte
"," R e g i o Oeste da Capital "," R e g i o Oeste de BH"],

52 [" BARREIRO "," R e g i o do Barreiro "," R e g i o do Barreiro de
Belo Horizonte "," R e g i o do Barreiro da Capital ","

R e g i o do Barreiro de BH"," Barreiro "," R e g i o
Barreiro "]]

53

54 return reg;
55

56

57 def avenidas (loc):
58 try:
59 url = f’http :// geocoder .pbh.gov.br/ geocoder /v2/ address ?

logradouro ={ loc. replace (" ", "%20") }’
60 headers = {
61 "User -Agent": " Mozilla /5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit /537.36 (KHTML , like Gecko) Chrome /110.0.0.0
Safari /537.36 "

62 }
63 r = requests .get(url , headers = headers)
64 print(f"URL solicitada : {url}") # Debug: Printar a URL

solicitada
65

66 if r. status_code == 200:
67 try:
68 avenida = r.json ()
69 print(f" Resposta JSON: { avenida }") # Debug: Printar a

resposta JSON
70 if ’endereco ’ in avenida and len(avenida [’endereco ’]) >

0:

Capítulo 6. Apêndice 69

71 bairro = avenida [’endereco ’][0]. get(’bairropopular ’,
’Desconhecido ’)

72 regiao = avenida [’endereco ’][0]. get(’nomeregional ’,
’Desconhecido ’)

73

74 return [bairro , regiao]
75 else:
76 print(" E n d e r e o n o encontrado ")
77 return " E n d e r e o n o encontrado "
78 except ValueError as e:
79 print(f"Erro ao decodificar JSON: {e}")
80 print(f" Resposta do servidor : {r.text}") # Debug:

Printar a resposta bruta do servidor
81 return "Erro ao decodificar JSON"
82 else:
83 print(f"Erro na s o l i c i t a o HTTP: {r. status_code }")
84 return "Erro na s o l i c i t a o HTTP"
85 except requests . RequestException as e:
86 print(f"Erro ao fazer a s o l i c i t a o HTTP: {e}")
87 return "Erro ao fazer a s o l i c i t a o HTTP"
88

89

90 def viadutos (loc):
91 try:
92 # Adicionar c a b e a l h o User -Agent para simular uma r e q u i s i o

de navegador
93 headers = {
94 ’User -Agent ’: ’Mozilla /5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit /537.36 (KHTML , like Gecko) Chrome
/91.0.4472.124 Safari /537.36 ’

95 }
96

97 # Construir a URL com o logradouro
98 url = f’http :// geocoder .pbh.gov.br/ geocoder /v2/ address ?

logradouro ={ loc}’
99

100 # Fazer a r e q u i s i o para a API
101 r = requests .get(url , headers = headers)
102

103 # Verificar se a resposta foi bem - sucedida
104 if r. status_code == 200:
105 try:
106 # Tentar decodificar a resposta JSON
107 viaduto = r.json ()
108

109 # Verificar se h dados de ’endereco ’ e se a lista n o
e s t vazia

Capítulo 6. Apêndice 70

110 if ’endereco ’ in viaduto and len(viaduto [’endereco ’]) >
0:

111 for end in viaduto [’endereco ’]:
112 # Verificar se o tipo de logradouro ’VIADUTO ’
113 if end.get(’tipologradouro ’) == ’VIADUTO ’:
114 regiao = end.get(’nomeregional ’, ’

Desconhecida ’)
115 bairro = end.get(’bairropopular ’, ’

Desconhecida ’)
116 return [bairro , regiao]
117 # Caso n o encontre o viaduto ou os dados
118 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
119

120 except ValueError as e:
121 # Erro ao decodificar JSON
122 print(f"Erro ao decodificar JSON: {e}")
123 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
124

125 elif r. status_code == 403:
126 # Lidar com o erro 403 (Proibido)
127 print(f"Erro 403: Acesso proibido . Verifique as p e r m i s s e s

ou limites da API.")
128 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
129

130 else:
131 # Se a resposta n o for 200 ou 403, exibir erro
132 print(f"Erro na s o l i c i t a o HTTP: {r. status_code }")
133 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
134

135 except requests . RequestException as e:
136 # E x c e e s relacionadas r e q u i s i o HTTP
137 print(f"Erro ao fazer a s o l i c i t a o HTTP: {e}")
138 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
139

