

UNIVERSIDADE FEDERAL DE OURO PRETO – UFOP

ESCOLA DE MINAS

DEPARTAMENTO DE ENGENHARIA MECÂNICA

TALES MOREIRA MORAIS MAGALHÃES

OTIMIZAÇÃO DO DIMENSIONAMENTO DE UM EIXO DE TAMBOR DE UM TRANSPORTADOR DE CORREIA ATRAVÉS DE ANÁLISES DE SIMULAÇÕES PELO MÉTODO DE ELEMENTOS FINITOS

OURO PRETO - MG 2024 TALES MOREIRA MORAIS MAGALHÃES tales_ms@hotmail.com

OTIMIZAÇÃO DO DIMENSIONAMENTO DE UM EIXO DE TAMBOR DE UM TRANSPORTADOR DE CORREIA ATRAVÉS DE ANÁLISES DE SIMULAÇÕES PELO MÉTODO DE ELEMENTOS FINITOS

Monografia apresentada ao Curso de Graduação em Engenharia Mecânica da Universidade Federal de Ouro Preto como requisito para a obtenção do título de Engenheiro Mecânico.

Professor orientador: DSc. Diogo Antônio de Souza

OURO PRETO – MG 2024

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

M188o Magalhaes, Tales Moreira Morais. Otimização do Dimensionamento de um Eixo de Tambor de um Transportador de Correia Através de Análises de Simulações pelo Método de Elementos Finitos. [manuscrito] / Tales Moreira Morais Magalhaes. -2024.
53 f.: il.: color., tab..
Orientador: Prof. Dr. Diogo Antônio de Sousa. Monografia (Bacharelado). Universidade Federal de Ouro Preto. Escola de Minas. Graduação em Engenharia Mecânica .
1. Método dos elementos finitos. 2. Simulação (Computadores). 3. Deformações e tensões - Tensão estrutural. 4. Falhas estruturais - Von Mises. 5. Máquinas - Elementos de Máquinas. 6. Deformações e tensões -Fadiga. I. Sousa, Diogo Antônio de. II. Universidade Federal de Ouro Preto. III. Título.

Bibliotecário(a) Responsável: Maristela Sanches Lima Mesquita - CRB-1716

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO REITORIA ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA MECANICA

FOLHA DE APROVAÇÃO

Tales Moreira Morais Magalhães

Otimização do dimensionamento de um eixo de tambor de um transportador de correia através de análises de simulações pelo método de elementos finitos

Monografia apresentada ao Curso de Engenharia Mecânica da Universidade Federal de Ouro Preto como requisito parcial para obtenção do título de Engenheiro Mecânico

Aprovada em 10 de outubro de 2024

Membros da banca

DSc. Diogo Antônio de Sousa - Orientador (Universidade Federal de Ouro Preto) DSc. Paulo Henrique Vieira Magalhães (Universidade Federal de Ouro Preto) DSc. Washington Luis Vieira da Silva (Universidade Federal de Ouro Preto)

Diogo Antônio de Sousa, orientador do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de Conclusão de Curso da UFOP em 15/10/2024.

Documento assinado eletronicamente por **Diogo Antonio de Sousa**, **PROFESSOR DE MAGISTERIO SUPERIOR**, em 02/11/2024, às 09:19, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site <u>http://sei.ufop.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **0804839** e o código CRC **92BFDC2A**.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.013496/2024-54

SEI nº 0804839

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35402-163 Telefone: (31)3559-1533 - www.ufop.br

AGRADECIMENTO

Gostaria de expressar minha gratidão ao meu professor orientador, Diogo, por sua orientação, paciência e apoio ao longo deste projeto.

Agradeço imensamente aos meus pais, que sempre estiveram ao meu lado, oferecendo suporte e encorajamento em todos os momentos. Sem eles, essa jornada não teria sido possível.

À minha namorada Giovanna, meu sincero agradecimento por sua compreensão, amor, carinho e incentivo constante. Sua presença foi essencial para que eu pudesse superar os desafios e alcançar este objetivo.

Ao meu filho Nicolas, que ainda não entende completamente o motivo de vários momentos não poder dar a ele a devida atenção, mas que foi uma grande motivação para eu me esforçar para alcançar meus objetivos.

RESUMO

O presente trabalho busca a otimização do dimensionamento de eixos de tambores de transportadores de correia por meio da simulação pelo método elementos finitos (FEM). Classificado como uma pesquisa quantitativa, exploratória, pesquisa bibliográfica, documental e experimental, em que metodologia adotada inclui a coleta de informações em uma empresa especializada em equipamentos de manuseio de materiais para mineração sobre dimensões, tensões aplicadas e modelos de mancais, que são posteriormente utilizados para a criação de modelos tridimensionais no software Autodesk Inventor. As simulações estruturais realizadas com o pacote Autodesk Inventor Nastran permitem a análise dos critérios de falha do eixo, possibilitando a comparação dos resultados obtidos com dados documentais da empresa. O processo iterativo de ajuste do modelo computacional é fundamental para garantir a precisão dos resultados em relação às condições reais de operação. Os resultados sugerem que a utilização de FEM é eficaz na otimização do dimensionamento do eixo, tendo encontrado uma diferença de 2% entre os resultados de tensão de Von Mises da simulação em relação ao cálculo analítico, embora dependa de fatores como a escolha das ferramentas de software e a capacidade de criar modelos representativos. O trabalho resulta na otimização de um projeto existente de uma empresa e na elaboração de um modelo paramétrico editável no software Inventor, que facilita a entrada de dados e a obtenção de resultados precisos para diferentes projetos.

Palavras-chave: Método dos elementos finitos, simulação, Tensão estrutural, Von Mises, Fadiga, elementos de máquinas.

ABSTRACT

This study investigates the optimization of pulley shaft sizing for belt conveyors through simulations by finite element method (FEM). Classified as quantitative, exploratory, bibliographic research, documental and experimental research, the adopted methodology includes collecting information from a company specialized in material handling equipment for mining regarding dimensions, applied stresses, and bearing models, which are subsequently used to create three-dimensional models in Autodesk Inventor software. Structural simulations performed with the Autodesk Inventor Nastran package allow the analysis of shaft failure criteria, enabling the comparison of the obtained results with the company's documented data. The iterative process of adjusting the computational model is fundamental to ensure the accuracy of the results concerning operating conditions. The results suggests that the use of FEM is effective in optimizing shaft sizing, having found a 2% difference between the Von Mises stress results from the simulation compared to the analytical calculation, although it depends on factors such as the choice of software tools and the ability to create representative models. The work results in optimization of a company's project and the development of an editable parametric model in Inventor software, which facilitates data entry and obtaining accurate results for different projects.

Keywords: Finite element method, simulation, structural stress, Von Mises, fatigue, machine elements.

LISTA DE FIGURAS

Figura 1 - Modelo 3D de um Transportador de Correia4	
Figura 2 - Transportador de correia7	
Figura 3 - Rolete de Carga	
Figura 4 - Rolete de Retorno9	
Figura 5 - Rolete de Impacto9	
Figura 6 – Tambor10	
Figura 7 - Gráfico de fator teórico de concentração de tensão K _t 17	
Figura 8 - Gráfico de fator teórico de concentração de tensão K _{ts} 18	
Figura 9 - Fluxograma de Metodologia20	
Figura 10 - Desenho dimensional do tambor25	
Figura 11 - Dimensões do Eixo do Tambor25	
Figura 12 - Distribuição de Tensão Radial Sobre o Tambor26	
Figura 13 - Modelo para simulação FEM28	
Figura 14 - Diagramas de Força Cortante e Momento Fletor	
Figura 15 - Seleção do fator K _t no gráfico29	
Figura 16 - Seleção do fator K _{ts} no gráfico30	
Figura 17 - Resultados de Tensão de Von Misses da Simulação do Tambor	
Figura 18 - Gráfico de Convergência de Malha31	
Figura 19 - Ferramenta Parameters - Link	

LISTA DE TABELAS

Tabela 1 - Variáveis e Indicadores	22
Tabela 2 - Tabela de Tensões Máximas Atuantes nos Tambores	25
Tabela 3 - Dados de Catálogo Ringfeder RFN 7015.1	26
Tabela 4 - Dados para seleção de fator K _t	29
Tabela 5 - Tabela de Cálculo Analítico do Eixo	30
Tabela 6 - Tabela no Excel de Parâmetros do Modelo	32
Tabela 7 - Dimensões Revisadas do Eixo do Tambor (1)	33
Tabela 8 - Resultados Simulação FEM do Eixo Reduzido (Ø mancal 80mm)	34
Tabela 9 - Verificação do Eixo à Fadiga (1)	34
Tabela 10 - Dimensões Revisadas do Eixo do Tambor (2)	34
Tabela 11 - Resultados Simulação Eixo Reduzido (Ø mancal 70mm)	35
Tabela 12 - Verificação do Eixo à Fadiga (2)	35
Tabela 13 - Comparativo de Resultados Cálculo Analítico e Simulação FEM	36

1	INTI	RODUÇÃO	3
	1.1	Formulação do Problema	3
	1.2	Justificativa	4
	1.3	Objetivos	5
	1.3.1	Geral	5
	1.3.2	Específicos	5
	1.4	Estrutura do Trabalho	5
2	REV	ISÃO BIBLIOGRÁFICA	7
	2.1	Transportador de Correia	7
	2.1.1	Correia	7
	2.1.2	Roletes	8
	2.1.3	Esticamento	9
	2.1.4	Acionamento	10
	2.1.5	Tambores	10
	2.2	Simulação computacional por Elementos Finitos	11
	2.3	Tensões Estruturais	12
	2.4	Dimensionamento de Eixo	14
	2.4.1	Tensão de Von Mises	14
	2.4.2	Fadiga	15
	2.4.3	Concentração de Tensão	16
3	MET	CODOLOGIA	19
	3.1	Tipo de Pesquisa	19
	3.2	Materiais e Métodos	20
	3.3	Variáveis e Indicadores	21
	3.4	Instrumento de Coleta de Dados	22
	3.5	Tabulação dos Dados	22
	3.6	Considerações Finais do Capítulo	23
4	RES	ULTADOS	24
	4.1	Dados Coletados de Projeto Existente	24
	4.1.1	Material do Eixo	24

SUMÁRIO

	4.1.2	Critérios Gerais de Projeto	24
	4.1.3	Dimensões do Tambor	24
	4.1.4	Tensões Atuantes nos Tambores	25
	4.2	Desenvolvimento do Modelo 3D para Simulação FEM	27
	4.3	Simulações FEM Variando Dimensões do Eixo	33
	4.4	Discussões	36
5	CON	CLUSÕES E RECOMEDAÇÕES	38
	5.1	Conclusões	38
	5.2	Recomendações	38
RI	EFERÊ	NCIAS BIBLIOGRÁFICAS	39
A	NEXOS		41
A	NEXO A	A – ANÉIS DE EXPANSÃO RINGFEDER – 7015.1	41
A	NEXO I	B – MANCAIS HENFEL - HSBM	43

1 INTRODUÇÃO

1.1 Formulação do Problema

Uma das principais responsabilidades dos engenheiros mecânicos, segundo Collins (2019) é o projeto mecânico, que consiste na criação de novos equipamentos ou a melhoria de equipamentos existentes para fornecer o melhor ou o projeto ideal, levando em consideração as restrições de tempo, orçamento e segurança impostas pela aplicação e pelo mercado. Para atender a necessidade de um projeto podem existir diversas soluções possíveis, cabendo ao engenheiro a escolha de um projeto "ótimo" (COLLINS, 2019).

