

UNIVERSIDADE FEDERAL DE OURO PRETO ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

TRABALHO DE CONCLUSÃO DE CURSO

REAVALIAÇÃO DO POTENCIAL AURÍFERO DO QUADRILÁTERO FERRÍFERO E ADJACÊNCIAS: ESTUDO FUNDAMENTADO NA PROSPECÇÃO GEOQUÍMICA.

Artur Sander Mourão

MONOGRAFIA nº 496

Ouro Preto, Dezembro de 2023

REAVALIAÇÃO DO POTENCIAL AURÍFERO DO QUADRILÁTERO FERRÍFERO E ADJACÊNCIAS: ESTUDO FUNDAMENTADO NA PROSPECÇÃO GEOQUÍMICA

FUNDAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO

Reitora

Prof.^a Dr.^a Cláudia Aparecida Marliére de Lima

Vice-Reitor

Prof. Dr. Hermínio Arias Nalini Júnior

Pró-Reitora de Graduação

Prof.ª Dr.ª Tânia Rossi Garbin

ESCOLA DE MINAS

Diretor

Prof. Dr. José Alberto Naves Cocota Júnior

Vice-Diretor

Prof. Dr. Cláudio Eduardo Lana

DEPARTAMENTO DE GEOLOGIA

Chefe

Dr. Geraldo Magela Santos Sampaio

Vice

Prof. Dr. Leonardo Eustáquio da Silva Gonçalves

MONOGRAFIA

Nº 496

REAVALIAÇÃO DO POTENCIAL AURÍFERO DO QUADRILÁTERO FERRÍFERO E ADJACÊNCIAS: ESTUDO FUNDAMENTADO NA PROSPECÇÃO GEOQUÍMICA

Artur Sander Mourão

Orientadora

Prof.^a Dr.^a Cristiane Castro Gonçalves

Co-Orientador

Dr. Cassiano Costa e Castro - SGB

Monografia apresentada ao Departamento de Geologia da Escola de Minas da Universidade Federal de Ouro Preto como requisito parcial para avaliação da disciplina Trabalho de Conclusão de Curso – TCC 401, ano 2023

OURO PRETO

2023

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

Bibliotecário(a) Responsável: Sione Galvão Rodrigues - CRB6 / 2526

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO REITORIA ESCOLA DE MINAS DEPARTAMENTO DE GEOLOGIA

FOLHA DE APROVAÇÃO

Artur Sander Mourão

Reavaliação do potencial aurífero do Quadrilátero Ferrífero e adjacências: estudo fundamentado na prospecção geoquímica

Monografia apresentada ao Curso de Engenharia Geológica da Universidade Federal de Ouro Preto como requisito parcial para obtenção do título de Engenheiro Geólogo

Aprovada em 19 de dezembro de 2023

Membros da banca

Professora - Cristiane Castro Gonçalves - Orientadora - Universidade Federal de Ouro Preto Professor - Edison Tazava - Universidade Federal de Ouro Preto Professor - Lucas Pereira Leão - Universidade Federal de Ouro Preto

[Cristiane Castro Gonçalves, orientadora do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de Conclusão de Curso da UFOP em 11/01/2024

Documento assinado eletronicamente por **Cristiane Paula de Castro Goncalves**, **PROFESSOR DE MAGISTERIO SUPERIOR**, em 11/01/2024, às 18:09, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de</u> <u>outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site <u>http://sei.ufop.br/sei/controlador_externo.php?</u>

<u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **0651126** e o código CRC **C7944F96**.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.000182/2024-91

Primeiramente gostaria de agradecer aos meus pais Marta e Wagner, por todo incentivo, apoio, confiança, reconhecimento e amor incondicional, sem eles não chegaria onde cheguei.

Aos meus amigos da vida Arthur Lima, Maria Carolina Marcussi e Tulio Abrantes por todos aprendizados, trocas e companhia.

A Vanessa por todo o apoio, acolhimento e companheirismo durante essa etapa.

Aos meus orientadores Dr.^a Cristiane Castro Gonçalves e Dr. Cassiano Costa e Castro por toda paciência e disponibilidade pelo auxilio na construção desse trabalho.

Ao Dr. Eduardo Duarte Marques e Ms. Márcio Antônio Silva pela ajuda na compreensão da estatística e geologia regional do Quadrilátero Ferrífero.

Ao SGB por toda a estrutura que possibilitou a realização desse trabalho.

A UFOP, e principalmente ao Departamento de Geologia (DEGEO) e todos os funcionários por fazerem essa instituição fornecer um ensino público de qualidade contribuindo para formação de profissionais qualificados.

SUMÁRIO

 SUMÁRIO INDÍCE DE FIGURAS INDÍCE DE QUADROS 4 RESUMO 	xi xi xiii xiv
1 INTRODUÇÃO	1
1.1 APRESENTAÇÃO	1
1.2 LOCALIZAÇÃO	1
1.3 OBJETIVOS	2
1.4 JUSTIFICATIVA	3
1.5 MATERIAIS E MÉTODOS	3
1.5.1Revisão bibliográfica	3
1.5.2 Levantamento de banco de dados	4
1.5.3 Reanálise de amostras	5
1.5.4 Tratamento estatístico dos dados	8
1.5.5 Construção dos mapas geoquímicos	9
1.5.6 Divisão da área em domínios geológicos	
2 CONTEXTO GEOLÓGICO REGIONAL	14
2.1 CONTEXTO GEOTECTÔNICO	
2.1.1 O Cráton São Francisco	14
2.1.2 Província Mantiqueira	
2.2 OURO NO QUADRILÁTERO FERRÍFERO	
3 RESULTADOS	
3.1 CONCENTRADO DE BATEIA - ANÁLISES DOS GRÃOS DE OURO	
3.2 SEDIMENTO DE CORRENTE	
3.3 MAPAS GEOQUÍMICOS	
4 DISCUSSÕES	39
4.1 REANALISE DAS AMOSTRAS	39
4.2 LOG TRANSFORMAÇÃO DOS DADOS E AGRUPAMENTO AMOSTRAL	
4.3 ASSOCIAÇÃO DOS DADOS DE PROSPECÇÃO GEOQUÍMICA E RESGISTR OCORRENCIAS DE OURO	.OS DE
5 CONCLUSÃO	

INDÍCE DE FIGURAS

Figura 1.1: Mapa da localização da área de estudo2
Figura 1.2: Mapa da região de estudo com os pontos onde houve amostragem de sedimento de
corrente e a delimitação das bacias analisadas4
Figura 1.3: Mapa da região de estudo com os pontos onde houve amostragem de concentrado de bateia e a delimitação das bacias analisadas
Figura 1.4: Etapas de preparo laboratorial executadas no processo da catação de ouro6
Figura 1.5: A - Separação magnética feita com ímã de neodímio, retirando os minerais
paramagnéticos. B - Resultado final da separação entre todas as frações atraíveis e não atraíveis
aos ímãs de mão e de neodímio7
Figura 1.6: – Fração do concentrado de bateia magneticamente não atraível em placas de petri,
à lupa binocular para catação de grãos de ouro7
Figura 1.7: Exemplo de um diagrama Boxplot construído com dados log transformados9
Figura 1.8: Exemplo de um mapa construído utilizando a mesma escala de cor atribuída ao
diagrama Boxplot: concentração de Au em sedimentos de corrente para o domínio Passa Tempo
- Bonfim10
Figura 1.9: Mapa Geológico do Quadrilátero Ferrífero e seu Entorno, com a individualização
dos domínios estudados11
Figura 1.10: Área de estudo dividida em 9 domínios geológicos12
Figura 2.1: Mapa da divisão do Brasil em províncias geológicas14
Figura 2.2: Porção extremo sul do Cráton São Francisco (CSF) contendo o Quadrilátero
Ferrífero e o Cinturão Mineiro15
Figura 3.1: Mapa da área de estudo com os pontos onde foram encontrados grãos de ouro22
Figura 3.2: Mapa da área de estudo com os pontos destacando onde foram encontrados grãos
de ouro pela reanalise das amostras23
Figura 3.3: Boxplot's dos dados log transformados, para a área integrada e para cada domínio
individualizado25
Figura 3.4: Mapa integrado com todos os domínios geológicos, com bacias representando o teor
de Au em pph

Figura 3.6: Mapa de concentração de Au nas bacias do Domínio Belo Horizonte	29
Figura 3.7: Mapa de concentração de Au nas bacias do Domínio Santa Bárbara	30
Figura 3.8: Mapa de concentração de Au nas bacias do Domínio Cinturão Mineiro	31
Figura 3.9: Mapa de concentração de Au nas bacias do Domínio Guanhães	32
Figura 3.10: Mapa de concentração de Au nas bacias do Domínio Passa Tempo – Bonfim	33
Figura 3.11: Mapa de concentração de Au nas bacias do Domínio Divinópolis	34
Figura 3.12: Mapa de concentração de Au nas bacias do Domínio Juiz de Fora	35
Figura 3.13: Mapa de concentração de Au nas bacias do Domínio Mantiqueira	36

Quadro 1: Distribuição de grãos de ouro por domínios geológicos	24
Quadro 2: Distribuição dos valores em ppb's da mediana, intervalo interquartil, whisker	
superior e outliers para os Boxplots separados por domínio geológico e do mapa integrado	26
Quadro 3: Distribuição de grãos de ouro por domínio geológico	38

RESUMO

O Quadrilátero Ferrífero tem sido foco de vários estudos por muitos anos por conta de sua complexa história evolutiva e sua abundância em reservas minerais, dentre esses minerais há uma notável presença de ouro, visto isso é de extrema importância refinar os estudos sobre a presença de ouro nessa região, podendo ser descobertas novas áreas de interesse econômico. No presente trabalho foram reavaliadas 1.137 amostras de concentrados de bateia coletadas pelo Projeto Mapeamento Geoquímico do Quadrilátero Ferrífero e Seu Entorno - Serviço Geológico do Brasil (SGB/CPRM), que cobriu uma área que compreende quinze folhas na escala 1:100.000, totalizando uma cobertura geoquímica de 45.000km2, entre os anos de 2009 e 2011. As amostras que apresentaram grãos de ouro foram selecionadas para que sejam correlacionados aos dados de geoquímica prospectiva estatisticamente (sedimento de corrente) tratados estatisticamente e também com o registro de minas e ocorrências de ouro registrados. Para isso a área de estudo foi recortada em 9 domínios geológicos visando maximizar o background de Au para cada domínio o que poderia melhorar a correlação entre a ocorrência de grãos de ouro e a concentração de Au. Por meio da reanalise das amostras foi encontrado que houve um aumento na quantidade de grãos de ouro em 583%. Ao dividir a área de estudos por domínios geológicos foi possível obter melhore estimativas dos valores gerais de concentração de Au, e o seu significado dentro do contexto específico de cada domínio. Em seguida foi feito o tratamento estatístico dos dados onde foi possível obter valores de concentração para Au muito mais próximos de uma distribuição normal, o que facilitou a compreensão de cada domínio geológico nesse âmbito e que possibilitou uma melhor correlação entre esses dados, dos grãos obtidos em concentrados de bateia e das ocorrências de ouro já conhecidas. A reanalise dos concentrados de bateia trouxe como informação que o método de análise feito previamente não foi muito preciso, devido a grande diferença em número de grãos de ouro obtida neste trabalho. A divisão da área de estudo em domínios geológicos trouxe resultados muito interessantes, visto que houve um aumento do background de Au para alguns domínios. Além disso, foi possível estabelecer uma boa relação entre os registros de ouro já conhecidos com as áreas de alta concentração de Au e também com os concentrados de bateia positivos para ouro. Entretanto não foi possível observar uma clara relação entre os grãos de ouro e as regiões com alta concentração de Au.

Palavras chave: bateamento; concentrados de bateia; ouro; geoquímica; quadrilátero ferrífero.

CAPITULO 1

INTRODUÇÃO

1.1 APRESENTAÇÃO

Historicamente, sendo detentor de cerca de 40% da produção de ouro do Brasil, o Quadrilátero Ferrífero (QF) impulsiona Minas Gerais, desde o século XVII (Lobato *et al.* 2000, Vial *et al.* 2007). Uma evidência disso pode ser vista no relatório anual da Agência Nacional de mineração (ANM), do ano de 2022, que aponta o estado de Minas Gerais como o maior produtor de ouro no Brasil durante o ano de 2021, tendo como produção de minério bruto um total de 59.762.627 toneladas, que resultaram em 31.890 toneladas beneficiadas e comercializadas, gerando um valor total de 9.773.777.175 reais.

Nesse sentido, o projeto Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno, desenvolvido pelo Serviço Geológico do Brasil – SGB/CPRM, entre 2007 e 2014, teve como objetivo principal realizar o levantamento geoquímico sistemático, através da coleta de concentrados de bateia, sedimentos de corrente e solos dessa região de grande importância do ponto de vista de recursos minerais, visando reconhecer novas regiões com potencial para exploração mineral. Tal empreitada gerou um acervo significativo de amostras e um banco de dados geoquímicos robusto de concentrado de bateia, sedimento de corrente e solo. Dessa forma, esse trabalho visa explorar esse banco dados, e correlaciona-lo à caracterização de concentrados de bateia de amostras coletadas no âmbito do mesmo projeto, o que ainda não havia sido trabalhado. Objetiva-se nesse contexto contribuir para o melhor conhecimento e definição de áreas indicativas de novos depósitos auríferos na região do Quadrilátero Ferrífero.

No presente trabalho a sigla Au se refere ao elemento químico e a palavra ouro se refere ao mineral nativo.

1.2 LOCALIZAÇÃO

O Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno do SGB/CPRM (2014), projeto base para realização deste trabalho, foi realizado em uma área correspondente a quinze cartas topográficas de escala 1:100.000, totalizando uma área de 45.000 km². A área se encontra na região centro-sul do estado de Minas Gerais, abrangendo em toda a sua extensão a região metropolitana da grande Belo Horizonte, formando um quadrilátero enquadrado nas coordenadas 19°30'S/21°00'S e 42°30°W/45°00°W, como mostrado na figura 1.1. As principais cidades contidas na área de estudo são: Belo Horizonte, Divinópolis, Pará de Minas, Coronel Fabriciano, Ouro Preto, Entre Rios de Minas, Oliveira e Viçosa, tendo como principais vias de acesso as rodovias nacionais BR-040, BR-262, BR-381, BR-356 e as estaduais MG-430, MG-262.

Figura 1.1: Localização da área de estudo (imagem retirada de CPRM 2014).

1.3 OBJETIVOS

O trabalho teve os seguintes objetivos:

- Quantificar as ocorrências de grãos de ouro em concentrados de bateia coletados no Projeto Mapeamento Geoquímico do Quadrilátero Ferrífero do Serviço Geológico do Brasil – SGB/CPRM, utilizando seus tamanhos como parâmetro de referência;
- Maximizar os limiares de background de Au em sedimento de corrente utilizando-se agrupamento amostral por domínios geológicos;

 Correlacionar os dados de concentrados de bateia com os dados de sedimentos de corrente e com os registros de ocorrências de ouro na área.

1.4 JUSTIFICATIVA

O Quadrilátero Ferrífero possui extrema relevância no que diz respeito à mineralização de ouro, possuindo diversas minas, inclusive de classe mundial. Contudo, embora trabalhos que estudam os depósitos primários de ouro sejam abundantes, estudos no ambiente secundário, que façam uma análise de proveniência e dispersão clástica aluvionar, a partir de fontes primárias mineralizadas são praticamente inexistentes.

1.5 MATERIAIS E MÉTODOS

O desenvolvimento do trabalho baseou-se nas etapas a seguir.

1.5.1 Revisão bibliográfica

Foi feita uma revisão bibliográfica acerca da contextualização geológica do Cráton São Francisco, com foco nos domínios do Quadrilátero Ferrífero e Cinturão Mineiro e na Faixa Araçuaí, pertencente a Província Mantiqueira (Almeida 1977; Almeida & Hasui 1984; Alkmim & Marshak 1998; Teixeira 1985). Outro fator levado em conta nesta etapa foram os trabalhos relativos às ocorrências de ouro na área de estudo (Luchesi 1991; Vial *et al.* 2007; Lobato *et al.* 2000) que podem auxiliar na interpretação dos resultados obtidos no presente trabalho de conclusão de curso.

1.5.2 Levantamento de banco de dados

Utilizou-se da base de dados mineralógicos (concentrado de bateia) e geoquímicos prospectivos (sedimento de corrente) disponíveis tanto no projeto Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno, do SGB/CPRM (2014) quanto no projeto Estratigrafia, Arquitetura Crustal e Recursos Minerais do Quadrilátero Ferrífero (SGB/CPRM) (2021) (Fig: 1.2 e 1.3). Os resultados das análises feitas por ICPMS em sedimento de corrente para 53 elementos, no âmbito do projeto Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno (2014) foram organizados e atribuídos às suas respectivas bacias (Fig: 1.2), que também foram delimitadas para o referido projeto.

Figura 1.2: Mapa da região de estudo com os pontos onde houve amostragem de sedimento de corrente e a delimitação das bacias analisadas (CPRM 2014).