140

141 def ruas(loc):
142 try:
143 url = f’http :// geocoder .pbh.gov.br/ geocoder /v2/ address ?

logradouro ={ loc}’
144 headers = {
145 "User -Agent": " Mozilla /5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit /537.36 (KHTML , like Gecko) Chrome /110.0.0.0
Safari /537.36 "

146 }
147 r = requests .get(url , headers = headers)
148

149 if r. status_code == 200:

Capítulo 6. Apêndice 71

150 try:
151 rua = r.json ()
152 if ’endereco ’ in rua and len(rua[’endereco ’]) > 0:
153 bairro = rua[’endereco ’][0]. get(’bairropopular ’, ’

Desconhecido ’)
154 regiao = rua[’endereco ’][0]. get(’nomeregional ’, ’

Desconhecido ’)
155

156 return [bairro , regiao]
157 else:
158 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
159 except ValueError as e:
160 print(f"Erro ao decodificar JSON: {e}")
161 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
162 else:
163 print(f"Erro na s o l i c i t a o HTTP: {r. status_code }")
164 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
165 except requests . RequestException as e:
166 print(f"Erro ao fazer a s o l i c i t a o HTTP: {e}")
167 return [’Desconhecido ’, ’Desconhecida ’, " N o _ B H "]
168

169

170

171 def save_to_mongo_crime (termo , tt , db_name , perfil):
172 # F u n o exemplo para salvar no MongoDB
173 client = pymongo . MongoClient (" localhost ", 27017)
174 db = client [db_name]
175 collection = db[perfil]
176 document = {"termo": termo , "tt": tt}
177 collection . insert_one (document)
178

179

180 def pracas (loc):
181 try:
182 # Adicionando o c a b e a l h o User -Agent para simular uma

r e q u i s i o de navegador
183 headers = {
184 ’User -Agent ’: ’Mozilla /5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit /537.36 (KHTML , like Gecko) Chrome
/91.0.4472.124 Safari /537.36 ’

185 }
186 url = f’http :// geocoder .pbh.gov.br/ geocoder /v2/ address ?

logradouro ={ loc}’
187 r = requests .get(url , headers = headers)
188 print(f"URL solicitada 2: {url}") # Debug: Printar a URL

solicitada
189

Capítulo 6. Apêndice 72

190 if r. status_code == 200:
191 try:
192 praca = r.json ()
193 print(f" Resposta JSON: {praca}") # Debug: Printar a

resposta JSON
194 if ’endereco ’ in praca and len(praca[’endereco ’]) > 0:
195 bairro = praca[’endereco ’][0]. get(’bairropopular ’, ’

Desconhecido ’)
196 regiao = praca[’endereco ’][0]. get(’nomeregional ’, ’

Desconhecido ’)
197

198 return [bairro , regiao]
199 else:
200 print(" E n d e r e o n o encontrado ")
201 return " E n d e r e o n o encontrado "
202 except ValueError as e:
203 print(f"Erro ao decodificar JSON: {e}")
204 print(f" Resposta do servidor : {r.text}") # Debug:

Printar a resposta bruta do servidor
205 return "Erro ao decodificar JSON"
206 else:
207 print(f"Erro na s o l i c i t a o HTTP: {r. status_code }")
208 return "Erro na s o l i c i t a o HTTP"
209 except requests . RequestException as e:
210 print(f"Erro ao fazer a s o l i c i t a o HTTP: {e}")
211 return "Erro ao fazer a s o l i c i t a o HTTP"
212

213

214 def salva_tweet_local (bairro ,regiao ,data , mongo_db , mongo_db_coll , **
mongo_conn_kw):

215

216 client = pymongo . MongoClient (** mongo_conn_kw)
217

218 db = client [mongo_db]
219

220 coll = db[mongo_db_coll]
221

222 data[’regiao ’] = regiao .upper ()
223 data[’bairro ’] = bairro .lower ()
224 coll. update_one (
225 {’_id ’: data[’_id ’]},
226 {’$set ’: {’is_crime ’: 1,
227 ’found_location ’: 1,
228 ’region ’: regiao .lower (),
229 ’bairro ’: bairro .lower (),
230 ’integrated ’: 0
231 }}

Capítulo 6. Apêndice 73

232)
233

234 def encontra_local_link (txt ,bairros ,nlp):
235 doc = nlp(txt)
236 print(doc)
237 for ent in doc.ents:
238