Segundo Pahl (2005), para um engenheiro encontrar soluções para problemas técnicos de um projeto pré-estabelecido, ele se baseia em conhecimentos de ciências naturais e de engenharia, além de levar em consideração as condições materiais, econômicas, restrições legais e ambientais. De acordo com Maccahan (2017), estas soluções, além de requererem conhecimento especializado, devem se preocupar com quais as consequências a longo prazo a tecnologia resultante podem ter, principalmente na saúde e segurança do público.

No caso de cálculos estruturais, como mostra Filho (2009), o engenheiro deve garantir que uma estrutura analisada não falhará dentro das condições de operação, tendo como base os teoremas de mecânica geral. Utilizando técnicas clássicas de cálculo analítico, as equações matemáticas utilizadas para descrever uma situação podem chegar a um nível excessivo de complexidade à medida que a estrutura fica mais complexa, como é o caso da maioria das estruturas de importância prática, portanto a resolução necessita de muitas simplificações, assim gerando resultados com baixa precisão.

Sendo assim, para se atender as necessidades de um projeto de forma cada vez mais otimizada em custo, peso e tempo, porém ainda mantendo a segurança, foram sendo desenvolvidas novas técnicas ao passar dos anos, como o *finite element method* (FEM) ou, em português, método de elementos finitos. Tal método consiste na discretização de um sistema contínuo, ou seja, subdividir um sistema complexo em diversos sistemas mais simples, os quais podem ser analisados com equações matemáticas básicas e em seguida analisadas conjuntamente para obter-se uma aproximação de precisão aceitável ao problema de engenharia (FILHO, 2009).

O Brasil, tendo como uma de suas mais importantes atividades econômicas a mineração segundo IBGE (2020), possui uma grande demanda de projetos de equipamentos para esta área.

Dentre estes, para transporte de materiais a granel, os transportadores de correia se destacam devido às suas diversas vantagens, como economia, confiabilidade, segurança operacional e versatilidade (CEMA, 2014). Um transportador de correia, ilustrado na Figura 1:

Figura 1 - Modelo 3D de um Transportador de Correia Fonte: Lippel (2023)

O transportador de correia, como mostra a Figura 1, é um mecanismo para transporte contínuo de material a granel, que utiliza uma correia sem fim como meio de tração e ao mesmo tempo como elemento portador do material transportado.

Dentre os sistemas mecânicos que formam o transportador de correia, o tambor (ou polia) possui uma geometria e distribuição de carregamento complexa, assim sendo vantajoso para projetar um dimensional "ideal" a utilização do método de elementos finitos com auxílio de *software*, conhecido como análise de elementos finitos (FEA, do inglês, *finite element analysis*). Em razão de um estudo mais aprofundado, foi proposto um foco de análise no eixo do tambor.

Dado o contexto, tem-se a seguinte problemática:

Como otimizar o dimensionamento de um eixo de tambor de um transportador de correia através de simulação de elementos finitos?

1.2 Justificativa

Na indústria em geral, assim como na de fabricantes de componentes para transportadores de correia, existe a necessidade de reduzir os custos dos produtos sem comprometer a qualidade (COLLINS, 2019).

A partir de uma FEA é provável reduzir as dimensões se comparado ao método analítico, e consequentemente o custo e peso, dos eixos dos tambores, se comparado ao método analítico, sem deixar de atender os requisitos de projeto.

Outra vantagem da utilização da FEA em um método computacional é a redução do tempo de projeto e, consequentemente, os custos, devido a utilização de menos horas de engenharia. Isso é possível desenvolvendo modelos computacionais adaptáveis as condições de projeto que permitem a alimentação com dados para gerar resultados com aproximação desejável em pouco tempo (FILHO, 2009).

1.3 Objetivos

1.3.1 Geral

Otimizar o dimensionamento de eixo de um tambor de transportador de correia através do desenvolvimento de um modelo computacional que se aproxime das condições operacionais reais utilizando simulações pelo método de elementos finitos (FEM) via *software*.

1.3.2 Específicos

- Realizar revisão bibliográfica sobre os temas: simulação computacional pelo método de elementos finitos, transportadores de correia para materiais a granel, tensões estruturais e dimensionamento de eixo;
- Elaborar procedimento metodológico, coletar dados de projetos similares já executados, reproduzir em modelo 3D e realizar simulação FEM;
- Comparar resultados da simulação com os dados coletados do projeto existente;
- Adequar modelo computacional até os resultados da simulação convergirem com os resultados dos dados coletados;
- Propor método de dimensionamento otimizado através do modelo desenvolvido.

1.4 Estrutura do Trabalho

Este trabalho contém cinco capítulos, dividindo seu conteúdo da seguinte forma:

O primeiro capítulo de introdução, trata a formulação do problema a ser analisado ao longo do trabalho, a justificativa deste tema ser relevante, além dos objetivos gerais e específicos.

O segundo capítulo apresenta o embasamento teórico e os conceitos sobre transportadores de correia, tambores, aplicação de tensões em polias, dimensionamento de eixos e sobre o *software* utilizado para modelagem 3D e simulações FEM.

Em seguida, o terceiro capítulo detalha o método a ser utilizado no processo de pesquisa, bem como a forma e as ferramentas utilizadas para coletar os dados necessários para análise.

Posteriormente serão apresentados os resultados e discussões no capítulo quatro conforme os dados coletados ao longo da pesquisa. Também apresenta as propostas de otimização a partir do modelo computacional desenvolvido.

No quinto e último capítulo o trabalho é encerrado trazendo as conclusões e fazendo recomendações de trabalhos futuros em continuidade a pesquisa desenvolvida.

2 REVISÃO BIBLIOGRÁFICA

2.1 Transportador de Correia

Os transportadores de correias, de acordo com Mulani (2002), são dispositivos mecânicos utilizados para movimentar materiais a granel de forma eficiente em diversas indústrias, como mineração, agricultura, construção civil, entre outras. Esses equipamentos são projetados para transportar grandes volumes de materiais sólidos, como minérios, grãos, carvão, areia, entre outros, ao longo de distâncias variáveis.

Os transportadores de correias, abordado por Fayed e Skocir (2007), consistem em uma correia transportadora contínua, apoiada em roletes, que se movimenta sobre uma estrutura metálica. Eles são compostos por diferentes componentes, como tambores de acionamento e retorno, roletes de apoio, sistema de esticamento da correia e dispositivo de acionamento. Esses componentes trabalham em conjunto para permitir o transporte eficiente e seguro dos materiais a granel.

Existem diferentes tipos de transportadores de correias, incluindo transportadores de correia plana, transportadores de correia inclinada e transportadores de correia em curva. Cada tipo possui características específicas e é projetado para atender a requisitos operacionais e de layout diferentes (CEMA, 2014).

2.1.1 Correia

A correia é um componente fundamental em um transportador de correias. Trata-se de uma banda flexível e contínua, geralmente feita de materiais como borracha, poliuretano, nylon ou tecido sintético reforçado com fibras de aço. A correia é responsável por transportar os materiais a granel ao longo do percurso do transportador, exemplificado na Figura 2:

Figura 2 - Transportador de correia Fonte: Terra Nova (2023)

Como mostrado na Figura 2, a correia possui uma superfície superior e uma inferior, e pode apresentar diferentes padrões de cobertura para atender a requisitos específicos, como resistência ao desgaste, aderência e capacidade de limpeza. Esses padrões de cobertura podem variar de acordo com a aplicação e o tipo de material transportado (MULANI, 2002).

A seleção adequada do tipo de correia depende de vários fatores, como o tipo e o peso dos materiais, as condições ambientais (como temperatura e umidade), a velocidade do transportador, entre outros. É importante escolher uma correia com resistência e durabilidade adequadas para lidar com as demandas do transporte.

As correias transportadoras podem ter diferentes larguras e espessuras, de acordo com a capacidade de transporte desejada. Além disso, elas podem ser emendadas para formar uma correia contínua, garantindo sua integridade estrutural e permitindo o transporte contínuo dos materiais.

2.1.2 Roletes

Os roletes são componentes essenciais em um transportador de correias e, segundo CEMA (2014), têm a função de suportar e guiar a correia transportadora. Eles são fixados na estrutura do transportador e podem ser encontrados em diferentes posições ao longo do percurso da correia. Existem três tipos comumente utilizados de acordo com CEMA (2014):

 Roletes de carga: são localizados na parte inferior da correia em que ocorre o contato direto entre a correia e o material transportado, mostrado na Figura 3, os roletes de carga suportam o peso dos materiais e ajudam a distribuir a carga de maneira uniforme;

Figura 3 - Rolete de Carga Fonte: Abecom (2023)

 Roletes de retorno: são posicionados na parte superior da correia, do lado oposto aos roletes de carga conforme a Figura 4, eles sustentam a correia vazia enquanto ela retorna ao ponto de carregamento. Os roletes de retorno também auxiliam na correção do desalinhamento da correia;

Figura 4 - Rolete de Retorno Fonte: Abecom (2023)

 Roletes de impacto: são instalados em pontos onde ocorre a queda do material na correia transportadora apresentado na Figura 5. Eles têm a função de absorver o impacto do material, reduzindo a carga de impacto na correia e nos demais componentes do transportador.

Figura 5 - Rolete de Impacto Fonte: Abecom (2023)

2.1.3 Esticamento

O sistema de esticamento, de acordo com Mulani (2002), é responsável por manter a correia transportadora com a tensão adequada. Isso é importante para evitar deslizamentos, reduzir o estresse na correia e garantir o bom funcionamento do transportador. Existem diferentes tipos de sistemas de esticamento, citados na CEMA (2014):

- Esticamento por gravidade: a correia é tensionada pela ação da gravidade, utilizando contrapesos ou roletes ajustáveis. Esse método é adequado para transportadores de menor comprimento;
- Esticamento por parafuso: utiliza um parafuso para ajustar a posição do tambor de retorno, alterando a tensão da correia. É comumente utilizado em transportadores de correia inclinados ou com cargas variáveis;
- Esticamento automático: utiliza dispositivos automáticos, como cilindros hidráulicos ou tensores automáticos, para manter a tensão constante na correia. Esse

sistema é recomendado para transportadores com longas distâncias ou quando há variação significativa na carga.

2.1.4 Acionamento

O acionamento é responsável por movimentar a correia transportadora. Ele pode ser realizado de diferentes formas, sendo as mais comuns descritas na CEMA (2014):

- Acionamento por tambor motorizado: nesse método, o tambor de acionamento é acoplado a um motor elétrico, que fornece o torque necessário para mover a correia.
 O tambor é revestido com uma borracha especial para garantir a aderência entre a correia e o tambor;
- Acionamento por polias e correias: é utilizado quando é necessário transmitir o torque do motor para o tambor de acionamento por meio de polias e correias em "V". Essa configuração é comum em transportadores de menor capacidade ou comprimento;
- Acionamento por motorredutores: em algumas aplicações, é utilizado um redutor de velocidade acoplado diretamente ao tambor de acionamento. Esse método permite ajustar a velocidade e o torque de saída para atender às necessidades específicas do transporte.