Figura 1.3: Mapa da região de estudo com os pontos onde houve amostragem de concentrado de bateia e a delimitação das bacias analisadas (CPRM 2014/2021).

Os dados utilizados do projeto Estratigrafia, Arquitetura Crustal e Recursos Minerais do Quadrilátero Ferrífero (SGB/CPRM) no ano de 2021 correspondem às informações coletadas em trabalho de campo que visou completar a amostragem da área total de estudo. Foram coletadas 56 amostras de concentrados de bateia, na folha Pará de Minas.

Para fins de gerar uma discussão entre os métodos de prospecção geoquímica aqui tratados e as conhecidas ocorrências de ouro na área utilizou-se duas *shapes* contendo pontos na área em que existem ou já existiram minas, garimpos e ocorrências de ouro. As *shapes* foram obtidas em Bizzi *et al.* 2003 e no portal do SGB no setor de recursos minerais.

1.5.3 Reanálise de amostras

Essa etapa teve como objetivo reanalisar as amostras de concentrados de bateia para as quais realizou-se análise quantitativa para ouro e diamante e semiquantitativa para o restante dos minerais, utilizando-se o método de quarteamento Jones, que possui um erro relativo de 3,4% (Allen 1981). Se

somado o peso total das 1.137 amostras coletadas foi de 208 Kg e a análise foi feita em um montante reduzido, total de 37Kg, o que representa 18,0% da massa total.

Desse modo das 1.137 amostras iniciais 124 não foram encontradas para a etapa da reanalise, e das restantes 77 já haviam sido completamente analisadas, restando de 936 amostras para corrente etapa.

A preparação das amostras para a reanalise foi feita de acordo com o fluxograma da Fig 1.3, no Laboratório de Análises Minerais (LAMIN) do Serviço Geológico do Brasil na cidade Caeté. Primeiramente realizou-se o processo de micro bateamento na alíquota da reserva da amostra (porção não analisada que foi separada no quarteamento *Jones*), com o objetivo de separar os minerais leves dos pesados (densidade maior do que 2,65 g/cm³), utilizando a água como meio separador. Como uma das etapas do trabalho é realizar a catação dos grãos de ouro, a porção analisada foi a dos minerais pesados.

Figura 1.4: Etapas de preparo laboratorial executadas no processo da catação de ouro.

A próxima etapa para a preparação das amostras consistiu na separação magnética, que foi realizada na Superintendência Regional do Serviço Geológico do Brasil em Belo Horizonte (SUREG-BH). Esse procedimento é feito em dois passos: primeiramente é passado um imã de mão sob a amostra retirando os minerais magnéticos, após feito isso é utilizado um ímã de neodímio para retirar os minerais paramagnéticos (Fig. 1.5A) e a fração a ser analisada é a fração que não foi retirada pelos imãs, devido a não susceptibilidade magnética do Au (Fig. 1.5B).

A etapa de catação dos grãos de Au também foi realizada na SUREG-BH. A fração das amostras analisadas foram colocadas em placas de petri e levadas à lupa binocular (Fig. 1.6) com sistema de captura de imagem de 12.3MP integrado, da marca OPTICAM, modelo OPZTS. A catação foi feita com o auxílio de pinças, e os grãos de ouro encontrados foram classificados como pequenos (< 0,5mm), médios (0,5mm-1mm) ou grandes (>1mm) e separadas em microtubos *Eppendorf* 2ml.

Figura 1.5: A - Separação magnética feita com ímã de neodímio, retirando os minerais paramagnéticos. B - Resultado final da separação entre todas as frações atraíveis e não atraíveis aos ímãs de mão e de neodímio.

Figura 1.6: – Fração do concentrado de bateia magneticamente não atraível em placas de petri, à lupa binocular para catação de grãos de ouro.

1.5.4 Tratamento estatístico dos dados

Os dados de geoquímica (sedimento de corrente) das 3572 bacias foram analisados segundo os nove domínios geológicos individualizados (abordados no tópico 1.5.6). O tratamento estatístico desses dados foi feito para Au através dos softwares Excel® *2013* e *Statistica*® 12. Para isso além da transformação logarítmica dos dados foram utilizadas técnicas estatísticas univariadas: testes de *Shapiro-Wilk* e diagramas Boxplox.

O teste de Shapiro-Wilk (Shapiro e Wilk 1965) é um teste utilizado para a verificação de um conjunto de dados, e traz como resposta se ele representa uma distribuição normal ou não. Para esse trabalho foi utilizado um nível de significância de 0,05 ($p_{value} < 0,05$) para os dados, aplicado tanto nos dados brutos, quanto na versão log transformada dos mesmos.

O intuito de fazer a transformação dos dados foi obter valores menos discrepantes e os aproximar de uma distribuição normal para os conjuntos de dados que fossem necessários, assim como sugerido por Reimann *et al.* (2008). A aplicação desta técnica em dados geoquímicos é também sugerida por Lapworth *et al.* (2012) em casos como o deste trabalho onde há multipopulações de dados, devido à alta variação da geologia na área. Outra transformação sugerida por Reimann *et al.* (2008) feita neste trabalho é a mudança dos valores que estão abaixo do limite de detecção (LDL) do método (<0.2 ppb), em que foram tratados aqui como 0,5 * LDL (0.1ppb).

O *Boxplot* é um diagrama criado por Tukey (1977), como uma representação gráfica que reúne a distribuição de um conjunto de dados. É muito usado para ilustrar uma distribuição, tendência central, variabilidade e a existência de valores atípicos nos dados analisados. O diagrama é dividido em 5 elementos principais: a mediana, o primeiro quartil, o terceiro quartil, os limites inferior e superior e os valores atípicos ou *outliers* (figura 1.6). O cálculo dos limites inferior e superior é feito a partir do intervalo interquartil (IQR = Q3 – Q1), em que o primeiro é dado por Q1-1,5*(IQR) e o segundo é dado por Q3+1,5*IQR. Os valores do conjunto de dados que se localizam acima do limite superior ou abaixo do limite inferior são consideração como *outliers*, que são divididos como de primeira e segunda ordem a partir da formula Q3 + 3* (IQR), em que os valores de segunda ordem estão nos valores acima dessa formula e os de primeira ordem abaixo.

Figura 1.7: Exemplo de um diagrama *Boxplot* construído com dados log transformados (Reimann, *et al.* 2008 modificado).

Os *outliers* podem indicar eventos raros, erros de medição, análise ou discrepâncias significativas nos dados (Tukey 1977). Graficamente são representados por pontos ou asteriscos para além dos intervalos do *Boxplot*. Dessa forma é possível dizer que eles são grandes aliados na análise de dados, visto que podem representar padrões incomuns ou fenômenos extraordinários presentes dos dados.

Para um melhor entendimento dos dados, os valores dos logs *Boxplot* passaram por uma retro transformação, sendo colocados na equação $X=10^{(número log transformado)}$ retornando-os para a forma bruta. Pensando na interpretação dos dados, as medianas foram tratadas aqui como o background de Au. E para fins de comparação foi utilizado a média de Au na costa continental superior (UCC - upper continental crust) de 1,5 ppb obtida no trabalho de Rudnick & Gao (2014).

1.5.5 Construção dos mapas geoquímicos

Para a construção dos mapas geoquímicos foram utilizados os dados do projeto Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno, do SGB/CPRM (2014), utilizando-se os intervalos dos respectivos diagramas log *Boxplot* para cada domínio geológico, atribuindo uma escala de valores de concentração para as bacias (Fig 1.7). Os valores correspondentes aos *outliers* negativos, limite inferior, intervalo interquartil e limite superior foram coloridos em uma escala gradual de verde, indo do mais escuro para o mais claro conforme o valor aumenta, e para os *outliers* as cores foram amarelas quando de primeira ordem e laranja para os de segunda ordem. Para uma melhor visualização e compreensão dos mapas, os valores atribuídos às bacias foram os originais.

Figura 1.8: Exemplo de um mapa construído utilizando a mesma escala de cor atribuída ao diagrama *Boxplot*: concentração de Au em sedimentos de corrente para o domínio Passa Tempo - Bonfim.

A confecção dos mapas buscou ilustrar os backgrounds geoquímicos para Au (representados aqui pela mediana do conjunto de dados), e mostrar a distribuição de grãos de ouro aluvionar por domínios geológicos. Como os dados foram tratados separadamente para cada domínio, isso permitiu que cada região obtivesse seus próprios valores indicativos de concentração regulares e anômalos.

1.5.6 Divisão da área em domínios geológicos

Para correlacionar as ocorrências de grãos de ouro com os dados obtidos pela análise do sedimento de corrente foi feita a divisão da área do estudo em nove domínios geológicos (Figs: 1.8 e 1.9). Tomou-se como base o mapa litológico de Silva *et al.* (2020) e o mapa Domínios/Blocos tectônicos no Quadrilátero Ferrífero e seu entorno de Silva *et al.* (2021), todavia o mapa não ocupava toda a área de estudo sendo necessária a ampliação do mesmo. A escolha do referido mapa como referência se deu pela necessidade de seccionar a região para auxiliar na interpretação dos dados, uma vez que as regiões estão divididas por características em comum que serão citadas a seguir.

Figura 1.9: Mapa Geológico do Quadrilátero Ferrífero e seu Entorno por Silva *et al.* (2021), com a individualização dos domínios estudados de acordo com suas idades geológicas e com ajuda da gamaespectometria.

Figura 1.10: Área de estudo dividida em 9 domínios geológicos, sendo eles: Bação, Belo Horizonte, Cinturão Mineiro, Divinópolis, Guanhães, Juiz de Fora, Mantiqueira, Passa Tempo – Bomfim e Santa Bárbara. Também consta no mapa 6 Zonas de Cisalhamento: Abre Campo, Dom Silvério, Cláudio, Jeceaba Bom Sucesso, Lenheiros e Congonhas Itaverava (modificado de Silva *et al.* 2021).

O mapa Domínios/Blocos tectônicos no Quadrilátero Ferrífero e seu entorno de Silva et al. (2021), definiu os domínios geológicos com base em suas idades e com ajuda da gamaespectometria. O mapa cobre a área definida pelos domínios Divinópolis, Belo Horizonte, Passa tempo – Bonfim, Bação, partes do Cinturão Mineiro, Santa Bárbara e Guanhães. Os três primeiros domínios foram individualizados por serem núcleos metamórficos de idades meso-neoarqueanos (Machado 1992; Machado & Carneiro 1992; Noce 1995; Melo - Silva 2020; Campos et al. 2003).

O domínio Bação foi separado dos domínios arredores pois apesar de possuír rochas Mesoarqueanas no seu núcleo formado pelo Complexo Bação a área abriga rochas mais jovens que as áreas vizinhas, sendo rochas do Supergrupo Rio das Velhas de idades Neoarquenas e do Supergrupo Minas de idades Paleoproterozoicas (Dorr 1969; Machado *et al.* 1992; Machado & Carneiro 1992; Lana *et al.* 2013; Romano *et al.* 2013; Farina *et al.* 2015a).

O Dominio Santa Bárbara foi definido pela ocorrência de rochas com as idades mais antigas da região, datadas como Paleoarqueanas, por Machado *et al.* (1992). O Domínio Guanhães foi definido a partir das rochas da Suíte Borrachudos e Grupo Guanhães, com idades Estaterianas (Dussin *et al.* 2000; Magalhães *et al.* 2018). O Cinturão Mineiro, definido por Teixeira (1985), foi delimitado no mapa como a região de ocorrência de rochas Paleoproterozóicas, ao Sul das Zonas de Cisalhamento Geceaba-Bom Sucesso e Congonhas-Itaverava, com o acréscimo do Gnaisse Caratinga (*e.g* Ávila *et al.* 2010, 2014).

Para definir o restante da área foram utilizados critérios semelhantes na individualização dos domínios. No domínio Guanhães, foi utilizado o mesmo critério de Silva (2021), expandindo os limites para onde afloram rochas da suíte Borrachudos e da Formação Serra Negra de Guanhães. Para o Cinturão Mineiro foi usada a definição que o enquadra entre três zonas de cisalhamento: a norte, Zona de Cisalhamento Jeceaba-Bom Sucesso, a leste, Zona de Cisalhamento Congonhas-Itaverava e a sul a Zona de Cisalhamento Lenheiros (Campos 2004; Noce *et al.* 2007), além da inclusão do Gnaisse Caratinga e Suíte Ressaquinha a sudeste da Zona de Cisalhamento Lenheiros. Para completar a área do domínio intitulado como Santa Bárbara, foram incluídos alguns terrenos a leste, até a região marcada pela Zona de Cisalhamento Dom Silvério. A maior parte desses terrenos são intitulados como complexos e unidades Santo Antônio do Pirapetinga, de idades Arqueanas (Raposo 1991). O domínio Mantiqueira foi definido por rochas de idades Riacianas (*e.g. Silva et al.* 2002), localizadas entre duas zonas de cisalhamento, a Zona de Cisalhamento Dom Silvério e a Zona de Cisalhamento Abre Campo, que por sua vez marca o início do domínio Juiz de Fora.

A partir da divisão de domínios proposta nesse item, os valores de concentração para Au das 3572 bacias foram tratadas e agrupadas segundo a divisão proposta. Após feito isso foram gerados os diagramas Boxplot tratados no item 1.5.4 para a interpretação dos dados.

CAPÍTULO 2

CONTEXTO GEOLÓGICO REGIONAL

2.1 CONTEXTO GEOTECTÔNICO

A área de estudo situa-se numa faixa de terra que abrange terrenos do extremo sul do Cráton São Francisco (CSF) (Almeida 1981) e da Faixa Araçuaí, pertencente à Província Mantiqueira (Almeida & Hasui 1984) (Fig. 2.1).

2.1.1 O Cráton São Francisco

Definido por Almeida (1977), o Cráton São Francisco (CSF) é um terreno que possuía uma continuidade com o Cráton do Congo, hoje situado no continente africano, cuja separação ocorreu durante o evento de abertura do Atlântico Sul (Alkmim & Marshak 1998). Geograficamente, ele atravessa os estados da Bahia, Minas Gerais, Goiás, Tocantins, Piauí e Sergipe. Seus limites geológicos são formados pelo oceano Atlântico a leste, e nas porções continentais é limitado por cinturões orogênicos, com idades de deformação Neoproterozóicas, denominados Araçuaí, Brasília, Rio Preto, Riacho do Pontal e Sergipano (Almeida 1977; 1981).

Figura 2.1: Divisão do Brasil em províncias geológicas, com destaque para o Cráton São Francisco e a Província Mantiqueira, com a localização da área de estudo em vermelho (mapa produzido utilizando a base de dados de Bizzi *et al.* 2003).

Ao extremo sul do Cráton São Francisco (CSF) (Fig. 2.2) está localizado o Quadrilátero Ferrífero (QF) (Dorr 1969), que se destaca como uma das mais importantes províncias minerais do Brasil, hospedando importantes mineralizações de ouro e ferro, de classe mundial (Pinto & Silva 2014; Lobato *et al.* 2018). O QF, limitado a leste pelo orógeno Araçuaí e ao sudoeste pelo Cinturão Mineiro (Teixeira 1985), é uma região marcada por possuir estruturas regionais representadas por dobras e falhas com orientação NE-SW, denominadas Homoclinal do Curral e Sinclinal Gandarela em sua seção mais ao norte, enquanto ao sul, essas estruturas regionais têm orientações N-S, como o Sinclinal Moeda e E-W como o Sinclinal Dom Bosco (Dorr 1969; Marshak *et al.* 1997; Alkmim & Marshak 1998; Farina *et al.* 2016; Aguilar *et al.* 2017; Alkmim & Teixera 2017).

Figura 2.2: Porção extremo sul do Cráton São Francisco (CSF) contendo o Quadrilátero Ferrífero e o Cinturão Mineiro (imagem retirada de Teixeira *et al.* 2017).

O QF, de maneira geral, é estruturalmente organizado em estruturas de domos e quilhas (Chemale *et al.* 1994; Marshak *et al.* 1997; Alkmim & Marshak 1998; Alkmim & Martins-Neto 2012). Os domos são compostos por complexos granito-gnáissicos de idade arqueana separados em Complexos Bação, Belo Horizonte, Santa Bárbara e Bonfim (Machado *et al.* 1992; Machado & Carneiro 1992; Lana *et al.* 2013; Romano *et al.* 2013; Farina *et al.* 2015a). As estruturas do tipo quilhas compreendem segmentos de rochas supracrustais que ocupam espaço entre os domos formados pelos complexos

metamórficos. Essas supracrustais são separadas em três sequencias: 1) Supergrupo Rio das Velhas; 2) Supergrupo Minas; 3) Grupo Itacolomi (Dorr 1969).

O Supergrupo Rio das Velhas possui associações do tipo *greenstone belts*, sedimentos clásticos fluviais e marinhos e sequência do tipo flysch e molassa (Dorr 1969).