239 if(ent. label_ == ’LOC ’):
240

241 loc = str(ent).lower ()
242

243 if loc in bairros :
244 regiao = encontra_Regiao (loc)
245 bairro = loc
246 return [bairro , regiao];
247

248 elif(" avenida " in loc):
249 avenida = avenidas (loc [8:])
250 return avenida ;
251

252 elif("rua" in loc):
253 rua = ruas(loc [4:])
254 return rua;
255

256 elif(" p r a a " in loc):
257 praca = pracas (loc [6:])
258 print(praca)
259 return praca;
260

261 elif(" viaduto " in loc):
262 viaduto = viadutos (loc [8:])
263 return viaduto ;
264

265 regi = regioes ()
266 for regiao in regi:
267 for x in regiao :
268 if x.lower () in txt.lower ():
269 return [" Desconhecido ",regiao [0], regiao [0]];
270

271

272 if " metropolitana " in txt.lower ():
273 return [" Desconhecido "," R e g i o Metropolitana ","

R e g i o _ M e t r o p o l i t a n a "];
274

275 elif "belo horizonte " in txt.lower ():
276 return [" Desconhecido "," Desconhecida ","Geral"];
277

Capítulo 6. Apêndice 74

278 elif "BH" in txt:
279 return [" Desconhecido "," Desconhecida ","Geral"];
280

281 elif "#BH" in txt:
282 return [" Desconhecido "," Desconhecida ","Geral"];
283

284 elif " capital " in txt.lower ():
285 return [" Desconhecido "," Desconhecida ","Geral"];
286

287 return [" Desconhecido "," Desconhecido "," N o _ B H "];
288

289

290 def encontra_texto_link (link):
291 from bs4 import BeautifulSoup
292 from requests . adapters import HTTPAdapter
293 from requests . packages . urllib3 .util.retry import Retry
294

295 retry_strategy = Retry(
296 total =20,
297 backoff_factor =1
298)
299

300

301 adapter = HTTPAdapter (max_retries = retry_strategy)
302 http = requests . Session ()
303 http.mount("https ://", adapter)
304 http.mount("http ://", adapter)
305

306

307 texto = ’’
308

309 html = http.get(link). content
310 soup = BeautifulSoup (html , ’html. parser ’)
311

312 print("Texto:", texto)
313

314 cleantext = BeautifulSoup (texto , "lxml").text
315

316 caracteres = ["/","<",">","(",")","|",’[’,’]’,’*’]
317

318 for c in caracteres :
319 cleantext = cleantext . replace (c, ’ ’)
320

321 return cleantext
322

323 def encontra_local (item ,bairros ,nlp):
324

Capítulo 6. Apêndice 75

325 txt = f"{item.get(’title ’, ’’)} {item.get(’ description ’, ’’)} {item.
get(’body ’, ’’)} "

326

327 doc = nlp(txt)
328

329 for ent in doc.ents:
330 if(ent. label_ == ’LOC ’):
331 loc = str(ent).lower ()
332

333 if loc in bairros :
334 regiao = encontra_Regiao (loc)
335 bairro = loc
336 return [bairro , regiao];
337

338 elif(" avenida " in loc):
339 avenida = avenidas (loc [8:])
340 return avenida ;
341

342 elif("rua" in loc):
343 rua = ruas(loc [4:])
344 return rua;
345

346 elif(" p r a a " in loc):
347 praca = pracas (loc [6:])
348 return praca;
349

350 elif(" viaduto " in loc):
351 viaduto = viadutos (loc [8:])
352 return viaduto ;
353

354

355 if(len(item[’links ’]) > 0):
356 link = item[’links ’][0][’link ’]
357 textoLink = encontra_texto_link (link)
358 resul = encontra_local_link (textoLink ,bairros ,nlp)
359 return resul
360

361 regi = regioes ()
362 for regiao in regi:
363 for x in regiao :
364 if x.lower () in txt.lower ():
365 return [" Desconhecido ",regiao [0], regiao [0]];
366

367

368 if " metropolitana " in txt.lower ():
369 return [" Desconhecido "," R e g i o Metropolitana ","

R e g i o _ M e t r o p o l i t a n a "];

Capítulo 6. Apêndice 76

370

371 elif "belo horizonte " in txt.lower ():
372 return [" Desconhecido "," Desconhecida ","Geral"];
373