2.1.5 Tambores

Segundo Roberts e Lewis (2009), os tambores, indicados na Figura 6, são componentes cruciais do transportador de correias, localizados nas extremidades da correia.

Figura 6 – Tambor Fonte: PHM Mecânica e Manutenção Industrial (2023)

Na Figura 6 mostra um tambor apoiado por mancais e nesse caso possui uma ponta de eixo para acoplar uma forma de acionamento. Eles fornecem o suporte necessário para a correia e são responsáveis pela tração e movimentação dela. Os dois tambores principais são:

- Tambor de acionamento: também conhecido como tambor motriz, é responsável por receber a potência do motor e transmiti-la à correia, impulsionando o movimento do material transportado;
- Tambor de retorno: localizado no lado oposto ao tambor de acionamento, o tambor de retorno tem a função de suportar a correia vazia e fornecer uma trajetória adequada para o retorno dela.

Além desses, CEMA (2014) cita outros tipos de tambor que podem ser aplicados:

- Tambor de desvio: tem função de alterar a direção da correia, normalmente para passar por um sistema de esticamento que não está localizado no retorno;
- Tambor de encosto: localizado logo após o tambor de acionamento, tendo como objetivo aumentar o ângulo de abraçamento da correia no tambor de acionamento, assim, aumentando o atrito entre estes componentes e/ou evitar uma força excessiva no primeiro rolete de retorno.

2.2 Simulação computacional por Elementos Finitos

A simulação computacional por elementos finitos, de acordo com Bathe (2014), é uma técnica amplamente utilizada na engenharia para analisar o comportamento de estruturas e sistemas complexos. Essa abordagem permite modelar o comportamento físico de um objeto, dividindo-o em elementos menores e aplicando equações matemáticas para simular o comportamento de cada elemento e do sistema como um todo.

A técnica dos elementos finitos baseia-se nos seguintes princípios, listados por Filho (2009):

- Discretização: a estrutura ou sistema é dividido em uma malha de elementos finitos, que são pequenas partes geométricas representativas do objeto real. Cada elemento é definido por nós (ou pontos de interesse) nos quais as equações serão aplicadas;
- Formulação matemática: para cada elemento finito, são aplicadas equações matemáticas que descrevem o comportamento físico do material e das condições de contorno. Essas equações podem ser baseadas em princípios da mecânica dos sólidos, termodinâmica, dinâmica dos fluidos, entre outros;

- Montagem do sistema: as equações de cada elemento são combinadas para formar um sistema global de equações que descreve o comportamento do sistema completo. Essas equações são resolvidas numericamente para obter as soluções desejadas;
- Análise dos resultados: os resultados obtidos a partir da simulação por elementos finitos são analisados e interpretados para avaliar o desempenho do sistema. Isso pode incluir análise de tensões, deformações, fluxos de calor, distribuição de campos, entre outros parâmetros de interesse.

A simulação por elementos finitos é amplamente utilizada em diversos campos da engenharia abordados por Filho (2009) incluindo:

- Engenharia estrutural: permite analisar o comportamento de estruturas, como pontes, edifícios, componentes de aeronaves, em resposta a cargas estáticas e dinâmicas. Isso auxilia no projeto, otimização e avaliação de segurança dessas estruturas;
- Engenharia mecânica: permite analisar o comportamento de componentes mecânicos, como peças de máquinas, engrenagens, eixos, em relação a forças, desgaste, fadiga e vibrações. Isso ajuda no projeto e melhoria desses componentes;
- Engenharia de fluidos: permite analisar o comportamento de fluidos em sistemas como dutos, tubulações, tanques e equipamentos de transferência de calor. Isso auxilia no projeto e otimização desses sistemas.

2.3 Tensões Estruturais

Segundo Hibbeler (2017), as tensões estruturais são um aspecto fundamental no projeto e análise de estruturas, sejam elas de engenharia civil, mecânica ou outras áreas relacionadas. A compreensão das tensões é essencial para garantir a integridade e segurança das estruturas, bem como para otimizar seu desempenho.

Já segundo Megson (2013), a tensão é uma medida da distribuição de força interna em um material, resultante de uma carga aplicada. É definida como a força aplicada dividida pela área de seção transversal do material. Existem dois principais tipos de tensões:

 Tensão normal: podendo ser tração, onde ocorre quando uma força externa tende a alongar ou esticar o material, compressão, em que ocorre quando uma força externa tende a encurtar ou comprimir o material, flexão, quando a força externa tende a fletir o material; Tensão de cisalhamento: ocorre quando forças atuam paralelamente a uma seção transversal do material, causando deformação angular. A tensão de cisalhamento é resultante da força cortante e do momento torsor.

A análise das tensões estruturais envolve o cálculo e interpretação das tensões em diferentes pontos de uma estrutura. Alguns, também citados por Megson (2013) amplamente utilizados incluem:

- Método dos Elementos Finitos (FEM): é uma abordagem numérica que divide a estrutura em elementos menores para realizar o cálculo das tensões. O FEM é amplamente utilizado para análises complexas de tensões em estruturas tridimensionais;
- Tensões nominais: são cálculos simplificados das tensões em um componente estrutural, assumindo que a distribuição de tensões seja uniforme. Essa abordagem é comumente utilizada em projetos iniciais e estimativas rápidas;
- Tabelas e equações: existem tabelas e equações disponíveis em códigos e normas técnicas que fornecem valores de tensões admissíveis para diferentes materiais e situações de carregamento. Essas referências são úteis para a verificação de tensões em estruturas pré-dimensionadas.

Para Budynas e Nisbett (2016) as equações para encontrar as tensões normais e cisalhantes no presente estudo, em que as cargas no eixo geram apenas momento fletor e força cortante em uma seção circular, são:

$$\sigma_{atuante} = \frac{32M_{total}}{\pi d^3} \tag{1}$$

$$\tau_{\text{atuante}} = \frac{4V}{3A} \tag{2}$$

Sendo:

 $\sigma_{atuante}$ = tensão de flexão atuante

 $\tau_{atuante}$ = tensão de cisalhamento atuante

V =força cortante

A = área da seção

d = diâmetro da seção circular

A análise de tensões é essencial para garantir a segurança e a durabilidade das estruturas de acordo com Filho (2009). Uma distribuição de tensões inadequada pode levar a deformações excessivas, falhas estruturais, fadiga do material e até mesmo colapsos. A compreensão das tensões também é importante para otimizar o projeto estrutural, reduzir custos e melhorar a eficiência.

2.4 Dimensionamento de Eixo

De acordo com Budynas e Nisbett (2016), um eixo é um componente rotativo, geralmente com uma seção transversal circular. Ele fornece o eixo de rotação ou oscilação para elementos como engrenagens, polias, volantes, manivelas, rodas dentadas e similares, e controla a geometria de seus movimentos.

O procedimento para dimensionar um eixo envolve análise de tensão estática (flexão e torção) através da tensão de Von Mises, deflexão e fadiga (BUDYNAS E NISBETT, 2016).

2.4.1 Tensão de Von Mises

A Tensão de Von Mises, abordada por Budynas e Nisbett (2016), originaria da teoria da energia de distorção, em que se observou o comportamento de materiais dúcteis sob tensão hidrostática, ou seja, com tensões principais iguais. Esses materiais apresentavam resistência de escoamento maiores que no ensaio de tração simples e, portanto, verificou-se que o critério mais adequado para materiais dúcteis seria uma tensão equivalente em função das tensões principais aplicadas nas três direções do espaço tridimensional.

Segundo Collins (2019), é adotado a tensão de Von Mises como critério de falha para um estado de tensões complexas multiaxiais e que pode ser determinada através da seguinte equação:

$$\sigma_{eq} = \sqrt{\frac{1}{2} \left[\left(\sigma_x - \sigma_y \right)^2 + \left(\sigma_y - \sigma_z \right)^2 + \left(\sigma_z - \sigma_x \right)^2 \right] + 3 \left(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2 \right)}$$
(3)

Sendo:

 σ_{eq} = tensão equivalente de Von Mises

 $\sigma_{x, y, z}$ = tensão normal às direções x, y e z respectivamente

 $\tau_{xy, yz, xz}$ = tensão de cisalhamento nos planos xy, yz e xz respectivamente

Nas condições de um eixo, onde Budynas e Nisbett (2016) destacam que as tensões de axiais ao próprio eixo são desprezíveis, portanto, sendo possível considerar as tensões atuando apenas em um plano xy, conforme a equação simplificada:

$$\sigma_{eq} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2} \tag{4}$$

2.4.2 Fadiga

De acordo com Collins (2019), no campo da engenharia moderna, as cargas repetitivas, variáveis e rapidamente aplicadas são mais comuns do que as cargas estáticas. Essas cargas induzem tensões cíclicas ou variáveis que podem levar à falha por fadiga. A fadiga é um processo de falha progressivo em que trincas se iniciam e propagam até atingirem um tamanho crítico, resultando em separação catastrófica da peça afetada. A falha por fadiga geralmente ocorre sem aviso prévio, tornando difícil detectar as mudanças nas propriedades do material durante o processo.

Segundo Budynas e Nisbett (2016), a falha por fadiga ocorre frequentemente quando membros de máquina falham sob a ação de tensões repetidas ou flutuantes. No entanto, uma análise mais detalhada revela que as tensões máximas reais estavam bem abaixo da resistência última do material, e muitas vezes até abaixo da resistência ao escoamento. O que distingue essas falhas é que as tensões foram repetidas muitas vezes, o que leva à denominação de falha por fadiga.

Existem várias fórmulas e métodos para calcular a resistência à fadiga, dependendo do tipo de material e das condições de carregamento, abordados por Collins (2019). Alguns dos métodos comumente utilizados incluem:

- Curva S-N (tensão-vida): este método estabelece uma relação entre a tensão aplicada (S) e a vida em ciclos (N) até a falha por fadiga. A curva S-N é obtida por meio de testes de fadiga em corpos de prova, e a resistência à fadiga pode ser estimada para diferentes níveis de tensão.
- Curva e-N (deformação-vida): semelhante à curva S-N, este método relaciona a deformação aplicada (e) e a vida em ciclos (N) até a falha por fadiga. É particularmente útil para materiais que apresentam comportamento elasto-plástico;
- Método de Goodman: este método leva em consideração tanto a tensão média quanto a amplitude de tensão. A resistência à fadiga é calculada comparando a tensão média

com a resistência à tração e a amplitude de tensão com a resistência à fadiga em flexão;

- Método de Soderberg: este método é utilizado para combinar as tensões estáticas e cíclicas aplicadas. A resistência à fadiga é calculada considerando a tensão estática média, a tensão cíclica média e a resistência à fadiga estática;
- Método de Gerber: similar ao método de Goodman, considera tanto a tensão média quanto a amplitude de tensão. No entanto, utiliza uma equação diferente para estimar a resistência à fadiga.