O Supergrupo Minas é formado por um pacote de 6 km de rochas clásticas e químicas e formam uma inconformidade com o *greenstone belt* arqueano (Dorr 1969; Renger *et al.* 1995; Machado *et al.* 1996; Hartmann *et al.* 2006). Por fim tem-se o grupo Itacolomi que, de acordo com Alkmim & Martins-Neto (2012), é a unidade mais jovem da sequência supracrustal, possui uma espessura de até 2 km de sedimentos aluviais, separados do Supergrupo Minas por uma inconformidade regional.

No trabalho de Endo et.al. (2019) foi elaborado uma nova proposta para a estratigrafia e o arcabouço estrutural do Quadrilátero Ferrífero (QF), em que são acrescentadas algumas unidades e outras já existentes foram modificadas. Houve também a proposta de modificação do modelo de domos e quilhas para o de sistema de nappes.

No novo empilhamento proposto foram acrescentados ao modelo anterior o Supergrupo Estrada Real formado pelo Grupo Sabará (que antes pertencia ao Supergrupo Minas), Grupo Itacolomi e Grupo Barbacena. Houve também o acréscimo do Supergrupo Espinhaço e das unidades Cenozoicas, representadas por depósitos sedimentares. Enquanto ao sistema de nappes eles foram divididos em Nappe Curral e Sistema de Nappes Ouro Preto.

Também situado no extremo sul do CSF está o Cinturão mineiro (Fig. 2.2) definido por Teixeira (1985). Esse terreno é enquadrado por três zonas de cisalhamento: a norte, Zona de Cisalhamento Jeceaba-Bom Sucesso, a leste, Zona de Cisalhamento Congonhas-Itaverava e a sul a Zona de Cisalhamento Lenheiros (Campos 2004; Noce *et al.* 2007). É caracterizado por possuir rochas de idades paleoproterozóicas, entre 2.47 e 2.0 Ga (Ávila *et al.* 2010, 2014; Seixas *et al.* 2012, 2013, Lopes *et al.* 2020).

A origem do cinturão mineiro é interpretada como uma faixa móvel paleoproterozóica (Teixeira 1985) relacionada a momentos tardios da evolução da Bacia Minas. Essa faixa encontra-se estruturada nas direções ENE-WSW. Sua evolução é considerada predominantemente ensiálica (Teixeira & Figueiredo 1991) em que se admitem diversos estágios de retrabalhamento crustal de antigos núcleos continentais com uma intensa formação de crosta continental (Ávila 2000).

As rochas do Cinturão mineiro podem ser segmentadas entre supracrustais formadas por sequências metavulcanossedimentares do tipo *greenstone belt* e rochas graníticas (Noce *et al.* 2000; Seixas *et al.* 2012; 2013; Ávila *et al.* 2014; Barbosa 2015; Teixeira *et al.* 2015). As supracrustais possuem idades paleoproterozóicas datadas entre 2350 e 2100 Ma, afloram em uma grande variedade,

sendo compostos por komatiitos, formações ferríferas, mármores, pelitos, filitos além de anfibolitos, gondidos e quartzitos (Ávila *et al.* 2012; Ávila *et al.* 2014; Corrêa Neto *et al.* 2012; Teixeira *et al.* 2015).

Os corpos graníticos, normalmente de gênese calcioalcalina, possuem uma grande variedade litológica, tendo destaque para o Batólito Cassiterita e as Suítes lagoa Dourada e Resende Costa que predominam os tonalitos e trondhjemito (Lopes *et al.* 2020, Seixas *et al.* 2012; Teixeira *et al.* 2015) e para a Suíte Alto Maranhão que é formada principalmente por tonalitos, com texturas tipicamente ígneas (Nahas *et al.* 2023, Seixas *et al.* 2013, Vieira *et al.* 2020).

2.1.2 Província Mantiqueira

A Província Mantiqueira, definida por Almeida *et al.* (1981), é uma entidade geotectônica deformada durante o ciclo orogênico Brasiliano, possui cerca de 700.000km², é limitada a leste pelo oceano Atlântico Sul e na porção continental faz fronteira com o Cráton São Francisco (CSF), extremidade sul da faixa Brasília e com coberturas da Bacia do Paraná. Há uma porção localizada nos estados do Rio Grande do Sul e Santa Catarina onde faz limite a leste com a Província Margem Continental Leste e tem continuidade para o Uruguai onde tem limites com o Cráton Rio de La Plata.

A Província Mantiqueira é compartimentada em três cinturões orogênicos: o Araçuaí na porção norte, Ribeira na parte central e Tijucas ao Sul (Hasui 2010), sendo que apenas o primeiro deles faz parte da área de estudo. A Faixa Araçuaí é situada no limite continental leste do Cráton São Francisco, e constituiu parte do Orógeno Araçuaí-Congo, no contexto de Gondwana (Porada 1989; Pedrosa-Soares *et al.* 1992). O Orógeno foi formado a partir de um confinamento entre os Crátons São Francisco e Congo, sendo que o seu limite leste era dado pelo Cráton do Congo (Pedrosa-Soares *et al.* 2001, 2007).

O Orógeno Araçuaí-congo é compartimentado em 10 domínios de acordo com Alkmim *et al.* (2006): i) o Cinturão de Cavalgamentos da Serra do Espinhaço Meridional; ii) a Zona de Cisalhamento da Chapada Acauã, iii) a zona de dobramentos de Salinas; iv) o Corredor Transpressivo de Minas Novas; v) a saliência do Rio Pardo e sua zona de interação com o Aulacógeno do Paramirim; vi) o Bloco de Guanhães; vii) a Zona de Cisalhamento de Dom Silvério e estruturas associadas; viii) a Zona de Cisalhamento de Itapebi e estruturas associadas; ix) o núcleo cristalino (i.e., a zona interna de alto grau que representa o núcleo do orógeno); e x) o Cinturão Oeste-Congolês. Dos dez domínios citados acima, nove fazem parte da Faixa Araçuaí, o que somado ao fato que aproximadamente 65% da área do Orógeno Araçuaí-Congo se situa em sua porção ocidental, levou à denominação da área como Orógeno Araçuaí, por Pedrosa-Soares *et al.* (2007, 2008).

2.2 OURO NO QUADRILÁTERO FERRÍFERO

Como já apontado no presente trabalho, o QF tem suma importância na produção do ouro no Brasil. Serão apresentados a seguir alguns exemplos dos principais depósitos de ouro da região e suas diversas formas de ocorrência.

Ouro Paladiado

Chamado também como Jacutinga (Hussak 1906), essa classe especial de ouro se faz presente em uma faixa descontínua, entre a região das cidades de Mariana e Itabira - MG, onde são encontradas diversas minas abandonadas. Os depósitos de Jacutinga da região leste do QF ocorrem em veio e são restritos às camadas de itabirito da Formação Cauê (Cabral *et al.* 2001, 2002; Galbiatti *et al.*, 2007). Estudos apontam que a acumulação desse ouro se deu devido a processos hidrotermais, controlados por elementos estruturais (*e.g.* Olivo *et al.* 1995 e Galbiatti *et al.* 2007). Esses corpos minerais formam veios ricos em ouro e elementos do grupo da platina (EGP), os quais são encontrados em associação com minerais como hematita especular, quartzo, talco e/ou caolinita (*e.g.* Hussak 1906; Cabral 1996, 2006).

Ouro no lineamento Congonhas-Itaverava

Dentre as estruturas presentes na área de estudo, destaca-se o Lineamento Congonhas-Itaverava (Seixas 1988) como importante hospedeiro de mineralizações auríferas. Correa (2012) aponta as porções mineralizadas como preferencialmente localizadas na denominada pelo mesmo como unidade metavulcânica máfica, em zonas de cisalhamento dúcteis a dúcteis-rúpteis, subparalelas ao acamamento original, associadas a metapelitos, matabasaltos, BIF'S e metacherts. Nota-se marcada alteração hidrotermal, dada por cloritização, silicificação e seriticização, além da intensa sulfetação, trazendo minerais como pirrotita, arsenopirita, calcopirita e pirita. O autor classifica o ouro como sendo orogênico, por ter ocorrência relacionada a eventos compressivos, dado que se localiza em uma zona de cisalhamento, como também pela alteração e zoneamento hidrotermal.

Ouro no Greenstone belt Rio das Velhas

O Supergrupo Rio das Velhas é conhecido por hospedar várias jazidas de ouro, do tipo orogênico no QF. Aponta-se que as rochas hospedeiras mais comuns, nos principais depósitos, por exemplo Morro Velho, Cuiabá e São Bento, são as formações ferríferas (BIF's), rochas metavulcanoclásticas/metatufáceas hidrotermalizadas (lapa seca), depósitos turbidíticos e máficas (*e.g.* Chauvet, 1994; Lobato *et al.*, 2001b; Vial *et al.*, 2007; Ribeiro *et al.* 2015).

Em Morro velho, o minério se hospeda em produto hidrotermal, cisalhado de rochas metavulcanoclásticas/metatufáceas, com composição que varia de dacítica a andesitica, podendo até ser basáltica ("lapa seca"). Os corpos de minério consistem em veios de quartzo fumê com ouro livre e

sulfetados, podendo ser maciços ou disseminados. Os sulfetos dominantes são a pirita, arsenopirita e calcopirita. Outro exemplo de depósito hospedado em lapa seca é a mina de Bela Fama, em que o ouro ocorre associado a veios de quartzo em uma zona de alteração hidrotermal e os principais minerais de minério são: pirita, esfalerita, galena e calcopirita (Vial *et al.*, 2007).

Na cidade de Sabará, onde está a mina de Cuiabá, considerada a maior mina subterrânea do Brasil, o principal estilo de mineralização é em BIF's, onde os carbonatos presentes são substituídos por sulfetos, principalmente a pirita, arsenopirita e pirrotita (Lobato *et al.*, 2001b). Em menor proporção, há mineralização nas zonas de cisalhamento dúcteis hospedadas em rochas máficas, como também veios quarzto-carbonáticos sulfetados, associados com unidade metavulcânica máfica (Ribeiro-Rodrigues *et al*, 2007; Vitorino 2017). A mineralização se encontra nas zonas de alteração hidrotermal, tanto na porção mais proximal a alteração hidrotermal que registra carbonatação e sericitização quanto na zona mais distal, que registra cloritização (Fernandes *et al.* 2016). Há também mineralização hospedada em formação ferrífera bandada na mina de São Bento, onde a mineralização ocorre no contato inferior entre a formação ferrífera bandada São Bento (Martins Pereira (1995), e xistos carbonosos e pelíticos. A mineralização está associada a veios de quartzo sulfetados que ocorrem de quatro maneiras distintas. A principal delas é a associação com arsenopirita, seguida de pirita e pirrotita, sendo que o ouro ocorre também livre na ganga e em magnetita (Martins Pereira *et al.* 2007).

Um importante distrito aurífero é o lineamento Córrego do Sítio (Lima 2011) que corresponde a uma zona de cisalhamento que controla 14 depósitos. Dentre os mais importantes estão Laranjeiras, Cachorro Bravo e Carvoaria velha (Lima 2011; Roncato *et al.* 2015). Em laranjeiras as rochas hospedeiras se tratam de uma associação metaturbidítica formada por metagrauvacas e filito carbonoso subordinado, que passaram por silicificação, carbonatação, seritização e sulfetação, como produto de alteração hidrotermal. De acordo com Ribeiro *et al.* (2015) a mineralização se dá principalmente em veios de quartzo-carbonato-sulfetos tendo como principais minerais associados a arsenopirita, pirita, berthierita e pirrotita.

Outra mineralização importante nesse mesmo contexto fica localizada na Anticlinal de Mariana, uma faixa de 23 Km de Ouro Preto até Antônio Pereira, onde diversas minas já operaram, entre elas, a mina do Veloso, Chico Rei, Bom Jesus das Flores, Taquaral, Mata Cavalo, Morro Redondo, Morro Santana, Rocinha, Antônio Pereira e Passagem de Mariana. Estratigraficamente a zona mineralizada se localiza nos itabiritos da Formação Cauê (Vial *et al.* 2007). A principal mina desse depósito foi Passagem de Mariana (estudada por diversos autores, *e.g* Hussak, 1898; Ferrand, 1913; Maia, 1944; Chauvet, 1994; Vial *et al.* 1988, 2007), que produziu 60 toneladas de Ouro entre o final do século 17 e 1954. Vial *et al.* (2007) aponta que as principais rochas hospedeiras desse depósito são itabiritos, filitos sericitico-grafitosos, calcário, quartzo-carbonato-biotita-sericita xisto e quartzito sericitico. Os autores
definem que as mineralizações de ouro ocorrem associadas a veios compostos por quartzo, ankerita, sulfetos e turmalinas de maneira que se encontram inclusos em sulfetos, com destaque para a arsenopirita. Como produto de alteração hidrotermal há silicificação, turmalinização e sulfetação.

Ouro no Greenstone belt Pitangui

O *Greenstone belt* Pitangui é localizado na porção noroeste do QF e apresenta idades correlatas ao *Greenstone belt* Rio Das Velhas (Romano, 2007; Brando Soares *et al.* 2017). Há três principais depósitos de ouro na região, denominados de São Sebastião, Pitangui e Turmalina.

De acordo com El-Rassi & Voz (2014), o depósito de São Sebastião é definido como *stradabound* e hospedado em BIF's, com mineralização gerada por substituição disseminada. O depósito registra alteração hidrotermal envolvendo a faixa mineralizada que sofreu sulfetação, tendo como principais minerais sulfetados a arsenopirita e pirita. As camadas mineralizadas se intercalam com metakomatiitos, metabasaltos e em menor frequência com metagrauvacas e metavulcanicas.

No depósito de Pitangui, a mineralização é hospedada em metagrauvacas e metapelitos, e é estruturalmente controlada por zonas de cisalhamento locais e regionais de direção NW-SE. As zonas mineralizadas estão em veios quartzo-carbonáticos e em sulfetos disseminados nas rochas hospedeiras e nos veios quartzo-carbonáticos associados. Em relação ao hidrotermalismo, há formação de halos ao longo da zona mineralizada em que na parte mais externa há cloritização e na parte mais interna carbonatação e seritização. O ouro ocorre nas zonas sulfetadas, associado majoritariamente a pirita e pirrotita, mas também podendo se associar a rutilo, galena, esfalerita e monazita (Maurer *et al.* 2021).

O deposito de ouro de Turmalina é controlado por zonas de cisalhamento e hospedado em rochas metassedimentares e metavulcanicas, das formações Rio Pará e Rio São João. O depósito registra alteração hidrotermal sendo a silicificação o processo majoritário, mas também há presença de sulfetação, carbonatação, seriticização, cloritização e turmalinização. A mineralização é associada a sulfetos e dividida em 2 estilos: (i) disseminada em grãos de quarzto + sulfetos paralelos a S1 ou em sulfetos alocados entre planos de clivagem (S2) (ii) incluso em agregados de sulfetos nas bordas ou interior de veios. Os principais sulfetos relacionados a mineralização são a pirrotita, arsenopirita, lollingita, calcopirita e pirita (Fabricio-Silva et, al. 2019; 2021).

Ouro em metaconglomerados piritosos.

Há depósitos de ouro na Formação Moeda hospedados em metaconglomerados que são descritos por exemplo por Minter *et al* (1990, 2006). As rochas sedimentares da formação moeda incluem quartzito, metaconglomerado e filito. Metaconglomerados em lentes de espessura métrica, e quartzitos, ambos de origem aluvionar, representam paleocanais por sobre superfície de aplainamento nos xistos arqueanos do Grupo Nova Lima (por exemplo, Villaca 1981; Minter *et al*. 1990). Sua mineralização

está associada majoritariamente a sulfetos, dentre eles: pirita, arsenopirita, calcopirita, pirrotita, pentlandita e covelita. Dentre essas rochas as que se destacam por serem mineralizadas são os ortoconglomerados clasto-suportados possuindo ouro e urânrio, sendo os sinclinais Moeda, Gandarela e Ouro Fino destaque por hospedar essas mineralizações (Minter *et al* 1990). Ainda em Minter *et al* (1990) é descrito que essas rochas apresentam seixos majoritariamente bem arredondados, sendo de quartizos, quartzo leitoso ou fumê, por vezes compostos por chert ou formação ferrífera bandada. Sua matriz é formada por quartzo, sericita, pirita, e matéria carbonosa em alguns níveis mineralizados. Como mineralogia acessória há presença de pirrofilita e clorita, e nos filmes micáceos podem ser encontrados zircão, xenotímio, rutilo e sulfetos.

Esses depósitos são comparados com os modified paleoplacers do Witwatersand em especial os Ventersdorp Contact Reef (VCR) na Africa do Sul, porém sua relação ainda é um pouco controvérsia. Por exemplo em Koglin *et al* (2010), é relatado que apesar de possuir características sedimentologicas e de mineralização semelhantes à dos conglomerados da Africa do Sul citados acima há um hiato de +-130 Ma de anos entre as duas formações. A diferença de idade é notada de acordo com as idades obtidas por Ranger *et al* (1994) para a base da Formação Moeda 2580 Ma e 2714 + 8 Ma para o VCR (Frimmel 2005). Há também a hipóstese de Pires (2005) em que parte da mineralização tem origens em uma modificação hidrotermal dos paleoplacers ou em depósitos hidrotermais típicos em que há deposição do ouro em zonas de cisalhamento devido a matéria carbonosa e minerais ferro-magnesianos.