374 elif "BH" in txt:
375 return [" Desconhecido "," Desconhecida ","Geral"];
376

377 elif "#BH" in txt:
378 return [" Desconhecido "," Desconhecida ","Geral"];
379

380 elif " capital " in txt.lower ():
381 return [" Desconhecido "," Desconhecida ","Geral"];
382

383 return [" Desconhecido "," Desconhecido "," N o _ B H "];
384

385

386 def filtra_local (bairros):
387 import pymongo
388 import re
389 import spacy
390 bairros2 = []
391

392 for bairro in bairros :
393 bairros2 . append (bairro .lower ())
394

395 nlp = spacy.load(’pt_core_news_lg ’)
396

397 client = pymongo . MongoClient (" localhost ", 27017)
398

399 db = client ["bh - safezone "]
400

401 mycol = db[" whatsapps "]
402 data = mycol.find ({" is_crime ": 1, " found_location ": 0})
403 t = data.clone ()
404

405 for item in data:
406 lista = encontra_local (item ,bairros2 ,nlp)
407

408 print("Lista:", lista)
409

410 if(len(lista) <3):
411 salva_tweet_local (lista [0], lista [1],item ,"bh - safezone ","

whatsapps ")
412 else:
413 salva_tweet_local (lista [0], lista [1],item ,"bh - safezone ","

whatsapps ")
414

Capítulo 6. Apêndice 77

415

416

417 filtra_local (bairros)

Código 6.8 – Serviço de conecção com firestore.
1 import { Injectable , OnModuleInit } from ’@nestjs / common ’;
2 import * as admin from ’firebase -admin ’;
3 import * as fs from ’fs’;
4

5 @Injectable ()
6 export class FirebaseService implements OnModuleInit {
7 private db: FirebaseFirestore . Firestore ;
8

9 onModuleInit () {
10 if (! admin.apps. length) {
11 const serviceAccount = JSON.parse(
12 fs. readFileSync (’src/firebase -key.json ’, ’utf8 ’),
13);
14

15 admin. initializeApp ({
16 credential : admin. credential .cert(serviceAccount),
17 });
18 }
19

20 this.db = admin. firestore ();
21 }
22

23 async salveCrime (dados: any): Promise <string > {
24 const crimesRef = this.db. collection (’crimes ’);
25 const docRef = await crimesRef .add(dados);
26 return docRef .id;
27 }
28

29 async upsertCrimeRegion (colecao : string , crime: string , quantidade :
number) {

30 try {
31 const snapshot = await this.db
32 . collection (colecao)
33 .where(’crime ’, ’==’, crime)
34 .get ();
35

36 if (! snapshot .empty) {
37 snapshot . forEach (async (doc) => {
38 const quantidadeAtual = parseInt (doc.data (). quantidade) || 0;
39

40 await doc.ref. update ({ quantidade : quantidadeAtual +
quantidade });

Capítulo 6. Apêndice 78

41 console .log(
42 ‘Atualizado : ${crime} na c o l e o ${ colecao }, nova

quantidade : ${ quantidadeAtual + quantidade }‘,
43);
44 });
45 } else {
46 await this.db. collection (colecao).add ({
47 crime: crime ,
48 quantidade : quantidade ,
49 });
50 console .log(
51 ‘Novo crime adicionado : ${crime} na c o l e o ${ colecao } com

quantidade : ${ quantidade }‘,
52);
53 }
54 } catch (error) {
55 console .log(’ C o l e o recebida :’, colecao);
56

57 console .error(’Erro ao atualizar ou criar crime:’, error);
58 }
59 }
60

61 async upsertCrimeBairro (colecao : string , crime: string , quantidade :
number) {

62 try {
63 const snapshot = await this.db
64 . collection (colecao)
65 .where(’crime ’, ’==’, crime)
66 .get ();
67

68 if (! snapshot .empty) {
69 snapshot . forEach (async (doc) => {
70 const quantidadeAtual = parseInt (doc.data (). quantidade) || 0;
71

72 await doc.ref. update ({ quantidade : quantidadeAtual +
quantidade });

73 console .log(
74 ‘Atualizado : ${crime} na c o l e o ${ colecao }, nova

quantidade : ${ quantidadeAtual + quantidade }‘,
75);
76 });
77 } else {
78 await this.db. collection (colecao).add ({
79 crime: crime ,
80 quantidade : quantidade ,
81 });
82 console .log(