Para o presente trabalho foi utilizado o método de Soderberg, que de acordo com Collins (2019), a tensão de fadiga pode ser encontrada a partir das seguintes equações:

$$\sigma_a = \frac{\sigma_{m\acute{a}x} - \sigma_{m\acute{n}}}{2} \tag{5}$$

$$\sigma_m = \frac{\sigma_{m\acute{a}x} + \sigma_{m\acute{n}}}{2} \tag{6}$$

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_y} = \frac{1}{n} \tag{7}$$

Em que:

 σ_a = tensão alternada

- σ_m = tensão média
- $S_e =$ limite de resistência a fadiga
- $S_y = limite de escoamento$
- N = fator de segurança

2.4.3 Concentração de Tensão

Segundo Budynas e Nisbett (2016), as equações fundamentais de tensão, tais como tração, compressão, flexão e torção, considera-se geralmente que não existem irregularidades geométricas nos elementos analisados. No entanto, na prática, é quase impossível projetar máquinas sem incluir mudanças nas seções transversais dos componentes. Conforme destacado por Budynas e Nisbett (2016), descontinuidades como ressaltos em eixos rotativos, rasgos de chaveta, roscas em parafusos, entre outros, são comuns em elementos de máquina. Essas

descontinuidades alteram a distribuição de tensões, originando áreas de concentração de tensões.

A concentração de tensões é um fenômeno crítico, pois as equações elementares de tensão não conseguem descrever adequadamente o estado de tensão nas proximidades dessas descontinuidades. Por essa razão, utiliza-se o fator de concentração de tensão teórico, representado por K_t, para tenções normais ou K_{ts}, para tensões cisalhantes, para relacionar a tensão máxima verdadeira na descontinuidade com a tensão nominal no restante do componente.

Os fatores de concentração de tensão K_t em casos de eixos de seção circular com filetagem, podem ser selecionados baseado nos gráficos, mostrados por Budynas e Nisbett (2016) na Figura 7, levando em consideração a relação do diâmetro maior com o menor do eixo e a relação do raio do filete com o menor diâmetro do ponto de concentração de tensão.

Figura 7 - Gráfico de fator teórico de concentração de tensão K_t . Fonte: Budynas e Nisbett (2016)

Através do gráfico da Figura 7 pode se definir um valor para K_t , que será o fator multiplicador das tensões normais atuantes sobre o eixo.

Já para os fatores K_{ts} , utiliza-se o gráfico da Figura 8, que será utilizado sobre as tensões cisalhantes no eixo.

Figura 8 - Gráfico de fator teórico de concentração de tensão K_{ts} Fonte: Budynas e Nisbett (2016)

2.5 Considerações Finais do Capítulo

A pesquisa bibliográfica exposta neste capítulo abrange o referencial teórico necessário para o desenvolvimento do presente trabalho para atingir objetivo de otimizar o dimensionamento de eixo de um tambor de transportador de correia através do desenvolvimento de um modelo para simulação computacional pelo método de elementos finitos (FEM) através *software* Inventor Nastran.

3 METODOLOGIA

3.1 Tipo de Pesquisa

A definição de pesquisa, segundo Gil (2022), é:

O procedimento racional e sistemático que tem como objetivo fornecer respostas aos problemas que são propostos. A pesquisa é requerida quando não se dispõe de informação suficiente para responder ao problema, ou então quando a informação disponível se encontra em tal estado de desordem que não possa ser adequadamente relacionada ao problema.

Uma das formas de se classificar o tipo de pesquisa, segundo Richardson (2017), é quanto a abordagem. Nessa classificação as pesquisas são divididas em dois tipos:

- Pesquisa quantitativa: pesquisa em são analisadas variáveis mensuráveis por instrumentos e que os resultados podem ser avaliados por procedimentos estatísticos, portanto utilizada para testar teorias objetivas;
- Pesquisa qualitativa: pesquisa em que os dados devem ser interpretados pelo pesquisador levando em consideração aspectos sociais, históricos e políticos.

Outra classificação de pesquisa, conforme Gil (2022), é relacionado ao objetivo geral da pesquisa, que podem ser dos seguintes tipos:

- Pesquisa exploratória: pesquisa que tem como proposito a familiarização do problema, aprofundando no tema ou elaborando hipóteses;
- Pesquisa descritiva: pesquisa em que o objetivo é a descrição de um determinado problema, podendo também ter a finalidade de identificar relações entre variáveis;
- Pesquisa explicativa: pesquisa em que se busca a identificação de fatores que contribuem ou causam um determinado fenômeno.

Abordados por Lakatos (2021), as pesquisas podem se classificar também quanto ao procedimento técnico utilizado, como por exemplo:

- Pesquisa bibliográfica: pesquisa fundamentada em materiais publicados, como livros, jornais, revistas, artigos, teses, dissertações, manuais etc.;
- Pesquisa documental: similar à pesquisa bibliográfica, em que a diferença está no tipo de fonte. Busca de informações em documentos;
- Pesquisa experimental: pesquisa em que o pesquisador atua sobre uma ou mais variáveis de um problema para observar os efeitos dessa variação;

- Estudo de caso: análise aprofundada de um ou número pequeno de casos para se obter um conhecimento detalhado do caso analisado;
- Pesquisa-ação: tipo de pesquisa em que a aquisição de conhecimentos está associada a uma ação social;
- Pesquisa participante: pesquisa em que direciona a população para que identifique por si mesma os próprios problemas, realize a análise crítica e busque as próprias soluções.

Com base nas informações apresentadas, este trabalho pode ser classificado, no âmbito de sua abordagem, como uma pesquisa quantitativa, baseada em dados numéricos medidos e calculados a partir de uma fundamentação matemática e física.

Em relação ao objetivo, se classifica como uma pesquisa exploratória, pois busca um entendimento aprofundado de um processo de cálculo e propõe uma alternativa otimizada.

Já quanto aos procedimentos técnicos, pode ser categorizado como pesquisa bibliográfica, devido ao fundamento teórico é baseado em livros, artigos, teses e dissertações, como pesquisa documental, pois se baseia em dados de documentos institucionais para comparação dos resultados obtidos pelo método desenvolvido, e como pesquisa experimental, visto que, utiliza de simulação pelo método de elementos finitos para desenvolvimento de um modelo computacional que se aproxime das condições reais de operação de um tambor de transportador de correia.

3.2 Materiais e Métodos

O procedimento seguido para realização do projeto pode ser resumido no fluxograma indicado pela Figura 9.

Fonte: Pesquisa direta (2023)

A figura 8 mostra os passos do processo metodológico que serão detalhados a seguir.

O primeiro passo foi a coleta de dados de uma empresa de projetos de equipamentos de manuseio de materiais para mineração. Foram reunidas informações de projetos de tambores existentes como dimensões, tensões aplicadas nas condições de operação, modelos dos mancais, modo de fixação do eixo, toque de acionamento (em casos de tambores acionados) etc.

Em seguida, com os dados coletados, foi feita uma reprodução dos tambores existentes em modelo 3D no *software* Autodesk Inventor e, através do pacote de simulação integrado Autodesk Inventor Nastran, foram realizadas as simulações estruturais FEM, que geraram resultados dos indicadores utilizados para as análises dos critérios falha de eixo.

Os resultados obtidos na simulação FEM foram verificados quanto aos critérios de falha e comparados com os dados coletados dos projetos existentes documentados da empresa. Quando os resultados não foram compatíveis, o modelo computacional foi ajustado e a simulação refeita até os resultados convergirem e o modelamento poder ser considerado uma aproximação satisfatória das condições de operação.

Após encontrar o modelo computacional considerando ideal, foi discutido e avaliado a utilização do método desenvolvido para um projeto novo qualquer em comparação com os métodos convencionais utilizados pela empresa de origem dos dados coletados.

Por fim, serão apresentadas as conclusões tiradas da pesquisa e feitas recomendações para trabalhos futuros com sugestões de estudos que podem complementar e dar continuidade à pesquisa desenvolvida neste trabalho.

3.3 Variáveis e Indicadores

De acordo com Gil (2022), variável é um conceito que pode ser entendido como qualquer elemento capaz de ser classificado em duas ou mais categorias, assumindo diferentes valores. Em pesquisas, a relação entre variações de uma variável e outra é explorada para construção de hipóteses e entender a dependência entre elas.

Para o estudo das variáveis da pesquisa, foram definidos indicadores relacionados a cada variável. A Tabela 1 exibe as variáveis e indicadores a serem observados para os objetivos da pesquisa.

Variáveis	Indicadores
Condições de Operação do Equipamento	 Carga; Dimensões principais; Fixação; Material.
Simulação Estrutural	 Tensão de Von-Misses; Tensão Máxima e Mínima; Deslocamento máximo; Ângulo de deflexão máximo.
Dimensões de Projeto do Eixo	 Escalonamento; Resistência ao escoamento; Resistência a flexão; Resistencia a fadiga.

Tabela 1 - Variáveis e Indicadores

Fonte: Pesquisa direta (2023)

3.4 Instrumento de Coleta de Dados

Dado ao tipo de pesquisa, abordado no início do capítulo, em que este trabalho se classifica quanto aos procedimentos técnicos como pesquisa bibliográfica, experimental e documental, os dados coletados têm como origem livros, artigos, dissertações, manuais e teses, associados a dados adquiridos através de simulações computacionais, que, por sua vez serão comparados com dados obtidos através de documentos institucionais. Portanto, os instrumentos serão observação direto dos resultados das simulações e análise documental.

3.5 Tabulação dos Dados

Os dados da pesquisa documental serão inseridos no *software* Inventor Nastran, utilizado para o modelamento 3D e simulação FEM. Após a simulação os dados obtidos serão utilizados em planilhas no *software* Excel para verificação dos critérios de cálculo de eixo indicados na revisão bibliográfica.

3.6 Considerações Finais do Capítulo

Neste capítulo foi apresentado como a pesquisa deste trabalho se classifica, bem como o método e as ferramentas a serem utilizadas para o desenvolvimento do projeto em função do problema proposto.

O capítulo a seguir apresentará os resultados obtidos seguindo o método descrito e as discussões relativas à análise destes resultados.

4 RESULTADOS

4.1 Dados Coletados de Projeto Existente

Para o estudo foram coletados dados de projeto de uma empresa multinacional da área de projetos de equipamentos de manuseio de materiais, que opera no Brasil em Belo horizonte. O projeto foi de um tambor movido de transportador de correia para transporte de minério de ferro que foi executado e em está em operação. Os dados foram utilizados para comparação dos resultados obtidos pela empresa com o resultado do método proposto.

Neste tópico do capítulo estão apresentados os critérios de projeto seguidos pela empresa, os materiais selecionados para os eixos dos tambores, as cargas aplicadas no tambor, os desenhos dimensionais com as dimensões base do tambor e as dimensões calculadas para o eixo. Além disso, a largura da correia, elemento que aplica tensão sobre os tambores, é de 1400mm. Todos os dados foram encontrados no memorial de cálculo do caso estudado.

4.1.1 Material do Eixo

O material utilizado para o eixo foi SAE 1045, sendo considerado o limite de escoamento de 310 MPa, o limite de resistência de 570 MPa e o limite de resistência a fadiga 282,7 MPa.

4.1.2 Critérios Gerais de Projeto

Os critérios gerais seguidos para o projeto foram:

- A razão entre a distância dos centros dos mancais e a flecha máxima do eixo deve ser superior a 2000 e o ângulo de deflexão nos cubos devem ser inferiores a 4'15";
- Os eixos são verificados se suportam os carregamentos cíclicos;
- O coeficiente de segurança adotado para o dimensionamento do eixo do tambor foi de 1,5 sobre a tensão de escoamento e sobre o limite de resistência à fadiga;
- Os mancais utilizados são do tipo SBM, conforme catálogo no Anexo B.

