
LUCAS URZEDO DA SILVA PAULINO
Advisor: Joubert de Castro Lima

ANY.JS: A RESTFUL GENERAL-PURPOSE
COMPUTING MIDDLEWARE FOR CLOUD

ENVIRONMENTS

Ouro Preto
October of 2022



Federal University of Ouro Preto
Institute of Exact Sciences and Biology

Undergraduate Program in Computer Science

Monograph presented to the Undergraduate
Program in Computer Science of the Federal
University of Ouro Preto in partial fulfillment
of the requirements for the degree of Bachelor
in Computer Science.

LUCAS URZEDO DA SILVA PAULINO

Ouro Preto
October of 2022



FEDERAL UNIVERSITY OF OURO PRETO

Any.JS: A RESTful general-purpose computing middleware for
cloud environments

LUCAS URZEDO DA SILVA PAULINO

Dr. Joubert de Castro Lima – Advisor
Federal University of Ouro Preto

Bachelor Gabriel de Oliveira Ribeiro – Co-Advisor
CI&T

Ouro Preto, October of 2022



MINISTÉRIO DA EDUCAÇÃO 
UNIVERSIDADE FEDERAL DE OURO PRETO 

REITORIA 
INSTITUTO DE CIENCIAS EXATAS E BIOLOGICAS 

DEPARTAMENTO DE COMPUTACAO

FOLHA DE APROVAÇÃO

 

 

Lucas Urzedo da Silva Paulino

 

Any.JS: A RESTful general-purpose compu�ng middleware for cloud environments

 

 

 

Monografia apresentada ao Curso de Ciência da Computação da Universidade Federal 
de Ouro Preto como requisito parcial para obtenção do �tulo de Bacharel em Ciência da Computação

 

 

 

Aprovada em 27 de Outubro de 2022.

 

 

 

Membros da banca

 

 

Joubert de Castro Lima (Orientador) - Doutor - Universidade Federal de Ouro Preto 
Gabriel de Oliveira Ribeiro (Coorientador) - Bacharel - CI&T 

André Luiz Lins de Aquino (Examinador) - Doutor - Universidade Federal de Alagoas 
André Luís Barroso Almeida (Examinador) - Mestre - Ins�tuto Federal de Minas Gerais

 
 
 
 
 

Joubert de Castro Lima, Orientador do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de Conclusão de
Curso da UFOP em 27/10/2022.

 
 

Documento assinado eletronicamente por Joubert de Castro Lima, PROFESSOR 3 GRAU, em 28/10/2022, às 08:20, conforme horário
oficial de Brasília, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

A auten�cidade deste documento pode ser conferida no site h�p://sei.ufop.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0 , informando o código verificador 0416027 e o código CRC 5F23293A.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.014507/2022-51 SEI nº 0416027

R. Diogo de Vasconcelos, 122, - Bairro Pilar Ouro Preto/MG, CEP 35400-000 
Telefone: 3135591692   - www.ufop.br

http://www.planalto.gov.br/ccivil_03/_Ato2015-2018/2015/Decreto/D8539.htm
http://sei.ufop.br/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0


Abstract

Middleware is everywhere and most likely will remain everywhere for a long time be-
cause it helps reduce the complexity of distributed application development. Middlewares
with RESTful APIs are very useful because they are interoperable and designed for Web.
Service-oriented middleware architectures turn the solutions extensible, isolated, scalable
and sometimes a bit easier to guarantee fault tolerance in containerized environments due
to their modularity. Many RESTful service-oriented IoT middleware solutions were devel-
oped in recent years, but few general-purpose alternatives were presented by the literature
and this is an important lacuna. A general-purpose middleware must run any algorithm,
i.e., call any function or method transparently, as well as store variables and data structures
also transparently over a cluster. The existing RESTful APIs for processing and storage
services have several limitations: i) no support for non-primitive data types as function pa-
rameters; ii) no class/component registration service; iii) no observability service to notify
the caller about the end of storage and processing asynchronous calls; iv) no data structure
iterator service; and v) no lock/unlock service to guarantee data structures and variables
concurrent and safe accesses. The consequence is a limitation of the REST services usage,
requiring a language specific complement to fully explore processing and storage services.
In this work, we present the Any.JS tool, a RESTful general-purpose computing middle-
ware for cloud environments with the support for the previous five mentioned limitations
of the literature. Thus, no complementary language specific API calls are necessary with
Any.JS, since only interoperable JSON objects and HTTP requests/responses are sufficient
to provide general-purpose services. A comparative analysis were made against Ignite and
Hazelcast solutions to highlight the strengths and weakness of Any.JS and its counterparts.
Any.JS was slower than the existing solutions, but it supports a larger catalog of RESTful
services. As we can see, many improvements are mandatory for the existing literature to
achieve both efficiency and interoperability.
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Chapter 1

Introduction

Middleware is everywhere and most likely will remain everywhere for a long time be-
cause it helps reduce the complexity of distributed application development Al-Jaroodi
and Mohamed (2012a). The challenging issue is to provide sufficient generalized high-level
mechanisms for general-purpose services using middleware solutions and a rapid devel-
opment of distributed and parallel applications. We have specific-purpose middleware
solutions, like IoT Razzaque et al. (2015); Ngu et al. (2016), context-aware Kjær (2007);
Vahdat-Nejad (2014), robotics Elkady and Sobh (2012) and Integration ones Marpaung
et al. (2013); Jahantigh et al. (2020), and general-purpose ones Taboada et al. (2013);
Almeida et al. (2019), where the last are designed for processing and storage services,
precisely to run any algorithm or call any function/method with any number and various
types of parameters. Besides that, the general-purpose solutions also instantiate and store
variables and distributed data structures over a cluster transparently.

In recent years, service-oriented middleware solutions were presented Al-Jaroodi and
Mohamed (2012b), being many of them designed for IoT requirements Issarny et al. (2016)
and others with RESTful APIs Larian et al. (2022). The idea of an architectural design
based on services and microservices enables modularity, extensability, manutenability, scal-
ability and sometimes a better way to provide fault tolerance when services are deployed
into containers and managed by orchestrators, like Docker Swarm Naik (2016) or Kuber-
netes Hightower et al. (2017). The RESTful API is a way to expose the services where the
first benefit is the interoperability, since the service can be called by multiple applications
developed into multiples programming languages using JSON objects. Besides that, the
service is also designed for Web technology, thus HTTP protocol is adopted to provide
requests and responses. In general. POST, GET, PATCH, DELETE and PUT HTTP
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1. Introduction 2

requests are sufficient to develop Create, Retrieve, Update and Delete operations (CRUD)
microservices.

Unfortunately, few existing general-purpose middleware solutions implement RESTful
APIs. We have found only Ignite Zheludkov et al. (2017), Hazelcast Veentjer (2013),
Infinispan 1, Oracle Coherence Seovic et al. (2010) and RAFDA Walker et al. (2010), the
last not really a RESTful solution, but also a Web service alternative. They implement
storage and processing services, but they still have some limitations in some useful REST
services, requiring specific programming languages complements for the following issues:

• No support for non-primitive or non-String data types as function parameters;

• No class/component registration service;

• No observability service to follow storage and processing asynchronous calls;

• No data structure iterator service; and

• No lock/unlock service to guarantee data structures and variables concurrent and
safe accesses.

1.1 Goals

To design and implement a general-purpose middleware solution with a RESTful API
with the following services: i) support for non-primitive data types as function parameters;
ii) class/module registration service; iii) observability service to follow storage and process-
ing asynchronous calls; iv) data structure iterator service; and v) lock/unlock service to
guarantee data structures and variables concurrent and safe accesses.

Besides these core services, the middleware solution must provide a batch task execution
service to perform many task runs over a cluster with a single API call. The results of
a batch execution should be available also asynchronously, thus individually for each task
run of a batch.

Finally, the presented alternative must be evaluated against one or more middlewares
of the literature using JavaScript or other programming language to see the solutions
performance, thus we can measure the impacts, but also see the benefits of new REST
services for the general-purpose middleware literature.

1Infinispan - <https://infinispan.org/>

https://infinispan.org/
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1.2 Out of Scope

It is not the scope of this work non general-purpose middleware solutions, like IoT,
Cloud Integration, Context-awareness, Robotic, Wireless Sensor Network (WSN) and so
forth. In the related work section, we mention some of them that were published in survey
papers, but they were not evaluated against our solution, named Any.JS, nor analyzed
accordingly.