Capítulo 6. Apêndice 79

83 ‘Novo crime adicionado : ${crime} na c o l e o ${ colecao } com
quantidade : ${ quantidade }‘,

84);
85 }
86 } catch (error) {
87 console .log(’ C o l e o recebida :’, colecao);
88

89 console .error(’Erro ao atualizar ou criar crime:’, error);
90 }
91 }
92

93 async upsertCrimePorBairro (
94 colecao : string ,
95 bairro : string ,
96 crime: string ,
97 quantidade : number ,
98) {
99 try {

100 const bairroRef = this.db
101 . collection (colecao)
102 .doc(’bairros ’)
103 . collection (bairro);
104

105 const crimeSnapshot = await bairroRef .where(’crime ’, ’==’, crime).
get ();

106

107 if (! crimeSnapshot .empty) {
108 crimeSnapshot . forEach (async (doc) => {
109 const dadosCrime = doc.data ();
110 const quantidadeAtual = + dadosCrime . quantidade || 0;
111

112 await doc.ref. update ({ quantidade : quantidadeAtual +
quantidade });

113 console .log(
114 ‘Atualizado : ${crime} no bairro ${ bairro }, nova quantidade :

${ quantidadeAtual + quantidade }‘,
115);
116 });
117 } else {
118 await bairroRef .add ({ crime , quantidade });
119 console .log(
120 ‘Novo crime adicionado : ${crime} no bairro ${ bairro } com

quantidade : ${ quantidade }‘,
121);
122

123 const bairrosDocRef = this.db. collection (colecao).doc(’bairros ’)
;

Capítulo 6. Apêndice 80

124 const bairrosDocSnapshot = await bairrosDocRef .get ();
125 if (bairrosDocSnapshot . exists) {
126 const bairrosData = bairrosDocSnapshot .data ()?. bairros || [];
127

128 if (! bairrosData . includes (bairro)) {
129 await bairrosDocRef . update ({ bairros : [... bairrosData ,

bairro] });
130 console .log(
131 ‘Bairro ${ bairro } adicionado ao campo "data" do documento

" bairros ".‘,
132);
133 }
134 } else {
135 await bairrosDocRef .set ({ bairros : [bairro] }, { merge: true

});
136 console .log(
137 ‘Campo "data" criado no documento " bairros " com o bairro ${

bairro }.‘,
138);
139 }
140 }
141 } catch (error) {
142 console .log(’ C o l e o recebida :’, colecao);
143 console .log(’Bairro recebido :’, bairro);
144 console .error(’Erro ao atualizar ou criar crime no bairro :’, error

);
145 }
146 }
147

148 async upsertCrimePorTimeSeries (
149 colecao : string ,
150 document : string ,
151 date: string ,
152 crime: string ,
153 quantidade : number ,
154) {
155 try {
156 const bairroRef = this.db
157 . collection (colecao)
158 .doc(document)
159 . collection (‘${ colecao } ${date }‘);
160

161 const crimeSnapshot = await bairroRef .where(’crime ’, ’==’, crime).
get ();

162

163 if (! crimeSnapshot .empty) {
164 crimeSnapshot . forEach (async (doc) => {

Capítulo 6. Apêndice 81

165 const dadosCrime = doc.data ();
166 const quantidadeAtual = + dadosCrime . quantidade || 0;
167

168 await doc.ref. update ({ quantidade : quantidadeAtual +
quantidade });

169 console .log(
170 ‘Atualizado : ${crime} no bairro ${ colecao }, nova quantidade :

${ quantidadeAtual + quantidade }‘,
171);
172 });
173 } else {
174 await bairroRef .add ({ crime , quantidade });
175 console .log(
176 ‘Novo crime adicionado : ${crime} no bairro ${ colecao } com

quantidade : ${ quantidade }‘,
177);
178

179 const bairrosDocRef = this.db. collection (colecao).doc(document);
180 const bairrosDocSnapshot = await bairrosDocRef .get ();
181 if (bairrosDocSnapshot . exists) {
182 const bairrosData = bairrosDocSnapshot .data ()?. data || [];
183

184 if (! bairrosData . includes (date)) {
185 await bairrosDocRef . update ({ data: [... bairrosData , date] })