CAPÍTULO 3

RESULTADOS

3.1 CONCENTRADO DE BATEIA - ANÁLISES DOS GRÃOS DE OURO

Para o projeto Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno, do SGB/CPRM (2014) foram analisadas 1137 amostras, coletadas com o intuito de fazer a contagem semiquantitativa para minerais abundantes e quantitativa para minerais escassos. O resultado obtido (Fig. 3.1) foi que das 1.137 amostras coletadas, 75 continham ouro, contabilizando um total de 220 grãos, sendo 192 grãos pequenos (<0,5mm), 26 médios (0,5mm < 1,0mm) e 2 grandes (> 1,0mm). O resultado produzido pela reanalise realizada nesse estudo, de 936 amostras (Fig. 3.2) foi de 758 grãos de ouro, contidos em 200 amostras, sendo 622 grãos pequenos, 111 médios e 25 grandes. Por fim, se somados os resultados das duas analises foram encontrados 978 grãos, em 247 amostras distintas, sendo 814 grãos pequenos, 137 médios e 27 grandes.

Figura 3.1: Mapa da área de estudo com os pontos destacados de onde foram encontrados grão de ouro pelo Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno, do Serviço Geológico do Brasil (SGB/CPRM) (2014) (mapa produzido utilizando a base de dados de Bizzi *et al.* 2003 e CPRM 2014).

Além disso, foram acrescentados ao conjunto de dados para concentrados de bateia, os dados do campo de complementação da amostragem, na porção noroeste da folha de Pará de Minas, realizado pelo projeto Estratigrafia, Arquitetura Crustal e Recursos Minerais do Quadrilátero Ferrífero, em meados 2021. O resultado desse campo foi a coleta de 56 amostras (Fig. 3.2), das quais 39 mostraram grãos de ouro, totalizando 774 grãos, sendo 761 pequenos e 13 médios.

Figura 3.2: Mapa da área de estudo com os pontos em amarelo destacando onde foram encontrados grãos de ouro pela reanalise das amostras, e em vermelho os pontos de coleta, segundo indicação de ocorrência de ouro do projeto Estratigrafia, Arquitetura Crustal e Recursos Minerais do Quadrilátero Ferrífero (SGB/CPRM) (2021) (mapa produzido utilizando a base de dados de Bizzi *et al.* 2003 e CPRM 2014).

A ocorrência de grãos de ouro foi então analisada segundo os domínios geológicos apresentados no item 1.5.6, o que está sumarizado no quadro 1.

Domínio Geológico	NE -	NE-	%NE	N _{gp}	Nm	Ng	Tg	% Grãos
	СВ	Graos	com Grãos					de Au
Bação	54	17	31%	62	8	1	71	4%
Belo Horizonte	238	67	28%	844	27	0	871	50%
Cinturão Mineiro	150	47	31%	224	52	6	302	17%
Divinópolis	110	12	11%	17	4	1	22	1%
Guanhães	78	21	27%	58	9	2	69	4%
Juiz de Fora	39	8	20%	12	4	1	17	1%
Mantiqueira	153	17	11%	25	0	1	26	1,5%
Passa Tempo Bonfim	157	27	17%	53	11	5	69	4%
Santa Bárbara	206	71	34%	280	35	10	325	18,50%
Total de grãos da área	1194	287	24%	1575	150	27	1752	101

Quadro 1: Distribuição de grãos de ouro por domínios geológicos (NE: número de estações; CB: concentrado de bateia; N_{gp}: número de grãos pequenos; Nm: número de grãos médios; Ng: número de grãos grandes: Tg: total de grãos).

3.2 SEDIMENTO DE CORRENTE

O *Boxplot* para os dados de sedimento de corrente de Au da área integrada apresentou muitos valores extremos e uma distribuição no intervalo interquartil e os limites inferiores e superiores muito restrita. Corroborando com o *Boxplot*, o teste de *Shapiro Wilk* aferiu que de fato o conjunto de dados não apresenta uma distribuição normal (p<0,05).

Seguindo o método de Reimann *et al.* (2008) foi feita a transformação logarítmica no conjunto de dados tratados acima e posteriormente construído um *Boxplot* para o mesmo (Fig. 3.3). O Log-*Boxplot* apresenta um conjunto de dados menos discrepantes que o primeiro, visto que houve o aumento da amplitude do intervalo interquartil e dos limites inferiores e superiores, além da diminuição dos *outliers*. Para fins de conferência foi realizado o teste de Shapiro Wilk sob os dados log transformados, que como resultado também se comportam como uma distribuição normal, porém este último se

aproxima muito mais do padrão de distribuição normal ao se comparado com os dados brutos. Portanto o log *Boxplot* foi adotado nesse trabalho.

O mesmo processo foi realizado quando feito o agrupamento dos dados segundo o domínio geológico correspondente. No primeiro momento, com os dados brutos, foram obtidas as distribuições com padrão muito similar ao *Boxplot* gerado para a área integrada com os dados brutos, com muitos valores discrepantes e uma baixa amplitude nos intervalos interquartis e limites inferiores e superiores. Da mesma maneira foram feitos os testes de *Shapiro Wilk* para cada conjunto de dados, e confirmado que para todos os domínios também não há uma distribuição normal. Por outro lado, assim como ocorrido na área integrada os dados log transformados para cada domínio apresentam padrão que se aproxima mais de uma distribuição normal, com um intervalo interquartil e os limites inferiores e superiores e superiores com uma maior amplitude, e redução do número de *outliers*.

Em termos de resultados a separação por domínios fez com o que os valores de concentração de Au para cada domínio tivessem uma representação mais correta. Analisando o boxplot da área integrada (Fig: 3.3) ele nos mostra que o background representado pela mediana corresponde a (0,80 ppb) entretanto ao se separar os domínios esses valores acabam variando. Se por exemplo analisarmos o domínio Bação, ele possui uma mediana de 2,70 ppb, sendo o único domínio que fica acima da média do UCC, o que representa uma grande diferença se compararmos com a mediana geral, que possui valores abaixo do UCC. Outros valores ainda podem ser colocados, como o intervalo interquartil que no domínio Bação fica entre 0,79 e 2,74 ppb e no mapa integrado fica entre 0,34 e 1,62 ppb. Outro dado interessante são os outliers que no domínio Bação se iniciam em 267,15 ppb e no mapa integrado se iniciam em 16,98 ppb.

Para facilitar a visualização, os valores calculados para cada *Boxplot* de cada domínio e para a área integrada estão no quadro 2. Nota-se que alguns domínios apresentaram, para os intervalos mostrados, valores mais baixos que o mapa integrado, como por exemplo o domínio Passa Tempo – Bonfim. Esse fato fez com que ao se analisar o domínio individualmente foi possível indicar novas áreas anômalas que antes estavam mascaradas devido aos altos valores do contexto geral. Por outro lado, o já citado acima Domínio Bação apresenta valores maiores do que a área integrada, o que de fato aumentou o background de Au na região, fazendo com o que as áreas que anteriormente eram consideradas anômalas passassem por uma restrição devido ao aumento da concentração de Au nas bacias do domínio.

Esses dados serão melhor visualizados no próximo item, onde foram construídos os mapas geoquímicos para cada domínio, utilizando os valores calculados.

	Mediana	Intervalo interquartil	Whisker superior	Outliers
Mapa Integrado	0,80			16,98 - 57543,99
		0,34 - 1,62	1,66 – 16,22	
Bação	2,70	0,79 – 7,94	8,13 – 229,09	269,15 - 10000,00
Belo Horizonte	0,90	0,32 – 2,57	2,57 – 50,12	75,86 - 48977,88
Cinturão Mineiro	0,80	0,32 - 1,41	1,45 – 12,02	13,49 - 1047,13
Divinópolis	0,80	0,40 - 1,70	1,74 – 14,13	17,38 - 12022,64
Guanhães	0,50	0,30 - 1,12	1,00 - 4,37	6,46 - 128,82
Juiz de Fora	1,10	0,60 – 1,58	1,70 – 3,89	30,90
Mantiqueira	0,60	0,20 - 1,00	1,02 – 7,24	16,22 - 25,70
Passa Tempo -	0,90	0.50 4.44	4.54 6.47	C 4C 400C4 70
Bontim		0,50 - 1,41	1,51-6,1/	6,46 - 10964,78
Santa Bárbara	0,80	0,30 – 1,91	2,00 – 26,30	42,66 - 57543,99

Quadro 2: Distribuição dos valores em ppb's da mediana, intervalo interquartil, *whisker* superior e *outliers* para os *Boxplots* separados por domínio geológico e do mapa integrado.

3.3 MAPAS GEOQUÍMICOS

Para ilustrar o resultado obtido com o tratamento dos dados, mapas geoquímicos foram construídos seguindo os critérios explicados no item 1.5.5. Primeiramente foi construído o mapa de concentrações para Au da área integrada (Fig. 3.4), para fins comparativos, e posteriormente para cada domínio geológico (Figs. 3.5 a 3.13).

Figura 3.4: Mapa integrado com todos os domínios geológicos. As bacias estão coloridas de acordo com o teor de Au em PPB assim como apontado na legenda do mapa, as cores amarelas, e laranja indicam valores anômalos.

Figura 3.5: Mapa de concentração de Au nas bacias do Domínio Bação. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, estão graduados em uma escala de cor em que no ponto vermelho são as estações com menor quantidade de grãos de ouro, o laranja representa estações intermediárias e o amarelo são as estações com maior quantidade de grãos. Também estão representadas no mapa as minas e ocorrências de ouro e ocorrências de ouro (depósitos, garimpos e ocorrências) na região, além das regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5.

Figura 3.6: Mapa de concentração de Au nas bacias do Domínio Belo Horizonte. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, estão graduados em uma escala de cor em que no ponto vermelho são as estações com menor quantidade de grãos de ouro, o laranja representa estações intermediárias e o amarelo são as estações com maior quantidade. Também estão representadas no mapa as minas e ocorrências de ouro (depósitos, garimpos e ocorrências) na região, além das regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5.

Figura 3.7: Mapa de concentração de Au nas bacias do Domínio Santa Bárbara. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, estão graduados em uma escala de cor em que no ponto vermelho são as estações com menor quantidade de grãos de ouro, o laranja representa estações intermediárias e o amarelo são as estações com maior quantidade de grãos. Também estão representadas no mapa as minas e ocorrências de ouro (depósitos, garimpos e ocorrências) na região, além das regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5.

Figura 3.8: Mapa de concentração de Au nas bacias do Domínio Cinturão Mineiro. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, estão graduados em uma escala de cor em que no ponto vermelho são as estações com menor quantidade de grãos de ouro, o laranja representa estações intermediárias e o amarelo são as estações com maior quantidade de grãos. Também estão representadas no mapa as minas e ocorrências de ouro (depósitos, garimpos e ocorrências) na região, além das regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5.

Mapa da concentração de Au nas bacias do domínio Guanhães

Figura 3.9: Mapa de concentração de Au nas bacias do Domínio Guanhães. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, como possui pouca variação na quantidade de ouro por estações estão todos representados por um círculo amarelo. Também estão representadas no mapa as minas e ocorrências de ouro (depósitos, garimpos e ocorrências) na região, além das regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5.

Figura 3.10: Mapa de concentração de Au nas bacias do Domínio Passa Tempo – Bonfim. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, estão graduados em uma escala de cor em que no ponto vermelho são as estações com menor quantidade de grãos de ouro e o amarelo são as estações com maior quantidade de grãos. Também estão representadas no mapa as ocorrências de ouro (depósitos, garimpos e ocorrências) na região, além das regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5.

Figura 3.11: Mapa de concentração de Au nas bacias do Domínio Divinópolis. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, como possui pouca variação na quantidade de ouro por estações estão todos representados por um círculo amarelo. Também estão representadas no mapa as regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5.

Figura 3.12: Mapa de concentração de Au nas bacias do Domínio Juiz de Fora. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, como possui pouca variação na quantidade de ouro por estações estão todos representados por um círculo amarelo. Também estão representadas as regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5

Figura 3.13: Mapa de concentração de Au nas bacias do Domínio Mantiqueira. Na legenda estão os pontos de coleta de concentrados de bateia positivos para ouro, como possui pouca variação na quantidade de ouro por estações estão todos representados por um círculo amarelo. Também estão representadas no mapa as e ocorrências de ouro (depósitos, garimpos e ocorrências) na região, além das regiões onde não houve amostragem geoquímica e a escala de cores para concentração de Au nas bacias, de acordo com os parâmetros definidos no item 1.5.5

De maneira geral o agrupamento amostral fez com que alguns domínios tivessem o seu background aumentado ao se comparar com o mapa integrado (0,80 ppb), o que aconteceu com os domínios Bação (Fig 3.7) com 2,70 ppb, Belo Horizonte (Fig 3.8) com 0,9 ppb, Passa Tempo Bonfim (Fig 3.12) com 0,90 ppb e Juiz de fora (Fig 3.14) com 1,10. Isso se deve a menor amplitude dos dados para valores mais baixos. Por outro lado, os domínios Divinópolis (Fig 3.13), Cinturão Mineiro (Fig 3.10) e Santa Bárbara (Fig 3.9) todos com 0,80 ppb tiveram seu background semelhante ao da área integrada. E por fim, os domínios de Mantiqueira (Fig 3.15) com 0,60 ppb e Guanhães (Fig 3.11) com 0,5 ppb ficaram com o background menor ao se comparar com a área integrada, devido a sua grande amplitude de dados para baixas concentrações de Au.

Outro ponto interessante que pode ser observado é a diferença dos valores em que se iniciam os *outliers* em cada domínio se comparado com o do mapa integrado que é de 16,98 ppb. Falando individualmente dos domínios em Bação ou *outliers* se iniciam em 269,15 ppb, já no domínio Belo Horizonte em 75,86 ppb, no domínio Santa Bárbara em 42,66 ppb e em Juiz de Fora com 30,90 ppb. Esses quatro domínios se caracterizaram por terem valores atípicos em uma concentração mais alta do que a da área integrada, enquanto os demais tiveram seus outliers iniciando com uma concentração menor. No Cinturão Mineiro, os valores são *outliers* a partir de 13,49 ppb, em Divinópolis com 17,38 ppb, no domínio Guanhães com 6,46 ppb, em Mantiqueira com 16,22 ppb e por último em Passa Tempo Bonfim com 6,46 ppb.

A partir dos mapas geoquímicos foi possível fazer a relação entre as bacias consideradas anômalas para Au e as estações positivas para ouro. Buscando identificar se há uma relação direta entre o resultado dos dois métodos de amostragem, foi feita uma contagem da quantidade de bacias anômalas e em quantas delas houve resultado positivo para ouro nos concentrados de bateia, dados resumidos no quadro 3.

Quadro 3: Distribuição de grãos de ouro por domínio geológico

Domínio Geológico	Número de bacias anômalas	Número de bacias anômalas com pontos positivos para ouro	Percentagem do número de bacias com pontos positivos para ouro
Bação	13	2	15%
Belo Horizonte	9	1	11%
Cinturão Mineiro	9	1	11%
Divinópolis	4	0	0%
Guanhães	5	1	20%
Juiz de Fora	1	0	0%
Mantiqueira	1	0	0%
Passa Tempo Bonfim	21	3	14%
Santa Bárbara	25	7	28%
Total da área	88	16	18%

CAPÍTULO 4

DISCUSSÕES

4.1 REANALISE DAS AMOSTRAS

A reanálise das amostras inicialmente descritas no âmbito do projeto Mapeamento Geoquímico do Quadrilátero Ferrífero e seu Entorno, do SGB/CPRM (2014) mostra expressiva variação dos resultados. A identificação de 758 grãos de ouro em 936 amostras, representa um aumento de 583%, em relação aos 130 grãos inicialmente encontradas nas mesmas amostras. O resultado esperado de acordo com o erro que consta na literatura era de 3,4% segundo Allen (1981), resultaria em no máximo 520 \pm 3,4% (18) grãos, considerando o somatório das outras três frações não analisadas, logo o número de grãos encontrado apresenta um erro cerca de 40% maior do que o esperado ao se analisar os outros três terços das amostras.

Além disso, em diversas amostras, não foi identificado nenhum grão de ouro na fração quarteada inicialmente analisada, ao passo que pela reanalise foram encontrados um ou mais grãos, mostrando que o processo de quarteamento inicial implicou na não identificação de ouro em alguns pontos. Para fins de exemplo, enquanto na porção fracionada da amostra CCL324 (ANEXO) foi encontrado apenas 1 grão de ouro, inicialmente, pela reanalise identificaram-se 31 grãos. Esse resultado comprova que o método inicial de quarteamento foi falho e, portanto, inadequado para análise quantitativa da ocorrência de ouro.