1.3 Work Organization

The rest of this work is organized as follows: Chapter 2 discusses the basic concepts for a
better understanding of the work. Chapter 3 presents the related work about middlewares.
Chapter 4 details the architecture and design of the Any.JS middleware solution. Chapter
5 details the experiments and experimental results. Finally, in Chapter 6 the conclusion
and future research directions are described.



Chapter 2

Basic Concepts

In this chapter, all the basic concepts that are useful for a better understanding of the
work are presented.

2.1 Cloud Computing

Cloud Computing offers a shared set of flexible and configurable computing resources,
such as network, CPU, GPU, RAM, hard disk, but also software layers, such as Operating
System (OS), basic software (Ex. database, compilers, etc.) and applications (Ex. stream
processing tools, graph tools and so forth). These resources can be easily deployed and
used at scale with minimal efforts Mell et al. (2011).

A single hardware can be abstracted as several small devices or a cluster of machines
can be abstracted as a single device. The elasticity is another fundamental property in
cloud environments, so the user can increase the processing or storage capacities, as well
as any other hardware or software configuration on-the-fly, thus cloud computing became
very useful for high availability demands.

2.2 Virtual Machine

The Virtual Machine (VM) is the core of cloud computing and it is an emulated com-
puter system with all the layers (hardware, OS and applications) running over another
computer system. This architectural design provides efficiency and isolation for users
Goldberg (1974).

4



2. Basic Concepts 5

A hypervisor (or virtual machine monitor - VMM) is a computer software, firmware or
hardware that creates and runs VMs. A computer on which a hypervisor runs one or more
VMs is called a host machine, and each VM is called a guest machine. The hypervisor
presents the guest OS with a virtual operating platform and manages the execution of
the guest OS. Multiple instances of a variety of OS may share the virtualized hardware
resources. Any application can be deployed over such OS, being also virtualized.

2.3 Application Programming Interface

The Application Programming Interface (API) is used by computer systems for their
communications, thus it defines how to make requests, the used data types, and how
to interact to allow system communication 1. The API can be customized for specific
utilization, such as interoperability or transaction services.

In Web context, the API use Hypertext Transfer Protocol (HTTP) protocol to send
the content of requests and responses. The common used format is the Extensible Markup
Language (XML) or JavaScript Object Notation (JSON). The communication mechanism
of Web APIs are migrating from Simple Object Access Protocol (SOAP) to Representa-
tional State Transfer (REST), thus a transaction or a request can take long periods to occur
(hours, days or even months), a fundamental requirement for justice services, government
services, scientific experiments and many more.

2.4 REST and RESTful API

Representational State Transfer (REST) is a set of constraints used by HTTP requests
and responses to meet the guidelines defined in the software architecture. RESTful refers
to an API adhering to those constraints. In a RESTful Web service, requests made to a
resource’s URI elicit responses with a payload formatted in HTML, XML, JSON, or some
other format. RESTful systems aim for fast performance, reliability, and scalability by
reusing components that can be managed and updated without affecting the system as a
whole, even while it is running.

1<https://en.wikipedia.org/wiki/Application_programming_interface>

https://en.wikipedia.org/wiki/Application_programming_interface
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2.5 Microservices

One of several definitions of Microservices is:

"A Microservice is an independently deployable component of bounded scope that supports
interoperability through message-based communication. Microservice Architecture is a

style of engineering highly automated and where software systems are made up of
capability-aligned microservices." Nadareishvili et al. (2016)

Microservices are small in size, being more cohesive, if compared with a monolithic
architecture. Web APIs are often used to intercommunicate microservices. This software
architecture enables the development of low coupling components and each of them can
be developed at different stage. Normally, each microservice has its metadata that is very
useful for both service discovery and service composition, a fundamental activity of service
orchestration explained further in this chapter.

2.6 Service Orchestration and Choreography

Service orchestration refers to a centralized process responsible to interact and manage
microservices. The interactions happen at message level and the orchestration includes
business logic, including service composition, and task execution order Peltz (2003), this
way the microservices must be flexible and adaptable to business needs.

Choreography services represent a decentralized architecture, where each participant,
i.e., each microservice has a communication pattern focused in collaboration, thus elec-
tions and other decision strategies are used Busi et al. (2005). The same orchestration
responsibilities (service discover, service composition, task ordering, etc.) are included in
choreography, but in a distributed way.

2.7 Container

The container is also a virtualization layer and used together with VMs, since the
containers operate at OS level Merkel (2014). In containers, there are abstraction layers
for process, network, hard disks and so forth. Containers running on the same machine
preserve the isolation, thus memory, processor and disk are not visible among them.

As we can see, containers are more light than VMs, this way faster during deployment,
creation and destruction of computer environments. The VM requires kernel level, OS
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libraries, drivers and many more, so even when it is not running it consumes a huge amount
of memory. Normally, containers are fault tolerant, so if a containerized application crashes
for any reason, the container can call any procedure to restart it. The recover service in
terms of backlogs and operations ordering are domain application responsibilities.

2.7.1 Docker

Docker is one of the market-leaders container technology, which uses few features from
Linux kernel to provide a lightweight tool to manage the life-cycle of many applications
Merkel (2014). Docker uses Linux containers and Linux Container (LXC), a package from
Linux containers to provide user-namespaces, separating container’s database and network
from host. Docker adopts Advanced Multi-Layered Unification Filesystem (AuFS) as its file
system. It is a layered file system, enabling Docker containers to deploy several customized
images derived from the same image. The LXC also provides cgroups, a package used to
both analyze and limit containers resources, such as memory usage, disk space and I/O
bandwidth.

Docker also provides a Web repository where there are images from several frameworks,
OS, and programming languages (Ex. Python and MongoDB images). The most common
way to manage Docker containers is through command line, but it also has a REST API.

2.7.2 Docker Swarm

Docker Swarm is a clustering tool, orchestrating Docker containers (nodes) into a virtual
Docker system Naik (2016). It adopts nodes to provide a redundancy system in the case of
processing failure. The Docker Swarm has Manager and Worker nodes, where the manager
node allows the cluster state management, precisely the node deploy, update, and remove
services in an existing cluster of nodes. On the other hand, the worker nodes are responsible
for running tasks.

2.8 MongoDB - No SQL storage

MongoDB is a powerful, flexible, and scalable general-purpose database. It combines
the ability to scale out with features, such as secondary indexes, range queries, sorting,
aggregations, and geo-spatial indexes Chodorow (2013). The MongoDB, as Non-relational
database, uses the document concept to storage the rows or registers. The document has
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no predefined schemas, this way the document keys do not require prefixed types and sizes,
thus they allow insertions or removals of fields more freely.

2.9 KrakenD gateway

KrakenD KrakenD (2021) is an extensible, declarative, high-performance open-source
API gateway. Its main functionality is to create an API that acts as an aggregator of many
microservices into single endpoints. It performs some operations automatically: aggregate,
transform, filter, decode, throttle and authentication.



Chapter 3

Related Work

In this chapter, it is detailed the most similar middleware solutions designed to provide
processing and storage services using RESTful APIs. These solutions are named general-
purpose ones, thus specialized alternatives used for context-awareness, robotics, sensing,
actuating or cloud integration services are mentioned, but they are not the focus of this
work.

We have searched the following paper repositories to build the related work: IEEE and
ACM. The Google search engine was also used to find white papers and magazine reports.
The keywords searched were:

(middleware OR framework OR library) AND (rest OR restful) AND (api)

The number of papers or pages found were:

ACM library: 62 results (41 research papers, 7 posters, 5 short papers, 4 abstracts, 2
tutorials, 1 survey and 2 demonstrations);

IEEE Xplore: 133 results (125 conference papers, 5 journal papers, 2 magazine papers and
1 early access paper);

Google: 199.000 pages in English.