4.1.3 Dimensões do Tambor

O desenho com as dimensões principais do tambor estudado pode ser visto na Figura 10, onde podem ser observadas dimensões importantes para serem utilizadas como dados de entrada do modelo para simulação computacional, sendo elas a distância entre mancais de 2100mm, distância entre cubos de 1400mm e largura do cubo de 95mm. Além disso, a largura da correia é de 1400mm.

Figura 10 - Desenho dimensional do tambor Fonte: Pesquisa direta (2024)

As dimensões do eixo do tambor estão apresentadas na Figura 11, em que as dimensões longitudinais são mantidas no modelo, porém os diâmetros de cada seção foram reavaliados.

Figura 11 - Dimensões do Eixo do Tambor Fonte: Pesquisa direta (2024)

4.1.4 Cargas Atuantes nos Tambores

As tensões máximas estáticas que atuam sobre os tambores provenientes da correia de acordo com o memorial de cálculo da empresa estudada, tanto em operação quanto tensões transientes, podem ser observadas na Tabela 2.

Tambor	Abraçamento	Cargas em Operação (kN)						
	(graus)	T1	T2	Resultante				
Tambor 1	184	31	,6	63,9				
	44 (2.2.2.4)							

Tabela 2 - Tabela de Cargas Máximas Atuantes nos Tambores

Fonte: Pesquisa direta (2024)

Para representação das cargas indicadas na Tabela 2, em que para o caso de um tambor movido, a tensão é constante ao longo do ângulo de abraçamento do tambor e normal à superfície segundo Ravikumar e Chattopadhyay (1998), como pode ser observado na Figura 12. No memorial de cálculo foi considerado uma pressão na superfície de contato da correia com o tambor de 0,077MPa já sendo aplicado o fator de segurança de 1,5.

Figura 12 - Distribuição de Tensão Radial Sobre o Tambor Fonte: Ravikumar e Chattopadhyay (1998)

A fixação entre o cilindro externo do tambor e o eixo é feita através de um anel de expansão do tipo RFN 7015.1 de dimensões 170 x 225, em que é informado pelo catálogo do fabricante, que consta no Anexo A, a pressão aplicada pelo anel de expansão no eixo e no cubo conforme a Tabela 3, sendo P_w a pressão em que o anel exerce no eixo e P_N a pressão exercida no cubo considerando o maior torque de aperto especificado para a dimensão do anel de expansão selecionado. Portanto, para o componente utilizado no tambor estudado foram considerados as pressões $P_w=105N/mm^2$ e $P_N=80N/mm^2$.

_															0	0									
D	Dimensões do anel de fixação							Т	PW	PN								D	N _{min} e	m					
												sem	sem	sem			PWmax em	P _{Nmax}	PWmin em	PNmin em	F _{ax} em	250	RP0,2	450	
3	d	x	D	L	L ₁	L ₃	n _{Sc}		D _G		T _{Ared.}	Мь	Мь	Мь	M _b max.	T _{res.}	M _b max	[]	N/mm	2]	Gw				
	n	nm			mm						Nm	Nm	N/r	nm²	Nm			N/r	nm²		kN		mm		kg
1	00	X	145	75	65	60	9	M10	x	55	83	6575	91	63	6540	681	125	86	57	39	14	192	179	172	4,1
1	10	X	155	75	65	60	10	M10	x	55	83	8037	92	65	7900	1475	130	92	55	39	27	210	194	186	4,4
1	20	X	165	75	65	60	12	M10	x	55	83	10521	101	74	10460	1128	147	107	56	41	19	238	215	205	4,8
1	30	X	180	84	74	68	15	M10	X	60	83	14247	101	73	14170	1476	145	105	58	42	23	258	234	223	6,5
1	40	X	190	84	74	68	15	M10	X	60	83	15343	94	69	15260	1589	138	101	50	37	23	269	245	234	7
1	50	X	200	84	74	68	16	M10	X	60	83	17534	94	70	17440	1816	140	105	47	35	24	288	261	248	7,4
1	60	X	210	84	74	68	18	M10	x	60	83	21041	99	75	20930	2160	151	115	46	35	27	317	282	267	7,8
1	70	X	225	93	81	75	15	M12	x	65	145	27352	105	80	27210	2788	159	120	52	39	33	348	307	289	10

Tabela 3 - Dados de Catálogo Ringfeder RFN 7015.1

Fonte: Henfel (2024)

4.2 Desenvolvimento do Modelo 3D para Simulação FEM

O primeiro passo para o desenvolvimento de um modelo 3D para simulação FEM foi a reprodução do tambor escolhido para estudo no Inventor com as mesmas dimensões do desenho 2D de fabricação mostrado na Figura 10.

Em seguida, no ambiente de simulação Nastran, foram aplicadas as condições de contorno equivalentes a situação de operação do tambor, incluindo restrições de movimento, forças e pressões atuantes e tipos de contatos entre componentes.

As restrições aplicadas representam a fixação por mancais no eixo do tambor em que a face da ponta do eixo foi delimitada para corresponder a área de contato do eixo com o rolamento. Estas restrições foram configuradas para funcionarem de forma similar a um rolamento autocompensador de rolos, portanto permitindo a rotação do eixo no sentido axial do eixo e deflexão angular do eixo. Além disso, um dos rolamentos é do tipo bloqueado, ou seja, restringe o movimento de translação axial, e ou outro do tipo livre, que permite este movimento.

Foram inseridas no modelo a aceleração da gravidade no valor de 9,8m/s² no sentido negativo do eixo Y e a pressão de 0,077MPa equivalente a tensão da correia em contato com a face do tambor no sentido radial reproduzindo as condições do memorial de cálculo estudado.

Na representação da fixação por anel de expansão foram consideradas ligações rígidas entre os cubos e o eixo. A fixação por interferência, como ocorre na prática, exigiu tempos muito maiores de simulação e ocorreram muitos casos de singularidade, onde a tensão aumentava indefinidamente a medida em que a malha era refinada.

A representação do modelo desenvolvido com as condições de projeto pode ser vista na Figura 13.

Figura 13 - Modelo para simulação FEM Fonte: Pesquisa direta (2024)

Para validação do modelo proposto, foi feito o cálculo de forma analítica em que foi feito uma simplificação do eixo e encontrado os diagramas de força cortante e momento fletor, como mostra o a Figura 14.

Figura 14 - Diagramas de Força Cortante e Momento Fletor Fonte: Pesquisa direta (2024)

Utilizando o critério de tensão de Von Mises pela equação 4 no Excel:

$$\sigma_{eq} = \sqrt{\sigma_x^2 - \sigma_x \sigma_y + \sigma_y^2 + 3\tau_{xy}^2} \tag{4}$$

Considerando a geometria do eixo com escalonamentos, os dados com as relações dimensionais necessárias, reunidas na Tabela 4, como mostra o gráfico visto na Figura 15 e Figura 16, foi selecionado um fator de concentração de tensão K_t e K_{ts} para cada seção transversal do eixo, sendo as linhas vermelha e verde traçadas em função das relações das seções A e B respectivamente.

seção	Ø [mm]	Raio do Filete (r) [mm]	Ø maior (D) [mm]	Ø menor (d) [mm]	r/d	D/d	Fator de Concentração de tensão [K _t]	Fator de Concentração de tensão [K _{ts}]
А	125	20	170	125	0,16	1,36	1,45	1,3
В	170	20	210	170	0,12	1,24	1,6	1,3
С	210	NA	NA	NA	NA	NA	1	1

Tabela 4 - Dados para seleção de fator Kt e Kts

3,0 2,6 D 2,2 K_t 1,8 D/d = 31,5 1,4 1,10 1,02 1,05 1,0 L 0,05 0,10 0,15 0,20 0,25 0,30 rld

Fonte: Pesquisa direta (2024)

Figura 15 - Seleção do fator K_t no gráfico Fonte: Budynas e Nisbett (2016)

Figura 16 - Seleção do fator K_{ts} no gráfico Fonte: Budynas e Nisbett (2016)

Foi obtido os resultados evidenciados na Tabela 5, e comparado com os resultados da tensão de Von Misses da simulação FEA, que pode ser observado na Figura 17, de forma a ser obtido uma aproximação satisfatória entre os resultados dos dois métodos de cálculo utilizados.

As tensões normais atuantes foram calculadas através da seguinte equação 1 e as tensões cisalhantes através da equação 2.

$$\sigma_{atuante} = \frac{32M_{total}}{\pi d^3} \tag{1}$$

$$\tau_{\text{atuante}} = \frac{4V}{3A} \tag{2}$$

			Da	Dados da Seção								
seção	M _{total} [N.mm]	Kt	fs	σ _{atuante} [Mpa]	Kts	Força cortante (V) [N]	Tatuante [Mpa]	Tensão de Von Misses σ' [Mpa]	σ _{adm} [Mpa]	Ø [mm]	Área da seção [mm²]	I _{xx} [mm ⁴]
А	5100000	1,45	1,5	57,85	1,3	31600	6,69	59,00	310	125	1,23E+04	1,20E+07
В	11100000	1,6	1,5	55,23	1,3	31600	3,62	55,59	310	170	2,27E+04	4,10E+07
С	11100000	1	1,5	18,31	1,3	0	0,00	18,31	310	210	3,46E+04	9,55E+07

Tabela 5 - Tabela de Cálculo Analítico do Eixo

Fonte: Pesquisa direta (2024)

Figura 17 - Resultados de Tensão de Von Misses da Simulação do Tambor Fonte: Pesquisa direta (2024)

Para obtenção destes resultados foi utilizado a ferramenta de convergência de malha local do Nastran em que os pontos de singularidade são automaticamente identificados e a malha nessa região é refinada para encontrar resultados mais assertivos. Para isso foram definidos critérios de iteração, sendo os elementos da malha inicial de 25mm, a razão de refinamento utilizada de 1,5, ou seja, os elementos onde ocorrem possíveis singularidades têm o tamanho reduzido em 1,5 vezes a cada iteração e um critério de convergência o erro máximo de 3% entre os resultados de iterações subsequentes. A curva de convergência pode ser observada na Figura 18. O programa realizou os cálculos em três iterações, sendo que a cada nova iteração a malha era refinada e o resultado da tensão de Von Mises era comparada com o resultado anterior até atingir uma taxa de convergência de 1,39%, atendendo ao critério definido de no máximo 3%.

Figura 18 - Gráfico de Convergência de Malha Fonte: Pesquisa direta (2024)

Todas as dimensões do modelo foram tabeladas no Excel, conforme mostra a Tabela 6, em que foram estabelecidas as relações de dependência entre as medidas através de fórmulas do Excel, inserido dados de catálogo do fornecedor Henfel dos componentes comerciais (anel de expansão e mancal), conforme apresentado nos Anexos A e B. Esta planilha, com os dados da Tabela 6, foi importada para o modelo no Inventor, através da ferramenta indicada na Figura 19, que permite que cada medida foi associada a uma dimensão através do código da primeira coluna da planilha e o *software* reconhece as demais informações associadas a aquele código. Sendo assim, as alterações das dimensões feitas na segunda coluna da planilha são reconhecidas no modelo, que se altera para corresponder às dimensões da planilha, permitindo a rápida alteração dos parâmetros em que o modelo é atualizado automaticamente e já preparado para refazer a simulação testando outras dimensões de eixo com facilidade ou para o dimensionamento de um tambor movido de um projeto diferente.