Em relação aos domínios individualizados, é interessante que 50% dos grãos de ouro da área estão no domínio Belo Horizonte, resultado impulsionado pela amostragem feita na folha Pará de Minas, que totalizou 774 grãos. De certa forma, essa abundância de ouro era esperada na região devido a influência dos terrenos mineralizados do *greenstone belt* Pitangui (*e.g.* El-Rassi & Voz 2014). Sob influência de regiões também conhecidamente mineralizadas, os domínios Santa Bárbara e Cinturão mineiro (Fig. 3.12 e 3.13) abrigam 18,5% e 17% dos grãos de ouro da área, respectivamente. No domínio Santa Bárbara, entre as diversas ocorrências em áreas nas quais há registro de ocorrências de ouro, há 2 amostras (CCP470 e CCM015 - ANEXO) que somadas resultaram em 90 grãos de ouro, o que de fato influencia na abundancia dos grãos do domínio. Fato semelhante foi observado no Cinturão Mineiro, que para além da Zona de Cisalhamento Congonhas Itaverava (conhecida por ser mineralizada em ouro) (Correa 2012), que abriga boa parte dos grãos de ouro do domínio, há também a amostra (CCL 324:

Mourão, S. A 2023, Reavaliação do potencial aurífero do Quadrilátero Ferrífero....

ANEXO) ao sul do domínio, com 32 grãos de ouro, colaborando para essa grande quantidade de grãos observada.

O resultado do domínio Bação, que contém apenas 4% dos grãos de toda a área, chama também atenção, visto que uma parte considerável da sua área é composta pelo *greenstone belt* Rio das Velhas, marcado por mineralizações auríferas (*e.g.* Vial *et al*, 2007) (Fig. 3.10). Possíveis explicações para isso podem ser a quantidade reduzida e a localização das estações de coleta, que não cobrem completamente as áreas conhecidamente mineralizadas, como também a má execução na amostragem.

Também com 4% dos grãos de ouro, estão o Guanhães e Passa Tempo Bonfim, seguidos de Mantiqueira com 1,5% e por fim Divinópolis e Juiz de Fora, ambos com 1%. Já era esperado que esses últimos domínios tivessem um resultado inferior, devido à menor ocorrências de mineralizações nos mesmos.

Outro fato interessante de se mencionar, que não terá sua causa abordada no presente trabalho é a grande porcentagem de grãos pequenos que foram encontrados (cerca de 90% do total), no domínio Belo Horizonte por exemplo onde foram encontrados 871 grãos de ouro, e dentre esses grãos não foram encontrados nenhum de tamanho superior a 1,0mm (grande).

4.2 LOG TRANSFORMAÇÃO DOS DADOS E AGRUPAMENTO AMOSTRAL

A transformação logarítmica dos dados e o agrupamento amostral trouxeram resultados muito interessantes, uma vez que a amplitude de valores não discrepantes foi ampliada, enquanto a quantidade de *outliers* diminuiu, mostrando que estavam previamente superestimados. A partir da análise dos domínios individualizados novos *outliers* foram identificados, como em Passa Tempo – Bonfim, os quais estavam mascarados devido aos altos valores do mapa integrado.

A transformação logarítmica permitiu que a análise fosse feita de uma forma mais segura, visto que o cálculo dos limites e do reconhecimento dos *outliers* é feito baseado na teoria da distribuição normal Reimann (2008). Portanto, apesar de mesmo após feita a transformação logarítmica os dados ainda não representarem um conjunto com distribuição normal, aproximou-se de tal padrão, o que leva a maior confiabilidade da análise. O agrupamento amostral, por sua vez, permitiu que alguns domínios que possuem valores gerais mais baixos de Au, por exemplo Passa Tempo - Bonfim e Cinturão Mineiro (Fig 3.12 e 3.10), tivessem os seus valores mais altos considerados como *outliers*, ao passo que no mapa integrado esses mesmos valores estavam confinados abaixo do limite superior. Isso permite analisar essas áreas com um diferente ponto de vista, já que nos dados integrados essas novas áreas não representavam pontos de interesse. Por outro lado, nos domínios onde os valores gerais de concentração de Au é mais elevada, por exemplo Bação e Santa Bárbara (Fig 3.7 e 3.9), a amplitude dos valores dos

limites e do intervalo interquartil foi aumentada, gerando uma diminuição no número *outliers*. Uma consequência direta de tal fato é a melhor seleção dos valores de interesse.

Sobre a maximização dos backgrounds de Au, os métodos do trabalho foram eficientes pois nos domínios Bação, Belo Horizonte observou-se um considerável aumento no valor de seu background (2,70 e 0,90 ppb respectivamente) e nos intervalos interquartis (0,79 – 7,94 ppb e 0,32 – 2,57 ppb respectivamente) se comparados com os mesmos critérios do contexto geral da área, com 0,80 ppb para a mediana (background) e com um intervalo interquartil de 0,34 – 1,62 ppb. Outro domínio que chama a atenção é o Santa Barbara em que o valor da mediana (background) se manteve o mesmo da área integrada (0,80 ppb), porém para o seu intervalo interquartil houve um bom aumento ficando entre 0,30 – 1,91 ppb.

4.3 ASSOCIAÇÃO DOS DADOS DE PROSPECÇÃO GEOQUÍMICA E RESGISTROS DE OCORRENCIAS DE OURO

Após gerados os mapas geoquímicos para Au foi feito um cruzamento de dados entre o resultado dos concentrados de bateia, sedimento de corrente e dos registos de depósitos e ocorrências de ouro para cada domínio, afim de traçar uma relação entre os métodos de prospecção geoquímica e os relacionar com depósitos já conhecidos. De maneira geral, a associação entre os dois métodos de prospecção geoquímica mostrou que os 18% dos pontos de coleta para sedimento de corrente que resultaram em bacias anômalas para Au também abrigaram amostras de concentrado de bateia com resultado positivo para ouro. A relação entre os depósitos (ou ocorrências) de ouro já conhecidas com os dois métodos de prospecção separadamente se mostrou ainda mais interessantes.

Falando individualmente de cada domínio, o Bação possui registro de ocorrências/depósitos de ouro em quase todas as bacias anômalas. Da mesma forma, muitas das estações amostradas por bateamento que deram positivo para ouro, se encontram na mesma bacia ou próximas a essas ocorrências (Fig. 3.7). Acontece de forma similar no domínio Santa Bárbara, que das 25 bacias anômalas para Au, apenas 2 não possuem ocorrência de ouro na própria bacia ou proximidades, além de apresentar uma boa correlação entre essas ocorrências e os pontos de concentrados de bateia positivos para ouro (Fig. 3.9).

Com resultados menos expressivos, mas ainda assim interessantes, estão os domínios Belo horizonte, Guanhães e Cinturão Mineiro. No primeiro, é possível correlacionar 5 das suas 9 bacias anômalas com ocorrências de ouro, além de que várias das estações de coleta para bateia que possuem ouro também se localizam nas proximidades destas ocorrências (Fig. 3.8). Em Guanhães, além de uma razoável relação entre os concentrados e ocorrências de ouro, metade de suas bacias anômalas se encontram nas proximidades dessas ocorrências (Fig. 3.11). E por fim, o Cinturão Mineiro, embora possua uma relação onde cerca de metade de suas bacias anômalas se relacionam com as ocorrências históricas de ouro, ao se analisar os concentrados de bateia, é visto que menos da metade dos pontos positivos para ouro podem estar relacionadas com essas mesmas ocorrências (Fig. 3.10).

Para o domínio Passa Tempo – Bonfim há apenas uma região em que suas bacias anômalas apresenta resultados positivos em concentrados de bateia. Para além dessa no mesmo domínio há uma região com registro de ocorrências de ouro em 4 localidades próximas que também apresentam resultados positivos em ouro para concentrados de bateia. (Fig. 3.12).

Nos domínios Divinópolis e Mantiqueira não foi identificada relação entre bacias anômalas e ocorrências de ouro, e a relação entre concentrados de bateia positivos para ouro e essas ocorrências é tímida (Fig. 3.13 e 3.15). Por fim, não foi possível traçar nenhuma relação entre os métodos de prospecção geoquímica com ocorrências conhecidas de ouro no domínio Juiz de Fora (Fig. 3.14).

CAPÍTULO 5

CONCLUSÃO

A partir da reanalise dos concentrados de bateia foi possível observar que o método de quarteamento *Jones* apresentou de maneira geral um erro maior do que os 3,4% previsto na literatura (Allen 1981), e ao se analisar algumas amostras individualmente o erro foi extremamente discrepante.

Pode se acrescentar também os casos em que amostras que possuem poucos grãos de ouro ao passarem pelo quarteamento podem agrupar todos os grãos nas frações que não serão analisadas, ou mesmo que fiquem todas na fração analisada, gerando um falso resultado negativo para ouro no primeiro caso, ou para o segundo caso uma impressão que há mais ouro na amostra do que a realidade. Portanto a análise feita aqui confirma que o quarteamento não é ideal para o estudo em que será feita a contagem quantitativa de ouro.

O agrupamento amostral gerou resultados interessantes, principalmente em domínios geológicos onde não há abundância de ocorrências de ouro, por exemplo o Passa Tempo – Bonfim em que foram identificadas algumas bacias com valores anômalos para Au, ao passo que se comparados com o mapa integrado esses valores eram considerados intermediários. Por outro lado, em domínios onde há abundância de concentração de ouro, por exemplo o Bação sendo analisado individualmente apresenta uma diminuição das bacias com concentração anômala para Au ao se comparado com o mapa integrado, em detrimento do aumento da média dos valores para cada bacia por conta do agrupamento. O agrupamento amostral também fez com que a maximização dos *backgrouds* de Au fosse observada nos domínios Bação, Belo Horizonte e no Santa Bárbara o que retorna um resultado muito interessante que era almejado no trabalho.

Ao cruzar os dados dos dois métodos de prospecção geoquímica tratados aqui, foi visto que uma correlação direta entre eles não pôde ser muito bem estabelecida, e para isso supõe-se duas razões: a densidade amostral da amostragem de sedimento de corrente foi maior do que os concentrados de bateia; outra razão pode ser devido a granulometria em que é feita essa amostragem e análise, visto que grande parte dos grãos de ouro que são encontradas nos concentrados de bateia se tratam de ouro livre, já o ouro que é encontrado no sedimento de corrente está mais associado com sua forma inclusa em outros minerais.

Entretanto, ao relacionar os dados de ambos os métodos de prospecção geoquímica com as ocorrências já conhecidas de ouro (minas, garimpos, depósitos e ocorrências) foi possível enxergar uma relação muito interessante entre eles, o que reforça a utilidade do método.

É importante salientar que através desse trabalho foi visto que ao utilizar as técnicas de análise de concentrados de bateia e sedimento de corrente para a amostragem de ouro em uma região, é importante que o adensamento amostral para as duas técnicas seja igual e também que a análise dos concentrados de bateia seja feita de forma integral na amostra coletada. É também necessário checar a qualidade dos dados, o que pode evitar falsas interpretações, e que a análise dos dados de sedimento de corrente seja feita sob um conjunto de terrenos mais restrito, podendo favorecer o aparecimento de novas regiões de interesse, enquanto em uma análise mais regional pode haver ocultação das mesmas.

Mourão, S. A 2023, Reavaliação do potencial aurífero do Quadrilátero Ferrífero....

REFERÊNCIAS BIBLIOGRÁFICAS

Aguilar C., Alkmim F.F., Lana C., Farina F. 2017. Palaeoproterozoic assembly of the São Francisco cráton, SE Brazil: new insights from U-Pb titanite and monazite dating. *Precambrian Research* 289, 95-115.

Allen T. Sampling of Powders. In: Scarllet, B. (Ed.). Particules size measurement, powder technology series. London: Third Edition, 1981, p.1-35.

Alkmim F.F., Marshak S., 1998. The transamazonian orogeny in the Quadrilátero Ferrífero, Minas Gerais, Brazil: Paleoproterozoic collision and collapse in the southern São Francisco cráton region. *Precambrian Research* 90, 29-58.

Alkmim F.F., Marshak S., Pedrosa-Soares A.C., Peres G.G., Cruz S., Whittington A. 2006. Kinematic evolution of the Araçuaí-West Congo orogen in Brazil and Africa: Nutcracker tectonics during the Neoproterozoic assembly of Gondwana. *Precambrian Research.*, 149: 43-64.

Alkmim F.F., Martins-Neto M.A., 2012. Proterozoic first-order sedimentary sequences of the São Francisco Cráton, eastern Brazil. Marine and Petroleum Geology 33, 127-139.

Alkmim F.F., Teixeira W. 2017. The Paleoproterozoic mineiro belt and the Quadrilátero Ferrífero. In: Heilbron M., Alkmim F.F., Cordani U.G. (Eds.), The São Francisco Cráton and its Margins, Eastern Brazil, Geology Review Series. *Springer-Verlag*, pp. 71-e94.

Almeida F. F. M. de. 1977. O Cráton do São Francisco. Revista Brasileira de Geociências 7, 439-463.

Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A. 1981. Brazilian structural provinces: an introduction. *Earth-Science Reviews*, 17(1/2):1-29.

Almeida F.F.M., Hasui Y. (Eds.). 1984. O Pré-Cambriano do Brasil. Edgard Blücher, São Paulo

Ávila C. A. 2000. Geologia, petrologia e geocronologia de corpos plutônicos paleoproterozóicos da borda meridional do Cráton do São Francisco, região de São João Del Rei, Minas Gerais. Instituto de Geociências, Universidade Federal do Rio de Janeiro, Tese de Doutorado 401 p. (Inédito).

Ávila C. A., Teixeira W., Cordani U.G., Moura C.A.V., Pereira R.M. 2010. Rhyacian (2.23-2.20 Ga) juvenile accretion in the southern São Francisco cráton, Brazil: geochemical and isotopic evidence from the Serrinha magmatic suite, Mineiro belt. *Journal of South American Earth Sciences* 29, 464-482.

Ávila C. A., Teixeira W., Vasques F. S. G., Dussin I. A., Mendes J. C. 2012. Geoquímica e idade U/Pb (LA-ICPMS) da crosta oceânica anfibolíticas riaciana do cinturão Mineiro, borda meridional do cráton São Francisco. In: 46° Congresso Brasileiro de Geologia, Santos, Anais.

Ávila C. A., Teixeira W., Bongiolo E.M., Dussin I.A. 2014. The Tiradentes suite and its role in the Rhyacian evolution of the Mineiro belt-São Francisco Cráton: geochemical and U-Pb geochronological evidences. *Precambrian Research* 243, 221-251.

Barbosa N.S. 2015. Evolução Paleoproterozoica do Cinturão Mineiro: Geocronologia U-Pb, isótopos de Nd-Hf-Sr e geoquímica de rochas plutônicas. *PhD Thesis. Universidade de São Paulo*, p. 229.

Bizzi L. A., Schobbenhaus C., Gonçalves J. H., Baars F. J., Delgado I. M., Abram M. B. Neto R. L., G. M. M. Matos, & J. O. S. Santos. 2003, Geologia, Tectônica e Recursos Minerais do Brasil: Sistema de Informações Geográficas - SIG e Mapas na escala 1:2.500.000 [4 CD-ROM], Serviço Geológico do Brasil, Brasília.

Brando-Soares, M., Neto, A.V.C., Zeh, A., Cabral, A.R., Pereira, L.F., do Prado, M.G.B., Almeida, A.M., Manduca, L.G., Silva, P.H.M., Mabub, R.O.A., Schlichta, T.M., 2017. Geology of the Pitangui greenstone belt, Minas Gerais, Brazil: stratigraphy, geochronology and BIF geochemistry. *Precambrian Res.* 291, 17–41. https://doi.org/10.1016/j.precamres.2017.01.008.

Cabral A. R., 1996. Mineralização de Ouro Paladiado em Itabiritos: A Jacutinga de Gongo Soco, Quadrilátero Ferrífero, Minas Gerais. Campinas, Instituto de Geociências, Universidade Estadual de Campinas, Dissertação de Mestrado.

Cabral A. R. 2006. Palladiferous Gold Mineralisation (ouro preto) in Brazil: Gongo Soco, Itabira and Serra Pelada. Hannover, Alemanha, Bundesanstalt für Geowissenschaften und Rohstoffe und dem Landesamt fü Bergbau, Energie und Geologie, Tese de Doutorado.

Campos, J.C.S., Carneiro, M.A., Basei, M.A.S., 2003. U-Pb evidence for Late Neoarchean crustal reworking in the southern São Francisco Craton (Minas Gerais, Brazil). Anais da Academia Brasileira de Ciências 75 (4), 497–511.

Campos J. C. S. O lineamento Jeceaba-Bom Sucesso como limite dos terrenos arqueanos e paleoproterozóicos do cráton São Francisco meridional: evidências geológicas, geoquímicas (rocha total) e geocronológicas (U-Pb). 2004. 191 f. *Dissertação (Mestrado em Evolução Crustal e Recursos Naturais)* - Universidade Federal de Ouro Preto, Ouro Preto, 2004.

Chauvet, A., Faure, M., Dossin, I., Charvet, J., 1994. A three-stage structural evolution of the Quadrilátero Ferrífero: consequences for the Neoproterozoic age and the formation of gold concentrations of the Ouro Preto area, Minas Gerais, Brazil. *Precambrian Research* 68, 139–167.