3.1 General-purpose solutions

Apache Ignite Zheludkov et al. (2017) is an open source distributed database for high-
performance computing (HPC) with in-memory speed. It has a RESTful API for processing

9
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and storage services. The processing API allows the user to develop custom tasks in con-
temporary languages, such as Java, C, C++, Python, JavaScript and PHP. The tasks run
over the cluster and their results are available transparently, simplifying the development
of parallel applications that demand high processing. Unfortunately, only String task pa-
rameters are allowed in the RESTful alternative. No register of classes in the cluster is
provided via RESTful services, but just via ordinary programming languages alternatives
and only inside the cluster. Ignite supports processing and storage faults, it has load bal-
ancing transparency and it can run tasks in a broadcast way or it can execute them on
specific cluster nodes. The storage RESTful support does not implement lock and unlock
to guarantee durability during a safe access. Remote instantiation is not feasible in Ignite,
so only remote storage is possible using its RESTful API. Only distributed maps, named
caches in Ignite, are possible, so common variables are not allowed. It can be deployed
over public containerized cloud environments.

Hazelcast Veentjer (2013) is a streaming and memory-first application platform devel-
oped in Java. It is an open-source platform dedicated to distributed computing, which
brings a set of components that support data distribution and processing. The solution
offers support for different programming languages, such as C++, C, Java, .NET, Python,
JavaScript and Go. For data distribution, Hazelcast has maps, multi-maps and collections.
In terms of processing, the users can use locks and messages. The Executor framework is
responsible for running tasks asynchronously, but this feature is only available in Java and
not accessible on the RESTful API. Unfortunately, only String parameters are allowed in
tasks submitted using RESTful alternative. Hazelcast handles map locks, ensuring that
write operations on a given partition of the map are handled one at a time in first-in-first-
out order, but via RESTful API the locks are not feasible. Data structures iterators can be
implemented and used in Java, but not provided via RESTful services. Hazelcast’s WAN
Replication feature can be used via RESTful alternative to synchronize multiple clusters.
Data can be imported from databases, files, messaging systems, on-premise and cloud sys-
tems in various formats using a RESTful service. Hazelcast offers pipelines and load/store
interfaces for this purpose. Applications developed on clients can be asynchronous, but it
was not mentioned about RESTful API calls for that purpose. It can be deployed over
public containerized cloud environments.

Infinispan 1, developed by JBoss/RedHat Sliwinski et al. (2019), is a popular open
source distributed in-memory <key, value> pair data store solution that enables accessing

1Infinispan - <https://infinispan.org/>

https://infinispan.org/
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a cluster in two ways: i) via an API available in a Java library; ii) via several proto-
cols, such as HotRod, REST, Memcached and WebSockets, making Infinispan a language-
independent solution. In addition to storage services, the middleware can execute tasks
remotely and asynchronously; however, developers must implement Runnable or Callable
Java interfaces. Furthermore, it must register these tasks in the JVM classpath of each
cluster node, which can delay the deployment process. Infinispan servers provide RESTful
HTTP access to data through a RESTful endpoint. The RESTful API allows write and
read data in different formats and Infinispan can convert between those formats when re-
quired. Through a RESTful client, it is possible to retrieve, execute, and upload Infinispan
server tasks. Infinispan can be deployed into containerized cloud environments.

Oracle Coherence Seovic et al. (2010) is a Java-based distributed cache and in-memory
data grid. Intended for systems that require high availability, high scalability and low
latency, particularly in cases that traditional relational database management systems
provide insufficient throughput, or insufficient performance. Coherence comes with its own
Kubernetes operator, which allows to easily provision Coherence-based applications on any
Kubernetes cluster. The Coherence RESTful API pre-defines many operations that can be
used to interact with a cache. In addition, custom operations such aggregators and entry
processors can be created as required. The RESTful services require metadata about the
cache that they expose. Coherence RESTful uses HTTP as the underlying protocol and
can marshal data in both JSON and XML representation formats. As we can see, its focus
is on storage services, being not well designed for processing ones.

RAFDA Walker et al. (2010) is a reflective middleware that permits arbitrary objects
in an application to be dynamically exposed for remote access, allowing applications write
without concern with distribution. RAFDA objects are exposed as Web services to provide
distributed access to ordinary Java classes. Applications access RAFDA functionalities
using infrastructure objects called RAFDA Run-Time (RRT). Each RRT provides two
interfaces to application programmers: one for local RRT access and the other for remote
RRT access. With this approach, RAFDA introduces dependencies and, consequently,
requires code refactoring. A RRT supports peer-to-peer communication; therefore, it is
possible to execute a task in a specific cluster node. However, when developers need to
submit several tasks to more than one remote RRT, they must implement a scheduler from
scratch. The web service model provides no storage services, only processing ones, thus no
data structures, locks/unlocks and iterators are available. The RRT can be used as a web
services container and like conventional Web services containers, a list of available services
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and the Web service description language (WSDL) for a particular service can be obtained
from the RRT.

Table 3.1: Any.JS and its counterparts’ features

Feature
Tool Fault Tolerance Simple Deploy Collaborative Variable Task DS DS traversal SCA Cloud Native

Any.JS No Yes Yes Yes Yes Yes Yes Yes Yes
Apache Ignite Yes No Yes No Yes Yes Yes No Yes

Hazelcast Yes No Yes No Yes Yes Yes Yes Yes
Infinispan Yes No Yes Yes Yes Yes Yes Yes Yes

Oracle Coherence Yes Yes Yes Yes No Yes Yes Yes Yes
RAFDA No Yes Yes Yes Yes No No No Yes

3.2 Middleware solutions for other purposes

Besides the general-purpose middleware solutions, we have specific-purpose middle-
ware solutions, like IoT Razzaque et al. (2015); Ngu et al. (2016), Cloud of Things (CoT)
Farahzadi et al. (2018), context-aware Kjær (2007); Vahdat-Nejad (2014), service compo-
sition Ibrahim and Mouel (2009), robotics Elkady and Sobh (2012), authentication/autho-
rization services Christie et al. (2020), wireless sensor network (WSN) Wang et al. (2008);
Mohamed and Al-Jaroodi (2011), real-time computing Pérez and Gutiérrez (2014) and
cloud integration Marpaung et al. (2013); Jahantigh et al. (2020).

In terms of integration, there are even semi-automatic ways of integrating legacy sys-
tems, IoT applications and cloud environments and an example is R2SMA Königsberger.
and Mitschang. (2018). It is a middleware architecture to access legacy enterprise Web
services using lightweight RESTful APIs. The solution implements a SOAP-to-REST mid-
dleware architecture that provides a semi-automatic way to create RESTful proxies from
existing conventional Web services and without the need to adapt the current services.

3.3 Discussions

To the best of our knowledge, no general-purpose middleware solutions implement a
minimum set of processing and storage services in their RESTful APIs. It is mandatory
any sort of complement for the RESTful API calls using other APIs in specific program-
ming languages to perform lock/unlock accesses, iterator data structure traversals, register
of existing algorithms or components to be executed further and a way to observe future
processing/storage runs to receive notifications when they finished. In terms of processing
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services, only String or primitive data type parameters are supported via RESTful alterna-
tive. These limitations are the main drawbacks of the current general-purpose middleware
literature. The support for several programming languages, their scalability, availability,
their fault tolerance capacity and the deployment over elastic containerized cloud environ-
ments are the core strengths of the existing alternatives.

Another important consideration is the number of general-purpose players nowadays.
We have found only five solutions and most of them are commercial ones, being almost of
them not free. In opposite direction, there is a huge number of specific-purpose middleware
solutions, precisely for IoT demands. Sensing data ingestion services and interoperable
ways to manage IoT devices became dominant in the literature in the last decade.

Finally, collective operations, like reduce, prefix-sum and gather, are commonly used
by general-purpose code while implementing tasks, but they are not mentioned in the
middleware general-purpose literature. Even Spark map-reduce solution Zaharia et al.
(2010) does not implement a RESTful version to implement interoperable mappers and
reducers.

The Any.JS RESTful general-purpose computing middleware is an alternative also de-
signed for elastic containerized cloud environments and capable to expose processing and
storage services via a RESTful interoperable alternative, but without the previous men-
tioned limitations, i.e., with lock/unlock, iterator, register and observer services, but also
with support for remote/asynchronous method calls with complex JSON parameters and
not only String and primitive parameter types. The Any.JS instantiates/stores objects and
calls methods implemented in Java, Python and JavaScript programming languages via its
RESTful API.



Chapter 4

Development

In this chapter, it is detailed the Any.JS architecture, this way how its components are
organized and how they interact. Besides the architecture, an example of how we can use
the Any.JS services are presented at the end of the chapter.