;
186 console .log(
187 ‘Bairro ${date} adicionado ao campo "data" do documento "

bairros ".‘,
188);
189 }
190 } else {
191 await bairrosDocRef .set ({ data: [date] }, { merge: true });
192 console .log(
193 ‘Campo "data" criado no documento " bairros " com o bairro ${

colecao }.‘,
194);
195 }
196 }
197 } catch (error) {
198 console .log(’ C o l e o recebida :’, colecao);
199 console .log(’Bairro recebido :’, colecao);
200 console .error(’Erro ao atualizar ou criar crime no bairro :’, error

);
201 }
202 }
203 }

Capítulo 6. Apêndice 82

Código 6.9 – Serviço responsavel pelo envio dos dados para o firestore.
1 import { Inject , Injectable } from ’@nestjs / common ’;
2 import { WhatsAppRepository } from ’../../../ whatsApp / repository /

whatsapp . repository ’;
3 import { FirebaseService } from ’../ conection / firebase . service ’;
4 import { RegionEnum } from ’../../ enum/ Region .enum ’;
5

6 @Injectable ()
7 export class IntegratedInFireStoreService {
8 constructor (
9 @Inject (WhatsAppRepository)

10 private whatsAppRepository : WhatsAppRepository ,
11

12 @Inject (FirebaseService)
13 private firebaseService : FirebaseService ,
14) {}
15

16 async execute (): Promise <any > {
17 const data = await this. whatsAppRepository . getByIntegratedFalse ();
18

19 for (const item of data) {
20 await this. firebaseService . upsertCrimeRegion (
21 RegionEnum [item. region . toLocaleUpperCase ()],
22 item.crime ,
23 1,
24);
25

26 await this. firebaseService . upsertCrimePorBairro (
27 RegionEnum [item. region . toLocaleUpperCase ()],
28 item.bairro ,
29 item.crime ,
30 1,
31);
32

33 await this. firebaseService . upsertCrimePorTimeSeries (
34 RegionEnum [item. region . toLocaleUpperCase ()],
35 ’time_series ’,
36 formatarMesAnoNumerico (item. created_at),
37 item.crime ,
38 1,
39);
40

41 await this. firebaseService . upsertCrimeRegion (
42 ’Geral ’,
43 RegionEnum [item. region . toLocaleUpperCase ()],
44 1,
45);

Capítulo 6. Apêndice 83

46

47 await this. firebaseService . upsertCrimePorTimeSeries (
48 ’Geral ’,
49 ’time_series ’,
50 formatarMesAnoNumerico (item. created_at),
51 item.crime ,
52 1,
53);
54

55 await this. whatsAppRepository . update (item._id , {
56 integrated : 1,
57 });
58 }
59 }
60 }
61

62 function formatarMesAnoNumerico (data: Date): string {
63 const mes = String (data. getMonth () + 1). padStart (2, ’0’);
64 const ano = data. getFullYear ();
65

66 return ‘${mes}-${ano }‘;
67 }

	2bdc56c4d8014f9138dffabb95a5f9d9720d354ab41e93431565bcda15e506ea.pdf
	Folha de rosto

	SEI/UFOP - 0906143 - Folha de aprovação do TCC
	2bdc56c4d8014f9138dffabb95a5f9d9720d354ab41e93431565bcda15e506ea.pdf
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Motivação e Justificativa
	Definição do Problema
	Objetivos Gerais e Específicos
	Resultados e Contribuições
	Estrutura da Monografia

	Revisão da Literatura
	Monitoramento e Previsão de Eventos do Mundo Real em Mídias Sociais Online
	Ferramentas Semelhantes
	Trabalhos Relacionados
	Considerações Finais

	Metodologia e Desenvolvimento
	Tecnologias utilizadas
	Estudo das Etapas
	Reestruturação do Framework
	Busca e Identificação de Grupos no WhatsApp
	Fluxo das Mensagens no Sistema
	Coleta de Dados
	Filtragem de Palavras Relacionadas à Crimes
	Classificação de Crimes
	Processo de Busca da Localização
	Integração dos Dados
	Considerações Finais

	Resultados
	Coleta e Armazenamento de Mensagens
	Adaptação dos Códigos Classificador e Busca de Localização
	Integração com o Firestore
	Visualização no BHSafezone
	Considerações Finais

	Conclusão e Trabalhos Futuros
	Contribuições
	Limitações do Trabalho
	Trabalhos Futuros

	Referências
	Apêndice