Chemale F. Jr., Rosière C. A. & Endo I. 1994. The tectonic evolution of the Quadrilátero Ferrífero, Minas Gerais, Brazil. *Precambrian Research*, 65: 25 - 54

Corrêa Neto *et al.* 2012. Alteração Hidrotermal em Zona de Cisalhamento Associada ao Lineamento Congonhas, Sul do Quadrilátero Ferrífero, Minas Gerais. *Anuário do Instituto de Geociências – URFJ* 35(2), 55-64.

Dorr J. V. N. II. 1969. Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais. U. S. Geological Survey Professional Paper 614-A, 110 p.

Dussin, T.M., Dussin I.A., Macambira M.J.B., 2000. Chronology of Mesoproterozoic Guanhães River sequence: 207Pb/206Pb single zircon evaporation data of metavolcanic rocks (Minas Gerais, Brazil). In: 31° Internacional Geolological Congress, Rio de Janeiro. Abstracts. CD-ROM.

EL-RASSI, D. & VOS, I. (2014) Independent Technical Report for the São Sebastião Gold Deposit, Pitangui Project, Brazil. Internal company report prepared by SRK Consulting (Canada) Incorporated for IAMGOLD Brasil Ltda.

Endo I., Castro P.T.A., Gandini A.L. 2020. Quadrilátero Ferrífero: Avanços do conhecimento nos últimos 50 anos. Belo Horizonte, Universidade Federal de Ouro Preto, 480 p.

Fabrício-Silva, W., Rosièere, C.A., Bühn, B., 2019. The shear zone-related gold mineralization at the Turmalina deposit, Quadriláatero Ferrífero, Brazil: Structural evolution and the two stages of mineralization. Mineral. Deposita 54, 347–368.

Fabrício-Silva, W., Frimmel, H.E., Shutesky, M.E., Rosière, C.A., Massucatto, A., 2021. Temperaturecontrolled ore evolution in orogenic gold systems related to synchronous granitic magmatism: an example from the iron Quadrangle Province, Brazil. Econ. Geol. 116 (4), 937–962. https://doi.org/10.5382/econgeo.4814.

Farina F., Albert C., Lana C. 2015a. The Neoarchean transition between medium and high-K granitoids: clues from the southern São Francisco cráton (Brazil). *Precambrian Research* 266, 375-394.

Farina F., Albert C., Martinez Dopico C., Aguilar Gil C., Moreira H., Hippertt J., Cutts K., Lana C., Alkmim F.F. 2016. The Archean-Paleoproterozoic evolution of the Quadrilátero Ferrífero (Brasil): current models and open questions. *Journal of South American Earth Sciences* 68, 4-21.

Fernandes, R.C., Endo, I., Pereira, R.M.P., Rivarola, I., Souza, J.C., 2016. Geologia e evolução estrutural do depósito aurífero Cuiabá: novas perspectivas para exploração mineral. VII SIMEXMIN (Simpósio Brasileiro de Exploração Mineral), Ouro Preto. Agência para o Desenvolvimento Tecnológico da Indústria Mineral Brasileira (ADIMB).

Ferrand, M.P., 1913. L'or a Minas Gerais. Imprensa of Minas Gerais State, vol. 1 and 2. 163 and 141 pp.

Frimmel, H.E., 2005. Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth Sci. Rev. 70 (1–2), 1–46.

Galbiatti H. F., Fonseca M. A., Pereira M. C., Polônia J. C. 2007. Structural control of Au-Pd mineralization (Jacutinga): An example from the Cauê Mine, Quadrilátero Ferrífero, Brazil. Ore Geology Reviews 32, 614-628.

Hartmann A., Endo I., Suita M.T.F., Santos J.O.S., Frantz C.J., Carneiro M.A., McNaughton N.J., Barley M.E. 2006. Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U–Pb isotopes. The Journal of South American Earth Sciences, 20: 273–285.

Hasui Y. A grande colisão pré-cambriana do sudeste brasileiro e a estruturação regional. Geociencias, v. 29, n. 2, p. 141-169, 2010.

Hasui Y., Carneiro C.D.R., Almeida F.F.M.de, Bartorelli A. eds. 2012. Geologia do Brasil. São Paulo: Ed. Beca. 900p. (Livro)

Hussak, E., 1898. Der goldfuhrende, kiesige Quarzlagergang von Passagem in Minas Geraism, Brasilien. Zeitschrift für Praktische Geologie 5, 345–357.

Hussak E. 1906. O palladio e a platina no Brazil. Annais da Escola de Minas de Ouro Preto 8, 77-189.

Koglin, N., Frimmel, H.E., Lawrie Minter, W.E., Brätz, H., 2009. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner. Deposita 45 (3), 259–280.

Lana C., Alkmim F.F., Armstrong R., Scholz R., Romano R., Nalini Jr. H.A. 2013. The ancestry and magmatic evolution of Archean TTG rocks of the Quadrilátero Ferrífero province, southeast Brazil. *Precambrian Research* 231, 157-173.

Lapworth, D.J., Knights, K.V., Key, R.M., Johnson, C.C., Ayoade, E., Adekanmi, M.A., Arisekola, T.M., Okunlola, O.A., Backman, B., Eklund, M., Everett, P.A., Lister, R.T., Ridgway, J., Watts, M.J., Kemp, S.J., Pitfield, P.E.J., 2012. Geochemical mapping using stream sediments in west-Central Nigeria: Implications for environmental studies and mineral exploration in West Africa. Appl. Geochem. 27, 1035–1052.

Lima L. C. 2012. Depósito lode Au-As-Sb Laranjeiras, em metaturbitos do Grupo Nova Lima, Quadrilátero Ferrífero, Minas Gerais. Belo Horizonte, Departamento de Geologia, Instituto de Geociências, Universidade Federal de Minas Gerais, Dissertação de Mestrado.

Lobato L.M., Ribeiro Rodrigues L.C., Zucchetti M., Baltazar O.F. 2000. Geology and gold mineralization in the Rio das Velhas Greenstone Belt, Quadrilátero Ferrífero (Minas Gerais, Brazil). In: 31° International Geological Congress. Field Trip Guide, 40 p.

Lobato, L., Ribeiro-Rodrigues, L., Zucchetti, M., Noce, C., Baltazar, O., da Silva, L., Pinto, C., 2001b. Brazil's premier gold province. Part I: The tectonic, magmatic, and structural setting of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Miner. Deposita 36 (3), 228–248.

Lobato L. M., Costa M. A., 2018. Ouro. In: Pedrosa Soares A. C., Voll E., Cunha E. C. (Coordenadores), Recursos Minerais de Minas Gerais On Line: síntese do conhecimento sobre as riquezas minerais, história geológica, meio ambiente e mineração de Minas Gerais. *Companhia de Desenvolvimento de Minas Gerais (CODEMG), 1^a Ed.*, Belo Horizonte.

Lombello, J.C., Ferreira, R.C.R., Marinho, M.S., Araujo, J.C.S., 2022. Informe de Recursos Minerais (ARIM) Noroeste do Quadrilátero Ferrífero: Mapa de Prospectividade para Ouro Orog^enico do Greenstone Belt Pitangui. Serviço Geológico Brasil (SGB/CPRM), 75pp. https://rigeo.cprm.gov.br/handle/doc/23341.

Lopes, S.R.; Gonçalves, L.; Gonçalves, C.C. Arcabouço Estrutural, Petrografia e Idades U-Pb em Zircão de Diques Intrusivos em Granitoides da Suíte Lagoa Dourada (2350 Ma) – Cinturão Mineiro, Sudeste do Brasil. Anuário do Instituto de Geociências, v. 43, n. 4, p. 66-81, 2020.

Machado N., Carneiro M.A. 1992. U-Pb evidence of the late Archean tectonothermal activity in the southern São Francisco shield, Brazil. *Canadian Journal of Earth Sciences* 29, 2341-2346.

Machado N., Noce C.M., Ladeira E.A., de Oliveira O.A.B. 1992. U-Pb geochronology of the Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco cráton, Brazil. *Geological Society of America Bulletin* 104, 1221-1227.

Machado N., Schrank A., Noce C.M., Gauthier G. 1996. Ages of detrital zircon from Archean-Paleoproterozoic sequences: implications for Greenstone Belt setting evolution of a Transamazonian foreland basin in Quadrilátero Ferrífero, southeast Brazil. *Earth and Planetary Science Letters* 141, 259-276.

Magalhães, J. R., Pedrosa-Soares, A. C., Dussin, I., Muntener, O., Silva, L. C., Pinheiro, M. A. P., Knauer, L. G., Bouvier, A. S., Baumgartner, L., 2018. First Lu-Hf, δ 18O and trace elements in zircon signatures from the Statherian Espinhaço anorogenic province (Eastern Brazil): Geotectonic implications. *Brazilian Journal of Geology*. V. 48(4), 735-759 p.

Maia, J., 1944. Prática de Exploração e Desenvolvimento em Passsagem. Belo Horizonte, Brazil, 110 pp.

Marinho, M.S., Silva, M.A., Lombel, J.C., Disalvio, L.P., Silva, R.N., Féboli, W.L., Brito, D. C., 2018. Projeto ARIM - ´áreas de Relevante interesse mineral - noroeste do Quadrilátero Ferrífero – mapa geológico integrado do sinclinório pitangui. Belo Horizonte: CPRM, mapa colorido. Escala 1:75.000.

Marinho, M.S., Silva, M.A.D., Lombello, J.C., Di Salvio, L.P.P., Silva, R.N., Féboli, W.L., Brito, D.C., 2019. Mapa geológico integrado: área de relevante interesse mineral–ARIM. Quadrilátero Ferrífero, sub área faixa Pará de Minas, Pitangui. Escala 1:75.000. CPRM, Belo Horizonte.

Marinho, M.S., Lombello, J.C., Araujo, J.C.S., Di Salvio, L.P.P., Silva, R.N., Brito, D.C., Féboli, W.L., Basto, C.F., Magalhaes, J.R., 2023. Stratigraphy of the Pitangui Synclinorium, northwest of the Quadrilatero Ferrífero mineral province - Brazil: magmatism and sedimentation from Archean to Neoproterozoic. J. Geol. Surv. Braz. 6 (2) https://doi.org/10.29396/jgsb.2023.v6.n2.1.

Marshak S., Tinkham D., Alkmim F.F., Brueckner H., Bornhorst T. 1997. Dome-and keel provinces formed during Paleoproterozoic orogenic collapse - core complexes, diapirs, or neither?: examples from the Quadrilatero Ferrifero and the Penokean Orogen. *Geology* 25, 415-418.

Martins Pereira, S.L., 1995. Controles lito-estruturais da mineralização aurífera no distrito de Santa Bárbara, Quadrilátero Ferrífero, MG: Mina São Bento. Unpublished M.Sc. Thesis, Universidade Federal de Minas Gerais, Brazil, 158 pp.

Martins-Pereira S.L.M., Lobato L.M., Ferreira J.E., Jardim E.C. 2007. The BIF-hosted São Bento gold deposit, Quadrilátero Ferrífero, Brazil. Ore Geol. Rev., 32: 571-595

Maurer, V.C., Melo, G.H.C., Lana, C.C., Marinho, M.S., Batista, S.P.V., Silveira, L.M., Queiroga, G., Castro, M.P., Silva, M., 2021. Trace elements in pyrite and pyrrhotite in the Pitangui Orogenic Au deposit, Pitangui greenstone belt, Sãao Francisco Craton: implications for the ore-forming fluids and metal sources. J. S. Am. Earth Sci. 111 (2021), 1–22.

Melo-Silva, P., Amaral, W. S., Oliveira, E. P., 2020. Geochronological evolution of the Pitangui greenstone belt, southern São Francisco Craton, Brazil, Constraints from U-Pb zircon age, geochemistry and field relationships, Journal of South American Earth Sciences, <u>https://doi.org/10.1016/j.jsames.2019.102380</u>

Recursos Minerais, sgb.gov.com. Disponível em: <u>https://geosgb.gov.br/geosgb/downloads.html</u>;. Acesso em: 12, novembro de 2023

Minter W. E. L., Renger F. E., Siegers A. 1990. Early Proterozoic gold placers of the Moeda Formation within the Gandarela syncline, Minas Gerais, Brazil. Economic Geology 85, 943-951.

Minter W. E. L. 2006. The sedimentary setting of Witwatersrand placer mineral deposits in an Archean atmosphere. In: SE Kesler, H Ohmoto, Evolution of Early Earth's Atmosphere, Hydrosphere, and Biosphere: Constraints from Ore Deposits. Geological Society of America, Memoir 198, 105-119.

Nahas, I., Gonçalves, L., Gonçalves, C, C., 2023, Unraveling the relationship between a tonalitic pluton and shear zones: Insights from magnetic fabrics and microstructures of the Alto Maranhão batholith, Mineiro belt, southern São Francisco craton, Journal of Structural Geology, Volume 172

NOCE, C.M. 1995. Geocronologia dos eventos magmáticos, sedimentares e metamórficos na região do Quadrilátero Ferrífero, Minas Gerais. São Paulo, 128 p. (Tese de Doutoramento, Universidade de São Paulo)

Noce C.M., Teixeira W., Queménéur J.J.G., Martins V.T.S., Bolzaquini E. 2000. Isotopic signatures of Paleoproterozoic granitoids from the southern São Francisco Cráton and implications for the evolution of the Transamazonian Orogeny. *J. S. Am. Earth Sci.* 13, 225–239.

Noce C.M., Pedrosa-Soares A.C., Silva L.C., Armstrong R., Piuzana D. 2007. Evolution of polycyclic basement complexes in the Araçuaí Orogen, based on U-Pb SHRIMP data: Implications for Brazil-Africa links in Paleoproterozoic time. Precambrian Res. (in press)

Olivo G. R., Gauthier M., Bardoux M., Leão de Sá E., Fonseca J. T. F., Carbonari F. 1995. Palladiumbearing gold deposit hosted by Proterozoic Lake Superior-type iron-formation at the Cauê iron mine, Itabira District, Southern São Francisco Craton, Brazil: Geologic and structural control. Economic Geology 90, 118-134.

Pedrosa-Soares A. C., Noce C. M., Vidal P., Monteiro R. & Leonardos, O. H. 1992. Toward a new tectonic model for the Late Proterzoic Araçuaí (SE Brazil) - West Congolian (SW Africa) Belt. Journal of South American Earth Sciences, 6: 33-47.

Pedrosa-Soares A. C., Noce C. M., Wiedemann C. M., Pinto C. P. 2001. The Araçuaí-West-Congo Orogen in Brazil: An overview of a confined orogen formed during Gondwanaland assembley. Precamb. Res., 1-4:307-323.

Pedrosa-Soares A. C., Noce C. M., Alkmim F. F., Silva L. C., Babinski M., Cordani U., Castañeda C. 2007. Orógeno Araçuaí: síntese do conhecimento 30 anos após Almeida 1977. *Geonomos*, **15**(1): 1-16.

Pedrosa-Soares A.C., Alkmim F.F., Tack L., Noce C.M., Babinski M., Silva L.C., Martins-Neto M.A. 2008. Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West-Congo orogen. Geological Society, London, Special Publications, 294

Pinto C.P., Silva M.A. 2014. Mapa Geológico do Estado de Minas Gerais, Escala 1:1.000.000. Companhia de Desenvolvimento Econômico de Minas Gerais, CODEMIG e Serviço Geológico do Brasil, CPRM.

Pires, P.F.R., 2005. Gênese dos Depósitos Auríferos em Metaconglomerados da Formação Moeda, Quadrilátero Ferrífero, MG: O Papel do Metamorfismo e Associação com a Matéria Carbonosa. Tese de Doutorado. UNICAMP, Campinas, SP.

Porada H. 1989. Pan-African rifting and orogenesis in southern to equatorial Africa and Eastern Brazil. Precambrian Res., 44: 103-136

Raposo F. O. 1991. Estratigrafia, Petrografia e Petrologia. In: Raposo F. O. (org.). Rio Espera, Folha SF.23-X-BIV, Estado de Minas Gerais. Brasília, DNPM-CPRM (Programa Levantamentos Geológicos Básicos do Brasil – PLGB). p. 27-88

Reimann, C., Filzmoser, P., Garrett, R.G., Dutter, R., 2008. Statistical data analysis explained. In: Applied Environmental Statistics with R. Wiley, Chichester, p. 362, 978-0-470-98581-6.

Renger F. E., Noce C. M., Romano A. W., Machado N. 1994. Evolução sedimentar do Supergrupo Minas: 500 Ma de registro geológico no Quadrilátero Ferrífero, Minas Gerais. Geonomos 2, 1-11.

Renger F.E., Noce C.M., Romano A.W., Machado N., 1995. Evolução sedimentar do Supergrupo Minas: 500 Ma. de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. *Geonomos* 2, 1-11.

Ribeiro Y., Figueiredo e Silva R. C., Lobato L. M., Lima L. C., Rios F. J., Hagemann S. G., Cliff J. 2015. Fluid inclusion and sulfur and oxygen isotope studies on quartz-carbonate-sulfide veins at the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geology Reviews 67, 11-33.

Ribeiro-Rodrigues, L.C., de Oliveira, C.G., Friedrich, G., 2007. The Archean BIF-hosted Cuiabá Gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol. Rev. 32 (3–4), 543–570.