4.1 Architecture

The Any.JS architecture is organized into layers, precisely into seven layers as Figure
4.1 illustrates.

Figure 4.1: Any.JS architecture

14



4. Development 15

4.1.1 The Virtual Machine (VM) Layer

The VM represents the first layer, this way the lowest abstraction level of the Any.JS
system where the OS type, network configuration, memory capacity, number of cores on
each virtual CPU or GPU and disk technology are applied. The Cloud environment turns
the deploy and the maintainability of the systems a bit easier due to its elastic property.
The Google Cloud Platform (GCP) and the AWS Platform are the two biggest players
nowadays in Cloud Computing industry, so we decided to operate using GCP, but the
Any.JS is compatible with AWS infrastructure and any other public Cloud Computing
platform.

The Any.JS needs to be executed on Linux and requires at least a cluster composed
of VMs with 2GB of RAM and 30GB of disk space minimum, these settings may change
depending on the volume of jobs assigned to Any.JS. In summary, we just need to configure
an elastic cluster environment, composed of VMs of any size.

4.1.2 Container Orchestrator

The second layer is responsible for the container orchestration, where services like run
a task, precisely the gateway routes, cluster deployment, on demand cluster resize, services
migration from one container to other and issues related with network are covered. There
are two leaders nowadays: Docker Swarm Naik (2016) and Kubernetes Hightower et al.
(2017). We decided to use Docker Swarm to scale the Any.JS services due to its integration
with Docker containers and its simplicity when compared with Kubernetes.

To simplify all containers management, we decided to use Portainer Portainer (2021).
It enables to manage the global cluster state, including delete images and volumes, track
the memory/CPU usage on each container, and observe the microservices and VMs of the
cluster in a more practical and friendly way. It is deployed with Any.JS, so transparent
for the programmer. It is available through the IP address and port 9000. All these
software dependencies and Docker cluster tuning issues are configured via Docker Swarm
configuration file, so Any.JS has its own Docker Swarm configuration file.

4.1.3 Containers

Once we have deployed the container orchestrator, its necessary to deploy the contain-
ers. We have chosen the Docker container technology Merkel (2014) due to its popularity
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and simplicity. Besides that, Docker Swarm and Docker containers are build from the same
company, thus with high compatibility.

Figure 4.2 details the idea inside a container in the Any.JS system. Basically, we have
processing containers and storage containers. On each container we have an image previ-
ously mounted and hosted in a public image repository (DockerHub - 1), so we have Any.JS
API services implementations containers for the programming languages Java, Python and
JavaScript. Besides that, Any.JS has the observer and MongoDB Chodorow (2013) im-
ages. The observability service can be performed via RESTful API or using directly the
Mongo DB client to be notified outside Any.JS. Processing and store service containers
can be grouped into two containers type that can be replicated over the deployed VMs
and managed by the Docker Swarm, as explained previously. The kernel of Any.JS is
implemented in JavaScript, thus even the Java and Python containers have some of the
JavaScript services, like Map, Store and Lock/Unlock.

The remaining services presented in Figure 4.1 are designed according to a specific
programming language, but all of JavaScript or Python or Java services are described as
JSON objects and performed via RESTful API. The programming language is part of a
REST service URL to execute tasks and instantiate objects, since both service types are
programming language dependable. The KrakenD container represents the Any.JS API
gateway, thus implementing all services routes.

Figure 4.2: Any.JS container types

1DockerHub - <https://hub.docker.com/>

https://hub.docker.com/
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The MongoDB storage system is responsible for publishing updates to components
named Observe (explained later in this chapter). These updates occur on MongoDB and
using a collection concept. A collection is a set of documents and each document is a set of
entries. MongoDB is well designed for JSON format and it stores collections of documents.
When a collection is updated, MongoDB notifies its clients, being them an internal Any.JS
container or a MongoDB client outside Any.JS cluster. This way, we created a way for the
Any.JS users to observe collections changing in a simple manner. Most of Any.JS POST
API requests creates a collection or document, so when the user stores a JSON object
or when he or she instantiates or executes a task or perform an algorithm registration
request, a collection or document is created and notifications are submitted for consumers
interested on these events.

From the programmers perspective, the container configuration of the Any.JS is per-
formed as follows: First, it is necessary to have a Docker Swarm cluster, configured ac-
cording to any existing Web tutorial. On the manager machine of the cluster, you must
install the Docker Compose configuration file. Next, you need to clone the source code
from Any.JS2 and, as root user, you have to run the file run.sh, located on root directory.
This file deploys the Any.JS system on Docker Swarm.

To improve the performance of the microservices running on the Any.JS cluster, it is
necessary to scale the server workers and for that there are two ways: you can use the
Docker Command Line Interface (CLI) or you can edit the configuration file. We illustrate
the option using the configuration file. Before you run the run.sh file, you must set the
number of replicas of the server worker on the docker − compose.yml file, located on root
directory, precisely at line 16 of such file. The default value are three replicas, but this
number must be changed according to your tasks requirements and cluster resources. After
this configuration setup, you just need to run the run.sh file.

4.1.4 Services

There are eight services types and they are: Register, Execute, Execute Batch, Store,
Instantiate, Lock and Unlock, Map and Observe. Each service is composed at least of four
microservices: one to insert or run the service, one to search for metadata or content about
the service previously executed, one to delete the service from Any.JS and one to update
information about the service (completely or partially). An update requires very often the
re-execution of the service.

2<https://github.com/lucasurzedo/AnyJS>

 https://github.com/lucasurzedo/AnyJS
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The service types details:

• Register: Responsible for upload all JavaScript or Java or Python code to the cluster.
This process must be done at least once because many other service types, like execute
and instantiate, use these codes to perform their jobs. The user just inform the
location via URL of the code and Any.JS performs the download.

• Execute: It will execute a method of a class in an asynchronous and decentralized way.
For that, the programmer must, through a JSON, pass to the API the parameters
to execute the method, the previous registered module and the name of the method.
The method parameters can be simple ones or complex JSON objects.

• Execute Batch: It will execute the same method of a class multiple times with
different parameters. All executions are asynchronous and decentralized. Internally,
Any.JS receives all runs and distribute them among all Any.JS containers available
in the cluster. Each container can receive multiple method runs because there is a
bag of tasks on each Any.JS running container to handle them. In the programmer
perspective, it is necessary to mount a JSON and call the API just once with such
JSON to perform multiple method calls. The method parameters can be simple ones
or complex JSON objects. Since Execute Batch runs a method multiple times, there
is a set of set of parameters in the JSON, one set per method run. The results of
a batch can be obtained asynchronously via Observer, which means that each task
result can be obtained individually, avoiding all batch method runs conclusion.

• Store: Responsible for storing an object already instantiated by the user. The object
must be serialized to Binary JSON (BSON) format.

• Instantiate: Responsible for instantiating an object and storing it in the cluster, this
way, the user must specify the constructor name, the previous registered module and
the parameters (similar to Execute service).

• Lock and Unlock: Performs secure access to a variable previous created via
Instantiate or Store services, or to a map entry previous created and populated
via Map services. Both Lock and Unlock primitives require the name of the variable
or the key of a map entry. They guarantee concurrent accesses of resources using
a simple mutual exclusion solution. Any.JS uses a FIFO access order internally.
Besides that, Lock and Observe are the unique synchronous services of the entire
RESTful API.
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• Map: Represents a transparent JavaScript distributed map in the API, thus all
methods available in many map data structures of many programming languages
are made available for use in the API, including the iterator, putALL and so many
others.

• Observe: Represents a catalog of collections of Any.JS and a publish/subscribe mech-
anism. Applications can subscribe to these collections if the user wants to be notified
of a service state change, being it a task execution completion or a variable storage
or any other API option presented in Figure 4.1.

4.1.5 API Gateway

This layer represents a way to simplify the URL syntax, avoiding to expose internal
design or implementation issues. For instance, to execute a task the programmer must
perform a POST API call like this - ’IPaddress/api/anyJS/v1/execute/python/’. Inter-
nally, the Any.JS system can call any microservice implementation, including third party
alternatives. It is an elegant way to isolate user demands from technical issues, improving
maintainability, extensibility and testability.

We have selected the KrakenD gateway KrakenD (2021) and it is configured by the
container orchestrator, so the programmer does not need extra configuration demands.