Cod.	Dimensão	Und.	Descrição	Grupo
D5	1400	mm	Largura da correia	Carrel
D22	184	deg	Ângulo de abraçamento tambor	Geral
D1	125	mm	Ø mancal	
D2	170	mm	Ø cubo	
D3	210	mm	Ø centro	
D6	68	mm	Centro mancal a ponta de eixo	Eixo
D7	230	mm	Comprimento rebaixo mancal	
D8	500	mm	Comprimento rebaixo anel de expansão	
D9	20	mm	Fillet rebaixos	
D21	109	mm	Mancal dimensão N catálogo	Mancal
D26	75	mm	Dimensão L3 catálogo	Anel de
D30	81	mm	Largura anel de expansão L1 catálogo	expansão
D10	95	mm	Largura cubo	
D11	320	mm	Ø externo cubo	Culta
D17	25	mm	Raio fillet cubo	Cubo
D23	165	mm	Ø interno cubo	
D12	630	mm	Ø Tambor	
D13	12,5	mm	Espessura casca	Correct
D14	16	mm	Espessura disco	Casca
D16	1600	mm	Largura da face do tambor	
D15	54,5	mm	Cubo externo a linha de centro do disco	
D18	700	mm	Largura da correia/2	Dimensões
D24	659,5	mm	Plano interno do anel de expansão	dependentes
D4	2100	mm	Entre centros mancais	

Tabela 6 - Tabela no Excel de Parâmetros do Modelo

Fonte: Pesquisa direta (2024)

ype Keyw	ord									
arameter	Name	Consumed by	Unit/Type	Equation	Nominal Val	Tolerance	Model Value	Key	Export	Comment
C:\User	s\tales\OneDrive\Do									
- D1		DIM1	mm	80 mm	80,000000	0	80,000000	Г		Ø mancal
D2		DIM2	mm	120 mm	120,000	0	120,000	Г	Γ	Ø cubo
- D3		DIM3	mm	160 mm	160,000	0	160,000			Ø centro
- D4		DIM4	mm	2100 mm	2100,00	0	2100,00			Entre centros mancais
D5		DIM5	mm	1400 mm	1400,00	0	1400,00			largura da correia
D6		DIM6	mm	54 mm	54,000000	0	54,000000			Centro mancal a ponta de
Ad	d Numeric 🛛 👻 🛛 🛛	Ipdate	Purge Unused	<u>f</u> x Imp	oort from XML		Reset Tole	rance		ccless

Figura 19 - Ferramenta *Parameters - Link* Fonte: Pesquisa direta (2024)

4.3 Simulações FEM Variando Dimensões do Eixo

A partir do modelo obtido e analisando os resultados da simulação do tambor do projeto existente da empresa que foi estudado, pode se perceber que o eixo foi superdimensionado para a aplicação, portanto foram feitas simulações testando dimensões de eixo menores que do projeto original, selecionados arbitrariamente.

Primeiramente foi testado o mesmo tambor com as cargas definidas do projeto existente com um eixo reduzido com as dimensões conforme a Tabela 7. A demais dimensões foram mantidas.

Cód.	Dimensão	Und.	Descrição	Grupo
D5	1400	mm	Largura da correia	Carrel
D22	184	deg	Ângulo de abraçamento tambor	Geral
D1	80	mm	Ø mancal	
D2	120	mm	Ø cubo	
D3	160	mm	Ø centro	
D6	46	mm	Centro mancal a ponta de eixo	Eixo
D7	230	mm	Comprimento rebaixo mancal	
D8	500			
D9	20	mm	Filete rebaixos	
D21	74	mm	Mancal dimensão N catálogo	Mancal
D26	60	mm	Dimensão L3 catálogo	Anel de
D30	65	mm	Largura anel de expansão L1 catálogo	expansão

Tabela 7 - Dimensões Revisadas do Eixo do Tambor (1)

Fonte: Pesquisa direta (2024)

Os resultados obtidos mostrados na Tabela 8 evidenciam que o eixo reduzido seria suficiente para suportar a carga da aplicação, porém ainda com um fator de segurança de 2,01 superior ao critério de projeto mínimo de 1,5.

Componente	Tensão Principal Mínima (MPa)	Tensão Principal Máxima (MPa)	Tensão de Von Mises Máxima (MPa)	Fator de Segurança	Flecha Máxima (mm)	Flecha adm. (mm)	Deflexão Angular Máxima (rad.)	Deflexão Angular adm. (rad.)
Eixo 1	-181,6	165,2	154	2,01	0,2311	1,05	3,20E-04	1,24E-03

Tabela 8 - Resultados Simulação FEM do Eixo Reduzido (Ø mancal 80mm)

Fonte: Pesquisa direta (2024)

Verificando à fadiga este eixo, de acordo com Collins (2019), utilizando os resultados obtidos na simulação informados na Tabela 8 nas equações 5, 6 e 7 obtém-se os resultados observados na Tabela 9, que demonstram que as dimensões testadas para o eixo atendem aos critérios de projeto.

$$\sigma_a = \frac{\sigma_{m\acute{a}x} - \sigma_{m\acute{n}}}{2} \tag{5}$$

$$\sigma_m = \frac{\sigma_{m\acute{a}x} + \sigma_{m\acute{n}}}{2} \tag{6}$$

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_v} = \frac{1}{n} \tag{7}$$

Tabela 9 - Verificação do Eixo à Fadiga (1)

σmax [MPa]	σmin [MPa]	σ alternada [MPa]	σ média [MPa]	Se [MPa]	Fator de Segurança (n)
165,20	-181,60	173,40	-4,10	282,7	1,67

Fonte: Pesquisa direta (2024)

Uma nova redução das dimensões do eixo foi realizada para verificar se seria possível atender aos critérios de projeto com uma economia maior, uma vez que o fator de segurança encontrado. O modelo foi atualizado com as medidas alteradas conforme a Tabela 10 para simulação.

Tabela 10 - Dimensões Revisadas do Eixo do Tambor (2)

Cód.	Dimensão	Und.	Descrição	Grupo
D5	1400	mm	Largura da correia	Carrel
D22	184	deg	Ângulo de abraçamento tambor	Geral
D1	70	mm	Ø mancal	
D2	110	mm	Ø cubo	
D3	150	mm	Ø centro	
D6	42	mm	Centro mancal a ponta de eixo	Eixo
D7	230	mm	Comprimento rebaixo mancal	
D8	500	mm	Comprimento rebaixo anel de expansão	
D9	20	mm	Filete rebaixos	
D21	70,5	mm	Mancal dimensão N catálogo	Mancal
D26	60	mm	Dimensão L3 catálogo	Anel de
D30	65	mm	Largura anel de expansão L1 catálogo	expansão

Fonte: Pesquisa direta (2024)

Os resultados obtidos na simulação podem ser observados na Tabela 11, que demonstram que o eixo suporta a situação de tensão aplicada no tambor com as dimensões sugeridas com um fator de segurança de 1,63 sobre a tensão de escoamento do material.

Componente	Tensão Principal Mínima (MPa)	Tensão Principal Máxima (MPa)	Tensão de Von Mises Máxima (MPa)	Fator de Segurança	Flecha Máxima (mm)	Flecha adm. (mm)	Deflexão Angular Máxima (rad.)	Deflexão Angular adm. (rad.)
Eixo 2	-178,6	219,9	190,4	1,63	0,2929	1,05	3,80E-04	1,24E-03

Tabela 11 - Resultados Simulação Eixo Reduzido (Ø mancal 70mm)

Fonte: Pesquisa direta (2024)

Fazendo a verificação à fadiga deste eixo, utilizando os dados da Tabela 11 nas equações, descritas por Collins (2019):

$$\sigma_a = \frac{\sigma_{max} - \sigma_{min}}{2} \tag{3}$$

$$\sigma_m = \frac{\sigma_{m\acute{a}x} + \sigma_{m\acute{n}}}{2} \tag{4}$$

$$\frac{\sigma_a}{S_e} + \frac{\sigma_m}{S_v} = \frac{1}{n} \tag{5}$$

Obteve-se os resultados da Tabela 12 em que pode ser observado que o eixo reduzido proposto atende os critérios de projeto quanto tensão admissível, flecha e deflexão angular, porém não atende quanto a resistência à fadiga.

	σ _{max} [MPa]	σ _{min} [MPa]	σ alternada [MPa]	σ média [MPa]	S _e [MPa]	Fator de Segurança
	219,90	-178,60	199,25	10,33	282,7	1,35
Î		· 1· / /0	00 1)			

Tabela 12 - Verificação do Eixo à Fadiga (2)

Fonte: Pesquisa direta (2024)

Concluiu-se que utilização do eixo com as dimensões propostas na Tabela 7, com diâmetro do eixo no mancal de 80mm, é possível verificar através das propriedades de material no modelo do Inventor o peso de 256,4kg, no lugar do eixo original do projeto, de 125mm que possui 477,9kg, proporcionaria uma redução de peso do eixo de aproximadamente 221,5kg, consequentemente reduzindo o custo de fabricação.

4.4 Discussões

Fazendo a comparação dos resultados do cálculo analítico com o a simulação do modelo inicial em que foi reproduzido o tambor do projeto executado pela empresa na Tabela 13, podemos perceber que o resultado da simulação é cerca de 2% maior.

Critério	Calculo Analítico	Simulação FEM	Diferença Percentual
Tensão de Von Mises Máxima (MPa)	58,50	60,37	2%
	(2024)		

Tabela 13 - Comparativo de Resultados Cálculo Analítico e Simulação FEM

Fonte: Pesquisa direta (2024)

É uma diferença pequena considerando a simplificação que é proposta para realização dos cálculos analíticos, portanto o modelo desenvolvido foi considerado uma aproximação válida.

Quanto ao superdimensionamento identificado no projeto executado pela empresa, pode haver diversos motivos para a escolha do eixo utilizado sem ser necessariamente um erro de projeto, como por exemplo, a padronização do componente com outros similares na planta com objetivo de redução do estoque de sobressalentes ou até mesmo uma vida útil maior dos rolamentos.

Serão levantados tópicos relevantes de discussão relacionados a pesquisa desenvolvida, como as dificuldades encontradas, possíveis melhorias para o modelo proposto e a relevância do estudo.

- Limitações do *software*: O *solver* Nastran é um *software* bem completo e intuitivo, porém carece de integração com o Inventor em alguns pontos. Um exemplo é a impossibilidade de parametrização das cargas aplicadas na simulação, estas tendo que ser editadas separadamente das dimensões do modelo para aplicar a um novo caso. Não há impacto nos resultados, porém obriga a realização de um passo extra de preparação para simulação com cargas diferentes que com outros *softwares* poderia não ocorrer;
- Tempo de Simulação: No presente estudo, as simulações foram feitas considerando elementos sólidos, gerando uma quantidade significativamente grande de elementos que levam bastante tempo para os cálculos serem concluídos no *hardware* utilizado;

- Relevância do estudo: foi evidenciado pelo estudo que é possível utilizar das ferramentas de *software* para otimizar o dimensionamento do eixo de um tambor de transportador de correia e facilitar o projeto. Paralelamente foi identificado um superdimensionamento no projeto do caso estudado e foi possível dimensionar o eixo para o tambor com uma redução significativa do peso em relação ao projeto original;
- O modelo desenvolvido visa a capacidade simples e eficaz de dimensionar o eixo de um tambor de transportador de correia, encontrando a partir da simulação pelo método de elementos finitos as dimensões de menor peso e custo para atender os requisitos de projeto.