Romano, A., 2007. In: Programa Geologia do Brasil. Folha Par´a de Minas, SE- 23-Z-CI. Escala 1:100.000, relat´orio final. UFMG - CPRM, Belo Horizonte, p. 72, 368 p.

Romano R., Lana C., Alkmim F.F., Stevens G.S., Armstrong R. 2013. Stabilization of the southern portion of the São Francisco Cráton, SE Brazil, through a long-lived period of potassic magmatism. *Precambrian Research* 224, 143-159.

Roncato Jr. J. G, Lobato L. M., Lima L. C., Porto C. G., Figueiredo e Silva R. C. 2015. Metaturbiditehosted gold deposits, Córrego do Sítio lineament, Quadrilátero Ferrífero, Brazil. Brazilian Journal of Geology 45, 5-22.

Rudnick, R.L., Gao, S., 2014. Composition of the Continental Crust. In: Holland, H.D., Turekian, K.K. (Eds.), 2014. Treatise on Geochemistry, 2nd editionv.4. Elsevier. 182p.

Seixas L.A.R., David, J., Stevenson R. 2012. Geochemistry, Nd isotopes and UePb geochronology of a 2350 Ma TTG suite, Minas Gerais, Brazil: implications for the crustal evolution of the southern São Francisco cráton. *Precambrian Research* 196, 61-80.

Seixas L.A.R., Bardintzeff J-M., Stevenson R., Bonin B. 2013. Petrology of the high-Mg tonalites and dioritic enclaves of the ca. 2130 Ma Alto Maranhão suite: Evidence for a major juvenile crustal addition event during the Rhyacian orogenesis, Mineiro Belt, southeast Brazil. Precambrian Research 238C, 18–41.

Silva L.C., Armstrong R., Noce C.M, Carneiro M.A., Pimentel M.M., Pedrosa-Soares A.C., Leite C.A., Vieira V.S., Silva M.A., Paes V.J.C., Cardoso-Filho J.M. 2002. Reavaliação da evolução geológica em terrenos pré-cambrianos brasileiros com base em novos dados U-Pb SHRIMP, parte II: Orógeno Araçuaí, Cinturão Mineiro e Cráton São Francisco Meridional. Rev. Bras. Geociênc., 32:513-528.

Silva, M. A.; Goulart, L. E. A.; Barros, R. A.; Pinheiro, M. A. P.; Silva, R. N.; Sostero, M. P.; Freitas, F.M.; Ferreira, R. C.R.; Sálvio, L. P.; 2021. Projeto Estratigrafia, Recursos Minerais e Arquitetura Crustal do Quadrilátero Ferrífero – Mapa Geológico do Quadrilátero Ferrífero e seu Entorno. Belo Horizonte: CPR M, 2021, 1 mapa colorido. Escala 1:250.000

Noreto Carvalhais Sena, Rosaline Cristina Figueiredo E Silva, Lydia Maria Lobato, Vinícius Nogueira Duarte, Breno De Souza Martins, Paleoenvironmental reconstruction of gold-bearing BIF from the Archean Cuiabá deposit based on petrographic and geochemical studies, Journal of South American Earth Sciences, Volume 108, 2021.

Teixeira W. 1985. A Evolução Geotectônica da Porção Meridional do Cráton do São Francisco, com base em interpretações geocronológicas. *Tese de Doutoramento, Instituto de Geociências, Universidade de São Paulo*, 207p.

Teixeira W., Figueiredo M. C. H. 1991. An outline of Early Proterozoicc crustal evolution in the São Francisco Cráton, Brazil: a review. Precambrian Research, 53(1):1-22.

Teixeira W., Ávila C.A., Dussin I.A., Corrêa Neto A.V., Bongiolo E.M., Santos J.O.S., Barbosa N., 2015. Zircon U-Pb-Hf, Nd-Sr constraints and geochemistry of the Resende Costa Orthogneiss and coeval rocks: new clues for a juvenile accretion episode (2.36-2.33 Ga) in the Mineiro belt and its role to the long-lived Minas accretionary orogeny. *Precambrian Research* 256, 148-169.

Teixeira W., Oliveira E.P., Marques L.S. 2017. The nature and evolution of the archean crust of the São Francisco cráton. In: Heilbron, M., Alkmim, F., Cordani, U.G. (Eds.), São Francisco Cráton, Eastern Brasil: Tectonic Genealogy of a Miniature Continent, Regional Geology Review Series. *Springer-Verlag*, pp. 29-56.

Tukey, J.W., 1977. Exploratory Data Analysis. Addison-Wesley Publishing Company, Massachusetts, 688 p.

Vial, D.S., 1988. Mina de ouro da Passagem, Mariana, Minas Gerais. Principais Depósitos Minerais do Brasil, vol. III.DNPM, pp. 421–430.

Vial D.S., Groves D.I., Cook N.J., Lobato L.M. (eds.). 2007c. Preface – Special issue on gold deposits of Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geology Reviews, 32(3-4):469-470. doi: 10.1016/j.oregeorev.2006.11.006.

Vieira R. R., Gonçalves C. C., Gonçalves L. 2020. Evidências da colocação sintectônica de plutons revelada por estudos de campo, petrográficos, microestruturais e de química mineral: estudo de caso da Suíte alto maranhão (2130 ma), cinturão mineiro. Anuário do Instituto de Geociências - UFRJ 43, 376–396.

Villaça J. N., Moura L. A. M. 1985. O urânio e o ouro da Formação Moeda – Minas Gerais. In: C. Schobbenhaus (coord.), Principais depósitos minerais do Brasil - Volume 1, Recursos Energéticos. Departamento Nacional da Produção Mineral-DNPM, Brasília, 177-187.

Vitorino, L. A., 2017, Mineralização aurífera associada aos veios quartzo-carbonáticos hospedados na unidade máfica basal da jazida Cuiabá, greenstonebelt Rio das Velhas: M.S. thesis, Universidade Federal de Minas Gerais (In portuguese).

ANEXO

FID	N°_Lab	Número de Grãos de Au	FID	N°_Lab	Número de Grãos de Au
0	CCL279	7	46	CCL325	0
1	CCL280	2	47	CCL326	0
2	CCL281	2	48	CCL327	0
3	CCL282	0	49	CCL328	1
4	CCL283	0	50	CCL329	0
5	CCL284	3	51	CCL330	0
6	CCL285	0	52	CCL331	0
7	CCL286	0	53	CCL332	0
8	CCL287	2	54	CCL333	0
9	CCL288	0	55	CCL334	0
10	CCL289	1	56	CCL335	0
11	CCL290	0	57	CCL336	1
12	CCL291	2	58	CCL337	0
13	CCL292	0	59	CCL338	0
14	CCL293	0	60	CCL339	2
15	CCL294	0	61	CCL340	0
16	CCL295	0	62	CCL341	0
17	CCL296	0	63	CCL342	1
18	CCL297	1	64	CCL343	0
19	CCL298	1	65	CCL344	0
20	CCL299	0	66	CCL345	3
21	CCL300	0	67	CCL346	0
22	CCL301	0	68	CCL347	0
23	CCL302	0	69	CCL348	0
24	CCL303	0	70	CCL349	0
25	CCL304	0	/1	CCL350	6
26	CCL305	0	72	CCL351	0
27		0	73	CCL352	0
28	CCL307	0	74	CCL353	3
29	CCL308	1	75	CCL354	1
30		1	70	CCL355	2
31		0	70		0
3Z 22	CCL311	0	70	CCL357	0
24	CCL312	0	79 90	CCL350	14
25	CCL313	1	00	CCL359	0
36	CCI 315	3	82	CCL361	9
27	CCL315	3	02	CCL361	1
20	CCI 217	10	03 Q/	CCI 363	0
20	CCI 212	0	04 85		12
10	CCI 310	0	88	CCI 365	13
<u>40</u>	CCI 320	0	87		4
/12	CCI 321	0	22		1
42	CCI 322	2	80		0
44	CCI 323	<u> </u>	90	CCI 369	0
45	CCL 324	32	91	CCL370	0

FID	N° Lab	Número de Grãos de Au	FID	N° Lab	Número de Grãos de Au
92	CCL371	1	141	CCL420	1
93	CCL372	0	142	CCL421	0
94	CCL373	0	143	CCL083	0
95	CCL374	0	144	CCL084	0
96	CCL375	0	145	CCL085	0
97	CCL376	0	146	CCL086	0
98	CCL377	0	147	CCL087	0
99	CCL378	0	148	CCL088	0
100	CCL379	0	149	CCL089	0
101	CCL380	0	150	CCL090	0
102	CCL381	3	151	CCL091	0
103	CCL382	5	152	CCL092	0
104	CCL383	0	153	CCL093	0
105	CCL384	0	154	CCL094	0
106	CCL385	0	155	CCL095	0
107	CCL386	0	156	CCL096	0
108	CCL387	2	157	CCL097	0
109	CCL388	1	158	CCL098	0
110	CCL389	0	159	CCL099	0
111	CCL390	0	160	CCL100	5
112	CCL391	0	161	CCL101	2
113	CCL392	0	162	CCL102	5
114	CCL393	0	163	CCL103	1
115	CCL394	0	164	CCL104	0
116	CCL395	0	165	CCL105	0
117	CCL396	0	166	CCL232	0
118	CCL397	0	167	CCL106	0
119	CCL398	1	168	CCL107	0
120	CCL399	0	169	CCL108	0
121	CCL400	0	170	CCL109	0
122	CCL401	0	171	CCL110	0
123	CCL402	2	172	CCL111	1
124	CCL403	0	173	CCL112	0
125	CCL404	0	174	CCL113	0
126	CCL405	0	175	CCL114	0
127	CCL406	0	176	CCL115	0
128	CCL407	0	177	CCL116	0
129	CCL408	0	178	CCL117	0
130	CCL409	0	179	CCL118	0
131	CCL410	1	180	CCL119	0
132	CCL411	0	181	CCL120	5
133	CCL412	9	182	CCL121	0
134	CCL413	0	183	CCL122	0
135	CCL414	0	184	CCL123	0
136	CCL415	0	185	CCL124	0
137	CCL416	1	186	CCL125	0
138	CCL417	0	187	CCL126	2
139	CCL418	0	188	CCL127	0
140	CCL419	1	189	CCL128	0
FID	N°_Lab	Número de Grãos de Au	FID	N°_Lab	Número de Grãos de Au
-----	--------	-----------------------	-----	--------	-----------------------
190	CCL129	0	239	CCL178	0
191	CCL130	0	240	CCL179	0
192	CCL131	0	241	CCL180	0
193	CCL132	0	242	CCL181	2
194	CCL133	0	243	CCL182	0
195	CCL134	0	244	CCL183	1
196	CCL135	0	245	CCL184	0
197	CCL136	0	246	CCL185	0
198	CCL137	0	247	CCL186	2
199	CCL138	0	248	CCL187	0
200	CCL139	7	249	CCL188	0
201	CCL140	0	250	CCL189	0
202	CCL141	0	251	CCL190	0
203	CCL142	0	252	CCL191	0
204	CCL143	1	253	CCL192	0
205	CCL144	0	254	CCL193	0
206	CCL145	0	255	CCL194	0
207	CCL146	0	256	CCL195	0
208	CCL147	0	257	CCL196	0
209	CCL148	0	258	CCL197	0
210	CCL149	0	259	CCL198	0
211	CCL150	1	260	CCL199	0
212	CCL151	0	261	CCL200	0
213	CCL152	0	262	CCL201	0
214	CCL153	0	263	CCL202	0
215	CCL154	0	264	CCL203	2
216	CCL155	0	265	CCL204	0
217	CCL156	0	266	CCL205	0
218	CCL157	0	267	CCL206	0
219	CCL158	0	268	CCL207	0
220	CCL159	0	269	CCL208	0
221	CCL160	2	270	CCL209	0
222	CCL161	0	271	CCL210	0
223	CCL162	0	272	CCL211	0
224	CCL163	0	273	CCL212	0
225	CCL164	0	274	CCL213	2
226	CCL165	0	275	CCL214	0
227	CCL166	0	276	CCL233	0
228	CCL167	0	277	CCL215	0
229	CCL168	0	278	CCL234	0
230	CCL169	1	279	CCL216	7
231	CCL170	0	280	CCL217	0
232	CCL171	1	281	CCL218	0
233	CCL172	0	282	CCL219	0
234	CCL173	0	283	CCL220	1
235	CCL174	0	284	CCL221	2
236	CCL175	0	285	CCL222	0
237	CCL176	0	286	CCL223	0
238	CCL177	0	287	CCL224	0

FID	N° Lab	Número de Grãos de Au	FID	N° Lab	Número de Grãos de Au
288	 CCL225	0	337	 CCL257	0
289	CCL226	0	338	CCL258	7
290	CCL227	0	339	CCL582	1
291	CCL228	0	340	CCL583	0
292	CCL229	0	341	CCL584	0
293	CCL230	0	342	CCL585	0
294	CCL231	0	343	CCL586	0
295	CCL235	0	344	CCL587	0
296	CCL236	0	345	CCL588	0
297	CCL237	0	346	CCL589	1
298	CCL238	0	347	CCL590	0
299	CCL239	0	348	CCL591	0
300	CCL240	0	349	CCL592	0
301	CCL241	0	350	CCL593	0
302	CCL242	0	351	CCL594	0
303	CCL243	0	352	CCL595	0
304	CCL266	1	353	CCL596	0
305	CCL267	0	354	CCL597	0
306	CCL268	0	355	CCL598	0
307	CCL269	0	356	CCL599	1
308	CCL270	0	357	CCL600	0
309	CCL271	0	358	CCL601	0
310	CCL272	2	359	CCL602	0
311	CCL273	0	360	CCL603	0
312	CCL274	1	361	CCL604	0
313	CCL275	0	362	CCL605	0
314	CCL276	0	363	CCL606	1
315	CCL277	1	364	CCL607	0
316	CCL278	0	365	CCL608	0
317	CCL244	0	366	CCL609	0
318	CCL245	0	367	CCL610	0
319	CCL246	0	368	CCL611	0
320	CCL247	5	369	CCL612	0
321	CCL248	0	370	CCL613	0
322	CCL249	0	371	CCL614	0
323	CCL250	0	372	CCL615	0
324	CCL259	0	373	CCL616	0
325	CCL260	0	374	CCL617	0
326	CCL261	0	375	CCL618	0
327	CCL262	0	376	CCL619	0
328	CCL263	0	377	CCL620	0
329	CCL264	3	378	CCL621	1
330	CCL265	3	379	CCL622	0
331	CCL251	0	380	CCL623	0
332	CCL252	0	381	CCL624	0
333	CCL253	0	382	CCL625	1
334	CCL254	0	383	CCL626	1
335	CCL255	0	384	CCL627	0
336	CCL256	4	385	CCL628	0

FID	N°_Lab	Número de Grãos de Au	FID	N°_Lab	Número de Grãos de Au
386	CCL629	2	435	CCL678	0
387	CCL630	0	436	CCL679	3
388	CCL631	0	437	CCL680	0
389	CCL632	0	438	CCL681	0
390	CCL633	8	439	CCL682	2
391	CCL634	0	440	CCL683	0
392	CCL635	0	441	CCL684	0
393	CCL636	2	442	CCL685	0
394	CCL637	0	443	CCL686	0
395	CCL638	0	444	CCL687	0
396	CCL639	21	445	CCL688	0
397	CCL640	0	446	CCL689	0
398	CCL641	0	447	CCL690	0
399	CCL642	0	448	CCL691	0
400	CCL643	2	449	CCL692	0
401	CCL644	0	450	CCL693	0
402	CCL645	0	451	CCL694	0
403	CCL646	0	452	CCL695	0
404	CCL647	0	453	CCL696	0
405	CCL648	0	454	CCL697	0
406	CCL649	0	455	CCL698	0
407	CCL650	0	456	CCL699	0
408	CCL651	10	457	CCL700	0
409	CCL652	16	458	CCL701	0
410	CCL653	60	459	CCL702	0
411	CCL654	0	460	CCL703	0
412	CCL655	0	461	CCL704	0
413	CCL656	0	462	CCL705	1
414	CCL657	0	463	CCL706	0
415	CCL658	3	464	CCL707	1
416	CCL659	0	465	CCL708	0
417	CCL660	0	466	CCL709	0
418	CCL661	0	467	CCL710	0
419	CCL662	0	468	CCL711	0
420	CCL663	0	469	CCL712	1
421	CCL664	0	470	CCL713	0
422	CCL665	0	471	CCL714	1
423	CCL666	0	472	CCL715	0
424	CCL667	1	473	CCL716	0
425	CCL668	0	474	CCL717	4
426	CCL669	0	475	CCL718	10
427	CCL670	0	476	CCL719	0
428	CCL671	0	477	CCL720	4
429	CCL672	0	478	CCL721	1
430	CCL673	0	479	CCL722	0
431	CCL674	1	480	CCL723	1
432	CCL675	0	481	CCL724	5
433	CCL676	0	482	CCL725	0
434	CCL677	0	483	CCL726	0