4.1.6 Any.JS REST API

There are eight services types on Figure 4.1 and all of them are called following two
simple rules. The rules for URL syntax are:

• rule one: All services have their name on the URL.

– ’IPaddress/api/anyJS/v1/registry/’

– ’IPaddress/api/anyJS/v1/map/’

– ’IPaddress/api/anyJS/v1/storage/’

– ’IPaddress/api/anyJS/v1/instance/’

– ’IPaddress/api/anyJS/v1/task/’

– ’IPaddress/api/anyJS/v1/observer/’
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• rule two: The URL suffix can contain the programming language name. Ex. execute,
executebatch and instantiate services have the following URLs:

– ’IPaddress/api/anyJS/v1/instance/java/’

– ’IPaddress/api/anyJS/v1/instance/javascript/’

– ’IPaddress/api/anyJS/v1/task/python/’

– ’IPaddress/api/anyJS/v1/taskbatch/java/’

The REST API calls are composed of JSON objects on their requests and responses.
There are POST, GET, PUT, PATCH and DELETE HTTP requests. Each service type
(Ex. execute or store) is composed of at least four microservices, as mentioned before,
representing the Create, Retrieve, Update and Delete operations (CRUD) for each service
type. The POST request is used to proceed an operation, i.e., a method execution or a
object instantiation. Most of POST requests are asynchronous, this way the API caller
receives an acknowledgment, indicating the URL to obtain the final result forward. Only
Lock and Observe services are synchronous due to their characteristics. Each service type
has at least one GET HTTP request to search for an existing map entry, a task result or any
other service metadata information. Besides that, all service types have a DELETE and
PUT/PATCH requests to enable all CRUD operations. The GET request is synchronous
because it needs some result from the back-end and not only an acknowledgment. The
GET request just obtain the result or the information that the service is under processing,
thus GET requests do not wait services conclusion.

This work is not a tutorial about Any.JS API microservices, thus we decided to write
the API using a specification. We decided to adopt the Open API Initiative API (2021).
The server used to code and host the Any.JS system API is Swagger Hub Hub (2021).
Register REST CRUD services, as well as the other API service types illustrated in Figure
4.1 are detailed at - <https://app.swaggerhub.com/apis-docs/lucasurzedo/AnyJS/1.0.0>.

There are three ways to wait for an API call: you can use the acknowledgment
message with the URL to get the final result and proceed successive HTTP requests
of GET type until a valid result is returned. There is a second alternative using a
REST API call to observe the conclusion of a service call submitted previously - IPad-
dress/api/anyJS/v1/observe/collectionName/. The observe service is implemented using
a library that creates a connection between MongoDB and the Web application frame-
work, both deployed in different containers, thus notifications of collections updates are

https://app.swaggerhub.com/apis-docs/lucasurzedo/AnyJS/1.0.0
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performed without blocking the cluster with successive results checks. The third way is
using the MongoDB client directly to observe Any.JS collections updates.

The Register API service summary:

• method POST: IPaddress/api/anyJS/v1/registry - creates a register with the URLs
to download JavaScript or Java or Python executable modules with dependencies if
necessary;

• method PUT: IPaddress/api/anyJS/v1/registry/{codeName} - updates the entire
registered module;

• method GET: IPaddress/api/anyJS/v1/registry/{codeName} - retrieves a specific
registered module metadata.

• method DELETE: IPaddress/api/anyJS/v1/registry/{codeName} - deletes a specific
registered module stored in Any.JS.

The Execute API service summary:

• method POST: IPaddress/api/anyJS/v1/task/javascript/ - executes a specific
method of a JavaScript previous registered module;

• method POST: IPaddress/api/anyJS/v1/task/java/ - executes a specific method of
a Java previous registered module;

• method POST: IPaddress/api/anyJS/v1/task/python/ - executes a specific method
of a Python previous registered module;

• method PUT: IPaddress/api/anyJS/v1/task/javascript/ - re-executes a specific
method of a JavaScript previous registered module;

• method PUT: IPaddress/api/anyJS/v1/task/java/ - re-executes a specific method of
a Java previous registered module;

• method PUT: IPaddress/api/anyJS/v1/task/python/ - re-executes a specific method
of a Python previous registered module;

• method GET: IPaddress/api/anyJS/v1/task/{taskName} - retrieves all task execu-
tions stored in Any.JS;
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• method GET: IPaddress/api/anyJS/v1/task/{taskName}/{executionName} - re-
trieves a specific task execution stored in Any.JS;

• method DELETE: IPaddress/api/anyJS/v1/task/{taskName} - deletes all task exe-
cutions of a specific task name in Any.JS;

• method DELETE: IPaddress/api/anyJS/v1/task/{taskName}/{executionName} -
deletes a specific task execution in Any.JS;

The Execute Batch API service summary:

• method POST: IPaddress/api/anyJS/v1/task/batch/javascript/ - executes a specific
method of a JavaScript previous registered module multiple times, i.e., with different
parameters in each task run;

• method POST: IPaddress/api/anyJS/v1/task/batch/java/ - executes a specific
method of a Java previous registered module multiple times, i.e., with different pa-
rameters in each task run;

• method POST: IPaddress/api/anyJS/v1/task/batch/python/ - executes a specific
method of a Python previous registered module multiple times, i.e., with different
parameters in each task run;

• method PUT: IPaddress/api/anyJS/v1/task/batch/javascript/ - re-executes a spe-
cific and registered batch execution service call with different parameters if necessary;

• method PUT: IPaddress/api/anyJS/v1/task/batch/java/ - re-executes a specific and
registered batch execution service call with different parameters if necessary;

• method PUT: IPaddress/api/anyJS/v1/task/batch/python/ - re-executes a specific
and registered batch execution service call with different parameters if necessary;

• method GET: IPaddress/api/anyJS/v1/task/batch/{taskCollectionName} - re-
trieves all batch executions stored in Any.JS, where each batch execution has several
task executions;

• method GET: IPaddress/api/anyJS/v1/task/batch/{taskCollectionName}/{executionName}
- retrieves a specific batch execution stored in Any.JS, which includes its tasks
executions metadata;
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• method DELETE: IPaddress/api/anyJS/v1/task/batch/{taskName} - deletes all
batch executions of a specific task name in Any.JS;

• method DELETE: IPaddress/api/anyJS/v1/task/batch/{taskName}/{executionName}
- deletes a specific batch execution in Any.JS, including its tasks executions metadata;

The Store API service summary:

• method POST: IPaddress/api/anyJS/v1/storage/ - store a specific binary object that
has already been instantiated;

• method PUT: IPaddress/api/anyJS/v1/storage/ - update a specific binary object
that has already been stored;

• method GET: IPaddress/api/anyJS/v1/storage/{codeName} - retrieves all stored
objects metadata of a code name;

• method GET: IPaddress/api/anyJS/v1/storage/{codeName}/{objectName} - re-
trieves a specific stored object;

• method DELETE: IPaddress/api/anyJS/v1/storage/{codeName}/{objectName} -
deletes a specific stored object;

• method DELETE: IPaddress/api/anyJS/v1/storage/{codeName} - deletes all stored
objects of a specific code name in Any.JS;

The Instantiate API service summary:

• method POST: IPaddress/api/anyJS/v1/instance/javascript/ - instantiates and
stores a specific JavaScript object using a previous registered module;

• method POST: IPaddress/api/anyJS/v1/instance/java/ - instantiates and stores a
specific Java object using a previous registered module;

• method POST: IPaddress/api/anyJS/v1/instance/python/ - instantiates and stores
a specific Python object using a previous registered module;

• method PUT: IPaddress/api/anyJS/v1/instance/javascript/ - re-instantiates and
stores a specific JavaScript object using a previous registered module;
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• method PUT: IPaddress/api/anyJS/v1/instance/java/ - re-instantiates and stores a
specific Java object using a previous registered module;

• method PUT: IPaddress/api/anyJS/v1/instance/python/ - re-instantiates and stores
a specific Python object using a previous registered module;

• method GET: IPaddress/api/anyJS/v1/instance/{codeName} - retrieves all instan-
tiated objects of a specific code name;

• method GET: IPaddress/api/anyJS/v1/instance/{codeName}/{objectName} - re-
trieves a specific instantiated object;