5 CONCLUSÕES E RECOMEDAÇÕES

5.1 Conclusões

Baseado nas referências bibliográficas pesquisadas, foi desenvolvida uma metodologia em que foi possível validar o modelo proposto através de comparação com o caso real estudado juntamente com cálculos analíticos e testes de modelo de simulação.

Os resultados sugerem que a simulação do modelo pelo método dos elementos finitos foi equivalente aos resultados obtidos pelo cálculo analítico, visto que a dispersão com relação os resultados de tensão de Von Mises de 2%. Foi possível propor um método otimizado de dimensionamento de eixo de tambor de transportador de correia através de simulação pelo método dos elementos finitos em um modelo parametrizado e editável via planilha do Excel.

Foi possível desenvolver um modelo paramétrico no *software* Inventor, em que pode ser facilmente editado para realizar o dimensionamento de eixos de tambores movidos de transportadores de correia, permitindo a entrada de dados de um projeto qualquer para obtenção de resultados precisos.

5.2 Recomendações

Após o desenvolvimento do trabalho, considerando as dificuldades encontradas e possíveis extensões do escopo da pesquisa, podem ser sugeridas as seguintes recomendações para trabalhos posteriores:

- Otimização do dimensionamento da casca e do cubo de tambor de um transportador de correia através de simulações pelo método de elementos finitos;
- Otimização do dimensionamento de tambor acionado de um transportador de correia através de simulações pelo método de elementos finitos;
- Avaliação de diferentes *softwares* de simulação pelo método de elementos finitos na eficiência de um projeto de tambor de transportador de correia;

REFERÊNCIAS BIBLIOGRÁFICAS

COLLINS, Jack A. **Projeto Mecânico de Elementos de Máquinas, 2ª edição**. Rio de Janeiro, RJ: Grupo GEN, 2019. E-book. ISBN 9788521636243. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788521636243/. Acesso em: 31 mai. 2023.

PAHL, Gerhard. **Projeto na Engenharia**. São Paulo, SP: Editora Blucher, 2005. E-book. ISBN 9788521215516. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788521215516/. Acesso em: 31 mai. 2023.

MACCAHAN, Susan. **Projetos de Engenharia - Uma Introdução**. Rio de Janeiro, RJ: Grupo GEN, 2017. E-book. ISBN 9788521634546. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788521634546/. Acesso em: 31 mai. 2023.

FILHO, Avelino A. Elementos Finitos - A Base da Tecnologia CAE. São Paulo, SP: Editora
Saraiva, 2009. E-book. ISBN 9788536519708. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536519708/. Acesso em: 01 jun. 2023.

IBGE. Sistema de contas regionais: Brasil 2020 / IBGE, Coordenação de Contas Nacionais. Rio de janeiro, RJ: Editora IBGE, 2020. E-book. ISBN 9788524045509. Disponível em: https://biblioteca.ibge.gov.br/visualizacao/livros/liv101975_informativo.pdf Acesso em: 03 jun. 2023.

BATHE, K.-J. Finite Element Procedures. 2. ed. Watertown, MA: Klaus-Jürgen Bathe, 2014.

GIL, Antonio C. Como Elaborar Projetos de Pesquisa. Rio de Janeiro, RJ: Grupo GEN, 2022.E-book.ISBN9786559771653.Disponívelhttps://integrada.minhabiblioteca.com.br/#/books/9786559771653/. Acesso em: 23 jul. 2023.

LAKATOS, Eva M. Metodologia do Trabalho Científico. Rio de Janeiro, RJ: Grupo GEN,2021.E-book.ISBN9788597026559.Disponível em:https://integrada.minhabiblioteca.com.br/#/books/9788597026559/. Acesso em: 23 jul. 2023.

RICHARDSON, Roberto J. **Pesquisa Social - Métodos e Técnicas**, 4^a edição. Rio de Janeiro, RJ: Grupo GEN, 2017. E-book. ISBN 9788597013948. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788597013948/. Acesso em: 23 jul. 2023. HENFEL INDÚSTRIA METALÚRGICA LTDA. **Catálogo Técnico - Caixas Para Rolamentos**. Disponível em:

<https://www.henfel.com.br/codeigniter/assets/downloads/catalogos/mancais-derolamento/mancais_de_rolamento_pt.pdf>. Acesso em: 15 ago. 2024.

HENFEL INDÚSTRIA METALÚRGICA LTDA. **Ringfeder - Anéis de Contração e Anéis de Fixação**. [s.l: s.n.]. Disponível em:

<https://www.henfel.com.br/codeigniter/assets/downloads/catalogos/ringfeder/ringfeder_pt.pd f>. Acesso em: 15 ago. 2024.

ANEXOS

					1	1	-			-		-	12H							11	1		
	Dime	nsões d	do an	el de fi	xação				т	PW	PN			PWmax	PNmax	PWmin	PNmin	Fax	D	_{N min} e R _{P0,2}	m		
	d	x D	L	L ₁	L ₃	n _{Sc}	D _G	T _{Ared.}	sem M _b	sem Mb	sem M _b	M _b max.	Tres.	em M _b max	250 [I	350 N/mm	450 2]	Gw	~				
	m	im III	- 75	mm			1000 55	Nm	Nm	N/m	nm ²	Nn	1	105	N/1	nm ²		kN	100	mm	170	kg	
	110	x 145 x 155	75	65	60	9	M10 x 55	83	8037	91	65	7900	1475	125	92	57	39	27	210	179	172	4,1	1
	120	x 165	75	65	60	12	M10 x 55	83	10521	101	74	10460	1128	147	107	56	41	19	238	215	205	4,8	
	130	x 180	84	74	68	15	M10 x 60	83	14247	101	73	14170	1476	145	105	58	42	23	258	234	223	6,5	
	140	x 190	84	74	68	15	M10 x 60	83	15343	94	69	15260	1589	138	101	50	37	23	269	245	234	7	
	160	x 200	84	74	68	18	M10 x 60	83	21041	94	70	20930	2160	140	115	47	30	24	317	201	248	7,4	
	170	x 225	93	81	75	15	M12 x 65	145	27352	105	80	27210	2788	159	120	52	39	33	348	307	289	10	
	180	x 235	93	81	75	16	M12 x 65	145	30892	106	81	30730	3161	164	125	49	37	35	374	326	306	10,6	
	190	x 250	106	94	88	18	M12 x 75	145	36684	96	73	36500	3674	144	109	48	37	39	371	333	315	14,3	
	200	x 285	116	94 104	98	20	M12 x 75	145	42906	89	69	42090	5033	135	104	40	33	45	400	375	356	19.8	- 1
	240	x 305	116	104	98	24	M12 x 80	145	61784	93	73	61470	6225	145	114	41	32	52	470	415	391	21,4	
	260	x 325	116	104	98	27	M12 x 80	145	75300	97	77	74920	7552	155	124	38	30	58	531	458	428	23	1
	280	x 355	140	126	120	28	M14 x 100	230	115034	106	84	114450	11574	164	129	49	39	83	605	513	476	35,2	
-	300	x 3/5	140	120	120	28	M14 x 100	355	123250	99 110	87	179050	12351	15/	125	42	34	113	716	534 597	498 551	51.3	
	340	x 425	158	142	135	28	M16 x 110	355	191209	103	83	190250	19131	164	131	42	34	113	733	618	573	54,1	
	360	x 455	183	165	158	24	M18 x 140	485	209622	84	67	208570	20978	130	103	38	30	117	668	600	570	75,4	
	380	x 475	183	165	158	27	M18 x 140	485	248927	90	72	247670	24980	141	113	38	30	131	736	648	611	79	
	400	x 490 x 515	183	165	158	32	M18 x 140	485	310552	96	78	308990	31104	162	131	35	32	155	801	723	691	82,8	1
	440	x 545	200	180	172	27	M20 x 140	690	372775	91	74	370900	37338	147	119	35	28	170	871	758	711	110	
	460	x 565	200	180	172	27	M20 x 140	690	389719	87	71	387760	39026	143	117	31	25	170	891	779	732	114	
	480	x 585	200	180	172	30	M20 x 140	690	451848	93	76	449500	46004	155	127	30	25	192	986	839	781	119	
	500	x 605	200	180	1/2	30	M20 x 140	690	4/06/5	89	66	468300	4/224	151	125	27	22	189	1006	861	802	123	
	540	x 650	220	200	190	32	M20 x 150	690	542218	17	64	539400	55205	131	109	24	20	204	982	873	826	154	
K	560	x 670	220	200	190	36	M20 x 150	690	632587	84	70	629400	63421	144	120	24	20	227	1084	938	878	160	
	580	x 690	220	200	190	36	M20 x 150	690	655180	81	68	651890	65573	141	119	21	18	226	1104	960	900	165	
	600	x 710	220	200	190	36	M20 x 150	690	6////2 700364	78	64	674370	5/823	138	117	18	16	226	1125	982	922	170	111
	640	x 750	220	200	190	36	M20 x 150	690	722957	73	63	705037	159967	132	113	15	13	500	1160	1022	963	180	
	660	x 770	220	200	190	40	M20 x 150	690	828388	79	68	783300	269570	142	122	16	14	817	1260	1085	1014	194	
	680	x 790	220	200	190	40	M20 x 150	690	853491	77	66	783300	338951	138	119	15	13	997	1268	1101	1032	199	-
	700	x 810	220	200	190	40	M20 x 150	690 690	878593	75	64 63	783300	397954	134	116	15	13	1137	1277	1117	1049	205	1.00
-	740	x 850	220	200	190	42	M20 x 150	690	975239	74	65	822500	524008	133	116	15	13	1416	1341	1172	1101	216	and a
	760	x 870	220	200	190	42	M20 x 150	690	1001596	72	63	822500	571567	130	113	14	13	1504	1351	1188	1119	221	
	780	x 890	220	200	190	42	M20 x 150	690	1027954	70	62	822500	616590	127	111	14	12	1581	1362	1205	1137	227	
S 1	800	x 910	220	200	190	42	M20 x 150	690	1054312	69	60	822500	659597	123	108	14	12	1649	1374	1222	1155	232	
		alle.					24				1						K						
	•	Acab Para	amen eixos	itos de e cubo:	super	fície	To Re	lerânc	ias damos as	seguintes		Ex	plicaçõ	ões na ta	abela da	página 3	7 Ma so	is tama licitação	nhos r	nedian	te		
		R _a ≤	3,2 μι	m			tole Eix	erância xo: h8	s de mont	tagem H8							1	1007		-	1		
		_	_	_							_							19			1		THE
								14									1		1		1		1000
1		100	~	115				1	11														
	Exam	ala da r	aadid	or Dfhi	7015				1111									1					
	Tipo		Jedia	o. Rin	d	1	D		11										-	1	1		
	RfN 7	015.1	1	1	620		730		1												1	1	
				1	1					11												1	~
		-	1			3	-	1		211		1		- lal	Sec.	1	300					45	1
																			Rfl	N 70	15.		1

BC - Bloqueada com tampa cega

Dimensionais

- Características técnicas ver pág. 08.