	FID	N° Lab	Número de Grãos de Au	FID	N° Lab	Número de Grãos de Au
	484	CCL727	2	533	CCL776	0
	485	CCL728	13	534	CCL777	0
	486	CCL729	8	535	CCL778	0
	487	CCL730	4	536	CCL779	0
	488	CCL731	13	537	CCL780	0
	489	CCL732	1	538	CCL781	0
	490	CCL733	6	539	CCL782	1
	491	CCL734	1	540	CCL783	0
	492	CCL735	3	541	CCL784	0
	493	CCL736	0	542	CCL785	0
	494	CCL737	2	543	CCL786	0
	495	CCL738	0	544	CCL787	0
	496	CCL739	1	545	CCL788	1
	497	CCL740	0	546	CCL789	0
	498	CCL741	0	547	CCL790	0
	499	CCL742	0	548	CCL791	0
	500	CCL743	0	549	CCL792	0
	501	CCL744	0	550	CCL793	0
	502	CCL745	0	551	CCL794	0
	503	CCL746	3	552	CCL795	0
	504	CCL747	0	553	CCL796	0
	505	CCL748	2	554	CCL797	0
	506	CCL749	0	555	CCL798	0
	507	CCL750	0	556	CCL799	0
	508	CCL751	4	557	CCL800	0
	509	CCL752	1	558	CCL801	7
	510	CCL753	1	559	CCL802	10
	511	CCL754	0	560	CCL803	1
	512	CCL755	0	561	CCL804	0
	513	CCL756	2	562	CCL805	5
	514	CCL757	2	563	CCL806	0
	515	CCL758	0	564	CCL807	0
	516	CCL759	3	565	CCL808	1
	517	CCL760	4	566	CCL809	1
	518	CCL761	0	567	CCL810	0
	519	CCL762	0	568	CCL811	0
	520	CCL/63	0	569	CCL812	0
	521	CCL/64	0	570	CCL813	0
	522	CCL/65	0	5/1	CCL814	0
	523	CCL/66	0	572	CCL815	0
	524	CCL/6/	0	5/3	CCL816	0
	525	CCL/68	0	574	CCL817	0
	526	CCL769	0	575	CCL818	0
	527		0	5/6	CCL819	0
	528		0	5//		0
	529	CCL772	0	5/8		2
	53U	CCL774	0	519		0
ļ	501		0	500	CCL023	<u> </u>
	JJJZ		0	501		

FID	N°_Lab	Número de Grãos de Au	FID	N°_Lab	Número de Grãos de Au
582	CCL825	0	631	CCL874	3
583	CCL826	1	632	CCL875	1
584	CCL827	1	633	CCL876	0
585	CCL828	0	634	CCL877	0
586	CCL829	1	635	CCL878	3
587	CCL830	0	636	CCL879	0
588	CCL831	0	637	CCL880	8
589	CCL832	0	638	CCL881	0
590	CCL833	0	639	CCL882	0
591	CCL834	0	640	CCL883	0
592	CCL835	1	641	CCL884	0
593	CCL836	3	642	CCL885	0
594	CCL837	1	643	CCL886	0
595	CCL838	0	644	CCL887	0
596	CCL839	2	645	CCL888	0
597	CCL840	0	646	CCL889	0
598	CCL841	0	647	CCL890	0
599	CCL842	0	648	CCL891	0
600	CCL843	0	649	CCL892	2
601	CCL844	0	650	CCL893	0
602	CCL845	0	651	CCL894	0
603	CCL846	0	652	CCL895	0
604	CCL847	0	653	CCL896	0
605	CCL848	0	654	CCL897	0
606	CCL849	0	655	CCL898	0
607	CCL850	0	656	CCL899	0
608	CCL851	0	657	CCL900	0
609	CCL852	0	658	CCL901	0
610	CCL853	0	659	CCL902	0
611	CCL854	0	660	CCL903	0
612	CCL855	0	661	CCL904	0
613	CCL856	0	662	CCL905	0
614	CCL857	4	663	CCL906	1
615	CCL858	0	664	CCL907	0
616	CCL859	3	665	CCL908	1
617	CCL860	0	666	CCL909	0
618	CCL861	3	667	CCL910	0
619	CCL862	0	668	CCL911	12
620	CCL863	4	669	CCL912	0
621	CCL864	0	670	CCL913	0
622	CCL865	0	671	CCL914	0
623	CCL866	0	672	CCL915	0
624	CCL867	0	673	CCL916	0
625	CCL868	5	674	CCL917	0
626	CCL869	0	675	CCL918	0
627	CCL870	0	676	CCL919	0
628	CCL871	0	677	CCL920	0
629	CCL872	0	678	CCL921	0
630	CCL873	0	679	CCL922	0

FID	N° Lab	Número de Grãos de Au	FID	N° Lab	Número de Grãos de Au
680	 CCL923	0	729	CCL972	0
681	CCL924	0	730	CCL973	0
682	CCL925	25	731	CCL974	0
683	CCL926	0	732	CCL975	0
684	CCL927	1	733	CCL976	0
685	CCL928	0	734	CCL977	0
686	CCL929	0	735	CCL978	0
687	CCL930	0	736	CCL979	0
688	CCL931	0	737	CCL980	0
689	CCL932	0	738	CCL981	0
690	CCL933	0	739	CCL982	0
691	CCL934	0	740	CCL983	0
692	CCL935	0	741	CCL984	2
693	CCL936	1	742	CCL985	0
694	CCL937	0	743	CCL986	0
695	CCL938	1	744	CCL987	0
696	CCL939	0	745	CCL988	0
697	CCL940	0	746	CCL989	0
698	CCL941	0	747	CCL990	0
699	CCL942	0	748	CCL991	0
700	CCL943	0	749	CCL992	0
701	CCL944	0	750	CCL993	0
702	CCL945	0	751	CCL994	0
703	CCL946	0	752	CCL995	2
704	CCL947	0	753	CCL996	0
705	CCL948	0	754	CCL997	1
706	CCL949	0	755	CCL998	1
707	CCL950	0	756	CCL999	0
708	CCL951	0	757	CCM001	0
709	CCL952	0	758	CCM002	0
710	CCL953	0	759	CCM003	0
711	CCL954	0	760	CCM004	0
712	CCL955	1	761	CCM005	2
713	CCL956	0	762	CCM006	0
714	CCL957	0	763	CCM007	0
715	CCL958	0	764	CCM008	0
716	CCL959	0	765	CCM009	0
717	CCL960	1	766	CCM010	3
718	CCL961	1	767	CCM011	0
719	CCL962	0	768	CCM012	0
720	CCL963	0	769	CCM013	0
721	CCL964	0	770	CCM014	0
722	CCL965	0	//1	CCM015	51
723	CCL966	0	772	CCM016	2
/24	CCL967	0	/73	CCM017	1
/25	CCL968	4	//4	CCP413	0
/26	CCL969	0	1/5	CCP414	0
/2/		3	1/6	00P415	0
1 728	100L9/1	0	111	UUP416	0

FID	N°_Lab	Número de Grãos de Au	FID	N°_Lab	Número de Grãos de Au
778	CCP417	0	827	CCP466	1
779	CCP418	0	828	CCP467	15
780	CCP419	0	829	CCP468	2
781	CCP420	0	830	CCP469	0
782	CCP421	0	831	CCP470	39
783	CCP422	0	832	CCP471	0
784	CCP423	0	833	CCP472	0
785	CCP424	2	834	CCP473	0
786	CCP425	0	835	CCP474	0
787	CCP426	0	836	CCP475	4
788	CCP427	0	837	CCP476	0
789	CCP428	0	838	CCP477	1
790	CCP429	0	839	CCP478	0
791	CCP430	1	840	CCP479	0
792	CCP431	0	841	CCP480	15
793	CCP432	0	842	CCP481	4
794	CCP433	0	843	CCP482	0
795	CCP434	0	844	CCP483	22
796	CCP435	1	845	CCP484	0
797	CCP436	0	846	CCP485	6
798	CCP437	4	847	CCP486	0
799	CCP438	1	848	CCP487	2
800	CCP439	3	849	CCP488	0
801	CCP440	0	850	CCP489	0
802	CCP441	1	851	CCP490	2
803	CCP442	0	852	CCP491	0
804	CCP443	0	853	CCP492	7
805	CCP444	0	854	CCP493	0
806	CCP445	0	855	CCP494	0
807	CCP446	0	856	CCP495	0
808	CCP447	1	857	CCP496	0
809	CCP448	5	858	CCP497	0
810	CCP449	1	859	CCP498	0
811	CCP450	1	860	CCP499	0
812	CCP451	0	861	CCP500	0
813	CCP452	0	862	CCP501	0
814	CCP453	0	863	CCP502	0
815	CCP454	0	864	CCP503	0
816	CCP455	0	865	CCP504	0
817	CCP456	0	866	CCP505	0
818	CCP457	0	867	CCP506	0
819	CCP458	0	868	CCP507	0
820	CCP459	0	869	CCP508	0
821	CCP460	0	870	CCP509	0
822	CCP461	0	871	CCP510	0
823	CCP462	2	872	CCP511	0
824	CCP463	1	873	CCP512	0
825	CCP464	2	874	CCP513	0
826	CCP465	0	875	CCP514	0

FID	N° Lab	Número de Grãos de Au	FID	N° Lab	Número de Grãos de Au
876	 CCP515	0	925	 CCP564	0
877	CCP516	0	926	CCP565	23
878	CCP517	0	927	CCP566	0
879	CCP518	1	928	CCP567	0
880	CCP519	0	929	CCP568	0
881	CCP520	0	930	CCP569	0
882	CCP521	0	931	CCP570	0
883	CCP522	0	932	CCP571	0
884	CCP523	0	933	CCP572	0
885	CCP524	0	934	CCP573	0
886	CCP525	4	935	CCP574	3
887	CCP526	0	936	CCP575	3
888	CCP527	0	937	CCP576	0
889	CCP528	0	938	CCP577	2
890	CCP529	0	939	CCP578	0
891	CCP530	1	940	CCP579	0
892	CCP531	0	941	CCP580	0
893	CCP532	0	942	CCP581	0
894	CCP533	0	943	CCP582	0
895	CCP534	1	944	CCP583	0
896	CCP535	0	945	CCP584	0
897	CCP536	0	946	CCP585	0
898	CCP537	0	947	CCP586	0
899	CCP538	1	948	CCP587	0
900	CCP539	0	949	CCP588	0
901	CCP540	0	950	CCP589	0
902	CCP541	1	951	CCP590	1
903	CCP542	0	952	CCP591	0
904	CCP543	0	953	CCP592	0
905	CCP544	0	954	CCP593	0
906	CCP545	0	955	CCP594	0
907	CCP546	0	956	CCP595	1
908	CCP547	0	957	CCP596	0
909	CCP548	12	958	CCP597	0
910	CCP549	0	959	CCP598	0
911	CCP550	0	960	CCP599	1
912	CCP551	0	961	CCP600	0
913	CCP552	1	962	CCP601	0
914	CCP553	0	963	CCP602	0
915	CCP554	0	964	CCP603	0
916	CCP555	0	965	CCP604	0
917	CCP556	0	966	CCP605	0
918	CCP557	0	967	CCP606	1
919	CCP558	0	968	CCP607	0
920	CCP559	0	969	CCP608	0
921	CCP560	0	970	CCP609	0
922	CCP561	0	971	CCP610	0
923	CCP562	0	972	CCP611	1
924	CCP563	0	973	CCP612	0

FID	N°_Lab	Número de Grãos de Au	FID	N°_Lab	Número de Grãos de Au
974	CCP613	0	1023	CDE856	1
975	CCP614	1	1024	CDE857	0
976	CCP615	0	1025	CDE858	6
977	CCP616	0	1026	CDE859	0
978	CCP617	0	1027	CDE860	0
979	CCP618	0	1028	CDE861	2
980	CCP619	1	1029	CDE862	1
981	CCP620	0	1030	CDE863	0
982	CCP621	0	1031	CDE864	5
983	CCP622	0	1032	CDE865	0
984	CCP623	1	1033	CDE866	4
985	CCP624	0	1034	CDE867	0
986	CCP625	3	1035	CDE868	0
987	CCP626	0	1036	CDE869	0
988	CCP627	0	1037	CDE870	0
989	CCP628	0	1038	CDE871	0
990	CCP629	0	1039	CDE872	0
991	CCP630	0	1040	CDE873	0
992	CCP631	0	1041	CDE874	0
993	CCP632	0	1042	CDE875	1
994	CCP633	0	1043	CDE876	0
995	CCP634	0	1044	CDE877	0
996	CCP635	0	1045	CDE878	0
997	CCP636	0	1046	CDE879	0
998	CCP637	0	1047	CDE880	0
999	CCP638	0	1048	CDE881	1
1000	CCP639	0	1049	CDE882	0
1001	CCP640	0	1050	CDE883	0
1002	CCP641	0	1051	CDE884	1
1003	CCP642	0	1052	CDE885	1
1004	CCP643	1	1053	CDE886	2
1005	CCP644	1	1054	CDE887	0
1006	CCP645	0	1055	CDE888	3
1007	CDE840	0	1056	CDE889	2
1008	CDE841	0	1057	CDE890	2
1009	CDE842	3	1058	CDE891	1
1010	CDE843	0	1059	CDE892	2
1011	CDE844	0	1060	CDE893	0
1012	CDE845	0	1061	CDE894	1
1013	CDE846	0	1062	CDE895	0
1014	CDE847	35	1063	CDE896	2
1015	CDE848	0	1064	CDE897	0
1016	CDE849	0	1065	CDE898	0
1017	CDE850	0	1066	CDE899	0
1018	CDE851	0	1067	CDE900	0
1019	CDE852	0	1068	CDE901	0
1020	CDE853	0	1069	CDE902	0
1021	CDE854	0	1070	CDE903	0
1022	CDE855	0	1071	CDE904	0

FID	N° Lab	Número de Grãos de Au	FID	N° Lab	Número de Grãos de Au
1072	 CDE905	0	1121	CDE954	0
1073	CDE906	0	1122	CDE955	0
1074	CDE907	0	1123	CDE956	0
1075	CDE908	0	1124	CDE957	0
1076	CDE909	0	1125	CDE958	0
1077	CDE910	0	1126	CDE959	0
1078	CDE911	0	1127	CDE960	0
1079	CDE912	0	1128	CDE961	0
1080	CDE913	0	1129	CDE962	0
1081	CDE914	0	1130	CDE963	0
1082	CDE915	0	1131	CDE964	0
1083	CDE916	0	1132	CDE965	1
1084	CDE917	0	1133	CDE966	0
1085	CDE918	0	1134	CDE967	0
1086	CDE919	0	1135	CDE968	1
1087	CDE920	0	1136	CDE969	0
1088	CDE921	0	1137	CDE970	0
1089	CDE922	0	1138	CEA606	0
1090	CDE923	0	1139	CEA607	3
1091	CDE924	0	1140	CEA608	98
1092	CDE925	0	1141	CEA609	1
1093	CDE926	0	1142	CEA610	1
1094	CDE927	0	1143	CEA611	0
1095	CDE928	0	1144	CEA612	0
1096	CDE929	0	1145	CEA613	3
1097	CDE930	0	1146	CEA614	21
1098	CDE931	0	1147	CEA615	38
1099	CDE932	1	1148	CEA616	34
1100	CDE933	0	1149	CEA617	17
1101	CDE934	0	1150	CEA618	6
1102	CDE935	0	1151	CEA619	4
1103	CDE936	0	1152	CEA620	100
1104	CDE937	0	1153	CEA621	18
1105	CDE938	0	1154	CEA622	61
1106	CDE939	0	1155	CEA623	3
1107	CDE940	0	1156	CEA624	56
1108	CDE941	0	1157	CEA625	17
1109	CDE942	0	1158	CEA626	2
1110	CDE943	0	1159	CEA627	1
1111	CDE944	0	1160	CEA628	185
1112	CDE945	0	1161	CEA629	9
1113	CDE946	0	1162	CEA630	0
1114	CDE947	0	1163	CEA631	1
1115	CDE948	0	1164	CEA632	0
1116	CDE949	0	1165	CEA633	1
1117	CDE950	0	1166	CEA634	0
1118	CDE951	0	1167	CEA635	5
1119	CDE952	0	1168	CEA636	3
1120	CDE953	0	1169	CEA637	0

FID	N°_Lab	Número de Grãos de Au
1170	CEA638	1
1171	CEA639	0
1172	CEA640	0
1173	CEA641	1
1174	CEA642	1
1175	CEA643	0
1176	CEA644	1
1177	CEA645	0
1178	CEA646	3
1179	CEA647	0
1180	CEA648	1
1181	CEA649	0
1182	CEA650	0
1183	CEA651	0
1184	CEA652	6
1185	CEA653	0
1186	CEA654	29
1187	CEA655	3
1188	CEA656	0
1189	CEA657	1
1190	CEA658	4
1191	CEA659	4
1192	CEA660	10
1193	CEA661	3
1194	CEA662	18

Mourão, S. A 2023, Reavaliação do potencial aurífero do Quadrilátero Ferrífero....