• method DELETE: IPaddress/api/anyJS/v1/instance/{codeName}/{objectName} -
deletes a specific instantiated object;

• method DELETE: IPaddress/api/anyJS/v1/instance/{codeName} - deletes all in-
stantiated objects of a specific code name;

The Map API service summary:

• method POST: IPaddress/api/anyJS/v1/map/ - creates an empty map;

• method POST: IPaddress/api/anyJS/v1/map/elements/ - creates map with several
entries;

• method POST: IPaddress/api/anyJS/v1/map/entry/ - inserts a map element with
a specified key and a value into a previous created map;

• method POST: IPaddress/api/anyJS/v1/map/forEach/javascript/ - executes a pre-
vious registered JavaScript module once per each key/value entry of the map;

• method POST: IPaddress/api/anyJS/v1/map/forEach/java/ - executes a previous
registered Java module once per each key/value entry of the map;

• method POST: IPaddress/api/anyJS/v1/map/forEach/python/ - executes a previ-
ous registered Python module once per each key/value entry of the map;

• method PATCH: IPaddress/api/anyJS/v1/map/entry/ - updates a specific map en-
try with a new key-value pair;

• method PUT: IPaddress/api/anyJS/v1/map/elements/ - updates all map entries;
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• method GET: IPaddress/api/anyJS/v1/map/entry/{mapName}/{key} - retrieves a
specified element from a map;

• method GET: IPaddress/api/anyJS/v1/map/elements/{mapName} - retrieves all
entries of a map;

• method GET: IPaddress/api/anyJS/v1/map/has/{mapName}/{key} - returns a
boolean indicating whether an entry with the specified key exists or not;

• method GET: IPaddress/api/anyJS/v1/map/keys/{mapName} - retrieves the keys
stored into a map;

• method GET: IPaddress/api/anyJS/v1/map/values/{mapName} - retrieves the val-
ues stored into a map;

• method DELETE: IPaddress/api/anyJS/v1/map/{mapName}/{key} - deletes a
specified map entry;

• method DELETE: IPaddress/api/anyJS/v1/map/clear/{mapName} - deletes all el-
ements from a map;

• method DELETE: IPaddress/api/anyJS/v1/map/{mapName} - deletes all elements
from a map and the map itself;

The Lock and Unlock API service summary:

• method POST: IPaddress/api/anyJS/v1/sync/obj/ - creates a lock call for a previous
stored object. It is a synchronous call, thus the caller waits until the lock succeeds
or until a timeout occur;

• method POST: IPaddress/api/anyJS/v1/sync/map/ - creates a lock call for a pre-
vious stored map entry of a previous created map. It is a synchronous call, thus the
caller waits until the lock succeeds or a timeout occur;

• method POST: IPaddress/api/anyJS/v1/unsync/obj/ - submits a new object value
and unlocks a previous locked object. Cannot perform unlock operations to not
locked objects or before the lock ordering;

• method POST: IPaddress/api/anyJS/v1/unsync/map/ - submits a new map entry
and unlocks a previous locked map entry. Cannot perform unlock operations to not
locked map entries or before the lock ordering;
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• method GET: IPaddress/api/anyJS/v1/sync/obj/{objName} - retrieves all lock calls
metadata from an object;

• method GET: IPaddress/api/anyJS/v1/sync/map/{mapName}/{key} - retrieves all
lock calls metadata from a map entry;

• method DELETE: IPaddress/api/anyJS/v1/sync/obj/{objName}/id/{identifier} -
deletes a lock call from an object queue of locks;

• method DELETE: IPaddress/api/anyJS/v1/sync/map/{mapName}/{key}/id/{identifier}
- deletes a lock call from a map entry queue of locks;

The Observe API service summary:

• method POST: IPaddress/api/anyJS/v1/observer/ - observes any previous API call,
i.e., we can observe a task execution or an object instantiation or even a map creation
or its entries insertions. It is a synchronous call, thus the caller waits until the
operation finishes or a timeout occur;

• method DELETE: IPaddress/api/anyJS/v1/observer/{operationName} - deletes an
existing observation;

• method GET: IPaddress/api/anyJS/v1/observer/{operationName} - retrieves all ob-
servations metadata from a previous submitted operation;

4.1.7 Any.JS Clients

The last layer of Figure 4.1 is represented by several clients in different programming
languages or tools, like Insomnia Insomnia (2021), to test REST APIs. This layer represents
a way to simplify even more the Any.JS API microservices presented on previous section.
Each independent company or volunteer can design and implement its own clients with
different microservices composition strategies.

We have developed one client in JavaScript and it is used on the next section to develop
the examples. Such a JavaScript client interfaces documentation and code are available
at (repository - <https://github.com/lucasurzedo/AnyJS-client>). We omit its details
in this section, since on Section 4.2 we have explained its utilization during the example
explanation.

https://github.com/lucasurzedo/AnyJS-client
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Note that it is possible to submit Java or Python code to Any.JS using such JavaScript
Any.JS client. We have performed this logic to evaluate Hazelcast Java code, this way the
same code is tested using Hazelcast alone and Any.JS with Java support. This kind of
feature highlights the usage possibilities for Any.JS.

4.2 The Any.JS API usage example

This example is useful to illustrate the Any.JS API services usage with the Any.JS
JavaScript client facilities 3. First the Any.JS object is created from a specific host (Lines
1 to 4).

1 import AnyJSClient from '../client/AnyJSClient.js';
2

3 const host = 'http://34.148.224.114'
4 const anyJSClient = new AnyJSClient(host);

Next, there is how to register an existing code in Any.JS, as well as how to get infor-
mation about it (Lines 7 to 9).

7 await anyJSClient.registerCode('fatorial',
'https://pastebin.com/raw/2YNiBLVv');↪→

8 await anyJSClient.registerCode('pearson',
'https://pastebin.com/raw/NYjjcUyF');↪→

9 await anyJSClient.getCode('pearson');

Next, the user can run a task, precisely the fatorial algorithm (Line 11), since such
code has being previously registered. The user must inform the previous registered mod-
ule, a task run label, the method to be called and its arguments. In Line 12, the user
decided to obtain metadata about the task running or the task result itself. This way, the
Any.JS getRun method does not wait for a task conclusion, but it always returns a result.
Line 13 illustrates how to create a synchronization barrier in the user application. The
Observer API service is responsible for that, since it informs when a task finishes or when
an instantiation finishes or when any other API call result change. Finally, the user can
delete a single task run or all task runs (Lines 14 and 15, respectively).

3avaliable at - <https://github.com/lucasurzedo/AnyJS-client/tree/main/examples>

https://github.com/lucasurzedo/AnyJS-client/tree/main/examples
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11 await anyJSClient.run('fatorial', 'fatorialRun1', 'calcular', [10]);
12 await anyJSClient.getRun('fatorial', 'fatorialRun1');
13 await anyJSClient.observe('fatorial', 'fatorialRun1');
14 await anyJSClient.deleteRun('fatorial', 'fatorialRun1');
15 await anyJSClient.deleteAllRuns('fatorial');

Any.JS has an API service to store an object, but it also has a service to instantiate
an object remotely. A Pearson object is instantiated by the user and stored by Any.JS on
Lines 17 and 18. Lines 19 and 20 are responsible for a thread-safe update operation, where
a new object is stored in the cluster. The instantiate service is a bit different, since the
user must insert also the Pearson constructor parameters (Line 22) - [′John′,′ Doe′, 1000].
There is also a thread-safe update operation to instantiate a new object remotely in the
cluster (Line 25). The user can print instances contents in Any.JS, but the stored objects
cannot be printed because the store service receives binary objects that could not be cast
by Any.JS.