• Vedação padronizada de labirinto com retentor tipo "ASR", ver pág. 06. Para as vedações tipo ASZF, AS, R, ZF, TC e GS as dimensões são mantidas, caso seja solicitado outro tipo de vedação as dimensões das colunas "L", "M" e "N" da tabela poderão ser alteradas, mas o nosso departamento técnico

- deverá ser consultado para informações.
 Podem alojar rolamentos bipartidos, porém, muda-se a referência do produto, insirindo o prefixo B. Para aplicação em outras séries de rolamentos, consultar nosso departamento técnico.
- Até o tamanho 56 (inclusive) o bloqueio do rolamento é obtido com anéis de bloqueio, nos tamanhos maiores o rolamento é bloqueado pelas tampas laterais.
 Ex. de especificação: HSBM-157-BP-ASZF = Caixa série HSBM, tamanho 157, em ferro fundido cinzento, com 02 furos na base, preparada para rolamento 22215-K + bucha HA-315, execução bloqueada com tampa passante e vedação de labirinto com retentor tipo ZF.

FNHSBM-15-LC-ASR= Caixa série FNHSBM, tamanho 15 em ferro fundido nodular, com 04 furos na base, preparada para rolamento 22215-K + bucha H-315, execução livre com tampa cega e vedação de labirinto com retentor, tipo ASR.

LC - Livre com tampa cega

W

BP - Bloqueada com tampa passante

LP - Livre com tampa passante

Estas caixas possuem como padrão dois furos em suas bases até o tamanho 327/328/32, acima deste tamanho elas somente são fornecidas com quatro furos, sendo possível aplicar este padrão de furação (04) para os tamanhos abaixo e inclusive do 327/328/32, bastando acrescentar o prefixo "F" na denominação da caixa (Ex. FHSBP-15BP-ASZF). As dimensões dos parafusos de fixação para dois furos na base encontram-se na coluna "S" entre parênteses.

	Diâmetro do eixo		Rolam.	Bucha de Fixação			Dimensões (mm)											Darra (ka)	
Caixa	mm	polegadas	- Rolam.	(completa)	н	E	A	В	C	F	L	м	N	Р	s		w	x	Peso (kg)
HSBM 084 HSBM 086 HSBM 08	35	1.1/4" 1.3/8"	22208K	HE 308 HS 308 H 308	60	170	205	60	26	30	99	53	46	113,5	3/8*	25	41	8	3,5
HSBM 097 HSBM 098 HSBM 09	40	1.7/16" 1.1/2*	22209K	HA 309 HE 309 H 309	60	170	205	60	28	30	106,5	56,5	50	119,5	3/8*	25	44	8	4
HSBM 100 HSBM 101 HSBM 102 HSBM 10	45	1.5/8" 1.11/16" 1.3/4"	22210K	HS 310 HA 310 HE 310 H 310	60	170	205	60	28	30	114	57	57	122	3/8* (1/2*)	25	43	8	4,5
HSBM 114 HSBM 115 HSBM 11 HSBM 110	50	1.7/8* 1.15/16* 2*	22211K	HS 311 HA 311 H 311 HE 311	70	210	255	70	30	35	116	58	58	137	1/2* (5/8*)	28	45	9	5,5
HSBM 122 HSBM 12	55	2.1/8*	22212K	HS 312 H 312	70	210	255	70	34	35	116,5	61,5	55	140	1/2* (5/8*)	30	50	9	6
HSBM 133 HSBM 134 HSBM 13 HSBM 136	60	2.3/16" 2.1/4" 2.3/8"	22213K	HA 313 HE 313 H 313 HS 313	80	230	275	80	36	40	116,5	63,5	53	157	1/2* (5/8*)	30	54	9	7,5
HSBM 157 HSBM 158 HSBM 15	65	2.7/16" 2.1/2*	22215K	HA 315 HE 315 H 315	80	230	280	80	38	45	120,5	65,5	55	162	1/2* (5/8*)	30	56	11	9
HSBM 161 HSBM 162 HSBM 16	70	2.11/16" 2.3/4'	22216K	HA 316 HE 316 H 316	95	260	315	90	42	55	141	70,5	70,5	183	1/2* (3/4*)	32	60	12	14,5
HSBM 175 HSBM 17 HSBM 170	75	2.15/16"	22217K	HA 317 H 317 HE 317	95	260	320	90	44	55	146	73	73	189	5/8* (3/4*)	32	62	12	14,5

Dimensionais

Caixa	Diâm	etro do eixo	Rolam.	Bucha de Fixação (completa)	ч	E			0	Ē	Dimensõ	ies (mm)	n		Ň	1 w 1	v	Peso (kg)
HSBM 18	mm 80	polegadas		H 318	н	E	A	в	G	E	L .	IVI	IN	Р	5	V	W	X	
HSBM 183		3.3/16"	22218K	HA 318	100	290	345	100	46	55	148	74	74	200	5/8"	35	64	11	15
HSBM 184 HSBM 194	95	3.1/4"	22219K	HE 318 HE 319	112	290	345	100	50	55	155,5	81,5	74	215	(3/4°) 5/8° (3/4°)	35	68	12	17,5
HSBM 207	0.0	3.7/16*		HA 320											(3(4)				
HSBM 208 HSBM 20	90	3.1/2°	22220K	HE 320 H 320	112	320	380	110	54	60	162	81	81	223	7/8° (7/8°)	40	72	13	22
HSBM 221	100	3.11/16"		HS 322	105			100		70					7.005		76		
HSBM 225	100	3.15/16"	22222K	H 322 HA 322	125	350	410	120	86	70	157	86	1	249	(7/8")	45	76	13	30
HSBM 220 HSBM 243		4.3/16"		HA 3124															
HSBM 244 HSBM 24	110	4.1/4*	22224K	HE 3124 H 3124	140	350	410	120	60	70	182	91	91	272	7/8"	45	79	14	31
HSBM 267		4.7/16"		HA 3126															
HSBM 268 HSBM 26	115	4,1/2°	22226K	HE 3126 H 3126	150	380	445	130	64	82	202	101	101	291	1"	50	83	16	43
HSBM 28	125			H 3128											M.L.				
HSBM 285		4.15/16"	22228K	HA 3128	150	420	500	150	68	85	218	109	109	298	1.1/4"	50	87	15	51
HSBM 280 HSBM 303		5"		HE 3128 HA 3130											(1.1/4")				
HSBM 304		5.1/4"	22230K	HE 3130	160	450	530	160	74	95	231	115,5	115,5	321	1.1/4"	60	101	15	57
HSBM 30	135	E 7/46*		H 3130											(1.1/4")				
HSBM 328		5.1/2*	22232K	HE 3132	170	470	550	160	76	95	244	127	117	342	1.1/4"	60	107	18	70
HSBM 32	140			H 3132											(1.1/4")				
HSBM 34 HSBM 345	150	5.15/16"	23134K	H 3134 HA 3134	170	430	510	180	79	100	243	129	114	336	1"	70	106	16	80,5
HSBM 340 HSBM 367		6.7/16"		HA 3136															
HSBM 368 HSBM 36	160	6.1/2*	23136K	HE 3136 H 3136	180	450	530	190	86	110	254	136	118	357	1"	75	113	18	82,5
HSBM 38	170			H 3138															
HSBM 382		6.3/4*	23138K	HE 3138	190	480	560	210	92	120	269	144	125	379	1"	80	119	19	97,5
HSBM 305 HSBM 400		0.15/16		HA 3138 HE 3140															
HSBM 40	180		23140K	H 3140	210	510	610	230	96	130	277	147	130	410	1.1/4"	85	123	18	116,5
HSBM 403		7.3/16*		HA 3140															
HSBM 440	200	1.1/2	23144K	H 3144	220	540	640	240	102	140	296.5	157.5	139	437	1.1/4"	90	129	18.5	195
HSBM 445		7.15/16*		HA 3144															
HSBM 487 HSBM 488		8.7/16"	231//RK	HA 3148	240	600	700	260	106	150	212	166	147	472	1.1//	05	135	20	123
HSBM 48	220	0.1/2	COTHON	H 3148	240	000	100	200	100	100	010	100	(4)	.415	1.1/4	30	150	2.0	160
HSBM 527	aran I	9.7/16*		HA 3152	12222			1222	100	10000	1222	1221	17.121			NALCO.	1000		
HSBM 52 HSBM 528	240	9.1/2*	23152K	H 3152 HE 3152	260	650	770	280	118	160	332	183	149	516	1.1/2	100	152	-22	160
HSBM 565		9,15/16"		HA 3156															
HSBM 560	000	10"	23156K	HE 3156	280	670	790	280	120	160	344	195	149	547	1.1/2"	105	156	21	163,5
HSBM 605	200	10.15/16"		HA 3160															
HSBM 600		11"	23160K	HE 3160	300	710	830	310	134	190	376	208	168	591	1.1/2"	110	165	23	267
HSBM 60 HSBM 647	280	11.7/16*		H 3160															
HSBM 648		11.1/2*	23164K	HE 3164	320	750	880	330	144	200	403	223	180	633	1,1/2"	115	195	26	284,5
HSBM 64	300	105		H 3164															
HSBM 687		12.7/16"	23168K	HA 3168	350	840	1000	350	168	210	442	251	191	684	1.7/8"	120	198	27	322,5
HSBM 68	320	10.45.40		H 3168															
HSBM 725 HSBM 720		12.15/16"	23172K	HA 3172 HE 3172	360	860	1020	370	172	220	446	252	194	704	1.7/8"	125	204	26	395.5
HSBM 72	340			H.3172					-										
HSBM 765		13.15/16"	2217EV	HA 3176	270	880	1040	200	174	220	AAG 5	3636	102	70.8	1.770*	190	015	-07	410 G
HSBM 76	360	14	201106	H 3176	aru	000	1040	590	17.4	200	440,5	200,0	195	124	1.770	130	210	21	910,5
HSBM 805		14.15/16"	120102007	HA 3180	61010101	2007	0000	1022233	1122	1000	12.0	2021	82027	10000	10.2	11000	1.000	12.22	200
HSBM 800 HSBM 80	380	15"	23180K	HE 3180 H 3180	390	965	1118	394	180	235	472	262	210	761	2"	127	228	29	552
HSBM 847		15.7/16*		HA 3184															
HSBM 848	400	15.1/2"	23184K	HE 3184	425	1035	1200	419	201	251	534	287	247	824	2"	127	241	29	610.5
HSBM 885	400	15.15/16"		HA 3188															
HSBM 880	0.72.0	16"	23188K	HE 3188	425	1035	1200	419	202,5	251	536	288	248	836	2"	127	242,5	29	709
HSBM 88 HSBM 925	410	16 15/16"		H 3188 HA 9102															
HSBM 920		17*	23192K	HE 3192	530	1270	1500	420	215,5	240	554	302	252	962	2,7/8"	160	255,5	29	834
HSBM 92	430	17 15 11 59		H 3192															
HSBM 960		18"	23196K	HE 3196	550	1300	1530	430	220	245	585	324	261	1000	2.7/8"	165	260	31	982.5
HSBM 96	450			H 3196															
HSBM 5007 HSBM 5009		18.7/16"	231/500K	HA 31/500 HE 31/500	590	1350	1580	460	234	260	508	320	260	1051	2.7/8"	175	274	31	1132.6
HSBM 5008	470	10.172	201/000h	H 31/500	000	1330	1000	400	2.04	200	530	040	203	i da i	6.770	115	614	01	1130,3

www.henfel.com.br

HSBM

23