17 const pearson1 = new PersonExperiment('John', 'Doe', 1000);
18 await anyJSClient.store(pearson1, 'onePearson');
19 const pearson2 = new PersonExperiment('Katy', 'Doe', 5000);
20 await anyJSClient.updateObject(pearson2, 'onePearson');
21 await anyJSClient.deleteObject('onePearson');
22

23 await anyJSClient.instantiate('pearson', 'anotherPearson', ['Mary',
'Doe', 12]);↪→

24 await anyJSClient.printInstance('anotherPearson');
25 await anyJSClient.updateInstance('pearson', 'anotherPearson', ['Mary',

'Doe', 1200]);↪→

26 await anyJSClient.printInstance('anotherPearson');
27 await anyJSClient.deleteInstance('anotherPearson');
28 await anyJSClient.deleteCode('pearson');

The user can create an empty map and insert several entries on it (Lines 30 to 37),
but in a non thread-safe manner. A single map entry (key-value) can also be inserted
or updated (Lines 38 and 39, respectively). The single map entry insertion can be done
unsafely (Line 38) or in a thread-safe manner (Line 39). The forEach API call (Line 40)
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is useful to perform many fatorial runs using the values stored into oneMap Any.JS map.
The outputs of the fatorial runs are stored as new values of the existing map entries. The
user can update several map entries and not just one (Lines 41 to 49), but unsafely, as
mentioned before. The user can get a single or all map entries (Lines 50 and 51) and print
the map content (Line 52).

30 await anyJSClient.createMap('oneMap');
31 const entries = {
32 key1: 10,
33 key2: 20,
34 key3: 30,
35 key4: 40,
36 }
37 await anyJSClient.putEntries('oneMap', entries);
38 await anyJSClient.put('oneMap', 'key5', 50);
39 await anyJSClient.lockPutUnlock('oneMap', 'key1', 12);
40 await anyJSClient.forEach('oneMap', 'fatorial');
41 const newEntries = {
42 key1: 50,
43 key2: 60,
44 key3: 70,
45 key4: 80,
46 key5: 90,
47 key6: 100,
48 }
49 await anyJSClient.putEntries('oneMap', newEntries);
50 await anyJSClient.getEntries('oneMap');
51 await anyJSClient.getEntry('oneMap', 'key1');
52 await anyJSClient.printEntries('oneMap');

Finally, the map can be traversed using hasNext and next API methods, respectively
(Lines 54 and 55). The user can clear a map or delete it (Lines 57 and 58).

54 while (await anyJSClient.hasNext('oneMap'))
55 await anyJSClient.next('oneMap');
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56

57 await anyJSClient.clearMap('oneMap');
58 await anyJSClient.deleteMap('oneMap');

4.3 Any.JS example used against Ignite

This example presents the Any.JS code used in the experiments against Ignite, thus
very similar with the Ignite Node.js thin client 4. Both implementations insert, get and
delete 2k key-value map entries over a cluster using binary objects and Any.JS also with
an option to insert Pearson objects without serialization. In terms of Any.JS, these binary
objects are binary JSONs or BSONs, for short.

The code has approximately 170 lines, thus we decided to show only the core API calls
to illustrate both Any.JS API and its Javascript client possibilities. First, from Line 1 to
Line 7 the constants and the Any.JS backend host are informed. Next, the class Pearson

is presented (Lines 9 to 25). A Pearson object has id, firstname, lastname and salary

fields. In the experiment, 2k pearsons were inserted into a distributed map and then
obtained all entries from such map.

9 class Pearson {
10 constructor(firstName = null, lastName = null, salary = null) {
11 this.id = Pearson.generateId();
12 this.firstName = firstName;
13 this.lastName = lastName;
14 this.salary = salary;
15 }
16

17 static generateId() {
18 if (!Pearson.id) {
19 Pearson.id = 0;
20 }
21 const id = Pearson.id;

4available at <https://github.com/apache/ignite-nodejs-thin-client/blob/master/examples/
CachePutGetExample.js>

https://github.com/apache/ignite-nodejs-thin-client/blob/master/examples/CachePutGetExample.js
https://github.com/apache/ignite-nodejs-thin-client/blob/master/examples/CachePutGetExample.js
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22 Pearson.id++;
23 return id;
24 }
25 }

The MapExp class has four core methods: setObjects, setBinaryObjects, getObjects

and getBinaryObjects. The set methods are responsible for insert pearson objects into
a hash map called pearsons. The binary version converts such objects into BSONs, as
mentioned before.

The setObjects method creates four pearson objects (Lines 54 to 57) and inserts them
using the Any.JS API call putEntries (Lines 60 to 65). A set of four pearsons is inserted
into a map per time during the experiment. In the experiments, we call setObjects mul-
tiple times to stress Any.JS. The similar setBinaryObjects method just converts the four
pearsons into BSONs before put them into an Any.JS map via putEntries API call. The
method setBinaryObjects is similar to setObjects, but it has a serialization of the four
pearsons before a putEntries API call.

53 async setObjects() {
54 const pearson1 = new Pearson('John', 'Doe', 1000);
55 const pearson2 = new Pearson('Jane', 'Roe', 2000);
56 const pearson3 = new Pearson('Mary', 'Major', 1500);
57 const pearson4 = new Pearson('Richard', 'Miles', 800);
58

59

60 await anyJSClient.putEntries(MAP_NAME, [
61 { key: `pearson${this.objIndex++}`, value: pearson1 },
62 { key: `pearson${this.objIndex++}`, value: pearson2 },
63 { key: `pearson${this.objIndex++}`, value: pearson3 },
64 { key: `pearson${this.objIndex++}`, value: pearson4 },
65 ]);
66

67 console.log('Storing Pearson Objects...')
68 }

The method getObjects of class MapExp returns all map entries stored into the
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cluster and for that several getEntry API calls are performed (Lines 96 to 100). The
getBinaryObjects version is similar to getObjects method, requiring pearson objects de-
serializations.

92 async getObjects() {
93 console.log('Pearson Objects getAll:');
94

95 const promises = [];
96 for (let index = 0; index < this.objIndex; index++) {
97 promises.push(anyJSClient.getEntry(MAP_NAME,

`pearson${index}`).then((pearson) => {↪→

98 this.printPearson(pearson);
99 }));

100 }
101

102 await Promise.all(promises);
103 }

After the MapExp class code, we have the two experiments code: methods startExp1
and startExp2, where the first implements the serialized version of a map manipulation
and the other a non-serialized version. We decided to explain just one because they are
very similar.

In the first part of the startExp1 method we evaluated map entries insertions and
retrievals and for that we performed several setBinaryObjects calls (Lines 128 to 136).
As explained previously, each of this API call inserted four pearson objects into a map. A
way to get all map entries is illustrated by Line 136.

122 async function startExp1() {
123 const startExecution = Date.now();
124

125 const mapExp = new MapExp(iterations);
126 await anyJSClient.createMap(MAP_NAME);
127

128 let promises = [];
129 for (let index = 0; index < iterations; index++) {
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130 promises.push(mapExp.setBinaryObjects());
131 }
132

133 await Promise.all(promises);
134

135 console.log('Getting binary objects...');
136 await mapExp.getBinaryObjects();
137

138 await mapExp.clearMap();
139

140 const endExecution = Date.now();
141 console.log(`\nTime taken to putALL and getALL map binary entries =

${(endExecution - startExecution) / 1000} seconds`);↪→

142 }

The entire code used to test map manipulations between Any.JS and Ignite is available
in Any.JS Github repository.

4.4 Any.JS example used against Hazelcast

The code to be compared with Hazelcast version is organized into
the TaskExecuteExample class (Lines 8 to 54). Basically, the methods
sendMultipleTasksJava, sendMultipleTasksJS, getTaskResults and deleteTask

are implemented to submit factorial tasks in Java and in Javascript, to get all these
factorial runs results and finally a way to delete a task, including all its runs, respectively.

The method sendMultipleTasksJava (Lines 13 to 25) starts an observer to watch
any modification in the collection named factorial_java (Line 17), which means any
task result from the 50 submitted tasks. After that, several executeCode API calls are
performed (Lines 18 to 22). As mentioned before, the Factorial task is executed 50 times
in the cluster asynchronously and remote.

13 async sendMultipleTasksJava() {
14 let methodArgs = [];
15 let number = 16;
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16

17 const observer = anyJSClient.observerCollection('task',
'factorial_java', iterations);↪→

18 for (let i = 0; i < iterations; i++) {
19 methodArgs = [number];
20

21 await anyJSClient.executeCode('factorial_java', `exec${i}`,
'factorial', 'java', 'Factorial', [], methodArgs);↪→

22 }
23

24 return observer;
25 }

In sequence, the user can getTaskResults (Lines 41 to 48), where the task name must
be informed. The method waits all tasks conclusions with a promise call (Line 500). The
tasks results are obtained via getExecution method (Line 45).

41 async getTaskResults(task) {
42 let promises = [];
43

44 for (let i = 0; i < iterations; i++) {
45 promises.push(anyJSClient.getExecution(task,

`exec${i}`).then((result) => {↪→

46 console.log(`Iteration-${i}: ${result}`);
47 }));
48 }
49

50 await Promise.all(promises);
51 }

After the TaskExecuteExample class code, we have the experiments running 50 times
the factorial of element 16. The method start1 implements the Java experiment with
Any.JS (Lines 59 to 72). The method start2 implements the Javascript experiment with
Any.JS (Lines 76 to 89). Due to similarity, we present one of them, precisely the Java
experiment.
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59 async function start1() {
60 const startExecution = Date.now();
61

62 const taskExecuteExample = new TaskExecuteExample();
63

64 console.log(await taskExecuteExample.sendMultipleTasksJava());
65

66 await taskExecuteExample.getTaskResults('factorial_java');
67

68 await taskExecuteExample.deleteTask('factorial_java');
69

70 const endExecution = Date.now();
71 console.log(`\nTime taken to execute = ${(endExecution -

startExecution) / 1000} seconds`);↪→

72 }

The entire code used to test task processing between Any.JS and Hazelcast is available
in Any.JS Github repository 5.

5available at - <https://github.com/lucasurzedo/AnyJS-client/tree/main/examples>

https://github.com/lucasurzedo/AnyJS-client/tree/main/examples
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Experiments

This chapter presents the cluster setup where we executed the Any.JS system and the
performed experiments. The Ignite, Hazelcast and Any.JS examples were evaluated using
the same cluster setup and one middleware at the time.

5.1 VMs setup

The environment was configured in small clusters deployed in the GCP. They are
composed of five VMs running in the same network, and each VM has its own external
Internet Protocol (IP). The cluster configuration is presented in Table 5.10.

Table 5.1: VMs configuration

VM OS CPU Model CPU Cores System RAM System Storage
1 Ubuntu 20.04 On Demand 2 vCPUs not shared 2GB 30GB
2 Ubuntu 20.04 On Demand 2 vCPUs not shared 2GB 30GB
3 Ubuntu 20.04 On Demand 2 vCPUs not shared 2GB 30GB
4 Ubuntu 20.04 On Demand 2 vCPUs not shared 2GB 30GB
5 Ubuntu 20.04 On Demand 2 vCPUs not shared 2GB 30GB

5.2 Containers setup

On every cluster we have three container setups - one for Any.JS, one for Hazelcast
and a third for Ignite. Figure 5.1 illustrates the container setups. The Docker Swarm
manages several containers for Any.JS and they are: Krakend gateway container with
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several routes, MongoDB container for persistence demands and several Flask containers
to receive requests and send responses in the Web. Krakend and MongoDB containers are
deployed into Swarm master VM. Besides these containers, we can have as many container
as the user wants by deploying Any.JS, Hazelcast and Ignite container types with all API
services available and they represent the Swarm worker containers. A Flask Web server
is also deployed on these worker containers, since Any.JS is a REST solution. For Ignite,
the Swarm manages the head/master container into the master VM and Ignite workers as
Swarm work containers. We have deployed 1, 2 and 4 Swarm worker containers of type
Any.JS services or Hazelcast and Ignite workers, over the cluster with 4 VMs.

Figure 5.1: Any.JS, Hazelcast and Ignite container configurations

5.3 Metrics

We calculate two metrics in our experiments: runtime and CPU consumption. Each
experiment were measured in terms of runtime and CPU consumption.

• Runtime: represents the period during which a computer program is executing. In
our experiments, the runtimes are obtained in the client application and after many
API calls.

• CPU usage: also called CPU footprint, represents the CPU consumption (zero to
100%) when the container is idle and running any program.
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5.4 Any.JS versus Ignite

5.4.1 Any.JS Experimental Results

The code presented in Section 4.3 is used in this experiment. Figure ?? illustrates the
Any.JS results using a cluster with 1 to 4 VMs, one for master Docker Swarm deploy and
1 to 4 others for its workers. Any.JS Docker image is deployed on every Swarm worker.
We have deployed 1, 2 and 4 containers of Any.JS worker type.

The left most two tables represent both binary and Pearson insert and get operations
runtimes. The two right most tables represent the CPU usage using 1 to 4 VMs and
containers. We have performed 250, 500, 1k and 2k map operations. The first result
is the marginal runtime difference (less than 10%) when we use binary or JSON object
representations. Ignite, for instance, implements only binary option. In Any.JS the user
can decide without loss in performance.

A second important result is that after 1k insertions and get all map entries even
the cluster with 4 VMs and 4 containers became 100% used, which means the MongoDB
operations (write and read concurrently the same JSON collection that represents the map).
Note that, we have duplicated the number of map entries (1k to 2k), but the runtimes
almost triplicated. The test with 2k map entries represents too many concurrent API
calls even for the largest cluster configuration (4 VMs and 4 containers). The MongoDB
is deployed in a single container in the same VM of Swarm master deployment, thus it
represents a bottleneck. A sharding MongoDB deployment can attenuate this limitation
and it is part of future Any.JS improvements.

Table 5.2: Any.JS Binary Objects runtimes with 1 to 4 VMs and containers

Binary Objects
Any.JS 1 2 4

250 3.416 s 2.858 s 2.83 s
500 6.663 s 5.299 s 5.895 s
1000 14.441 s 12.683 s 15.604 s
2000 39.178 s 36.123 s 41.84 s
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Table 5.3: Any.JS Binary Objects CPU usage with 1 to 4 VMs and containers

Any.JS 1 2 4
250 100% 100% 65.74%
500 100% 100% 78.14%
1000 100% 100% 98.32%
2000 100% 100% 100%

Table 5.4: Any.JS Objects runtimes with 1 to 4 VMs and containers

Objects
Any.JS 1 2 4

250 2.769 s 2.398 s 2.574 s
500 6.753 s 4.75 s 6.549 s
1000 13.943 s 11.594 s 14.003 s
2000 38.403 s 35.711 s 39.557 s

Table 5.5: Any.JS Objects CPU usage with 1 to 4 VMs and containers

Any.JS 1 2 4
250 100% 89.78% 68.34%
500 100% 100% 83.37%
1000 100% 100% 100%
2000 100% 100% 100%

5.4.2 Ignite Experimental Results

The code present in Ignite repository - 1 was used and the two first changes we have
performed are call 100 times the method start of CachePutGetExample class (line 180)
and remove the igniteClient.destroyCache call (line 85), avoiding 100 delete cache data
structure operations and increasing the Ignite original code utilization because of the 100
iterations of 4 persons inserted into a map per iteration. Instead, we have performed
just one igniteClient.destroyCache call at the end of the code. Besides that, we have
implemented an asynchronous way to call multiple times a manipulation of four pearsons
that are inserted in a synchronous way. We have implemented the new version using
Javascript promises.

Figure ?? illustrates two tables representing the synchronous and asynchronous Ignite
experiment runtime results, respectively. The cluster is identical to the Any.JS one, with
1 to 4 VMs and containers. The first important information is that the asynchronous

1available - <https://github.com/apache/ignite-nodejs-thin-client/blob/master/examples/
CachePutGetExample.js>

https://github.com/apache/ignite-nodejs-thin-client/blob/master/examples/CachePutGetExample.js
https://github.com/apache/ignite-nodejs-thin-client/blob/master/examples/CachePutGetExample.js
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version is 2 to 3 times faster than the synchronous Ignite version and the difference tends
to increase as the number of map entries to be inserted increase.

The second important result from Ignite experiments is that even with 2k map entries
concurrently inserted in a map, the cluster with 1, 2 and 4 VMs and containers did not
saturate their capacity to manipulate a single map, since the runtimes did not increase
from 1 to 4 VMs/containers.

Table 5.6: Ignite synchronous with 1 to 4 VMs and containers

Binary Objects
Ignite Sync 1 2 4

250 1.922 s 2.434 s 2.657 s
500 3.907 s 4.901 s 6.299 s
1000 6.489 s 8.406 s 10.16 s
2000 12.009 s 15.065 s 17.561 s

Table 5.7: Ignite asynchronous with 1 to 4 VMs and containers

Binary Objects
Ignite Async 1 2 4

250 1.174 s 0.943 s 1.035 s
500 2.053 s 1.994 s 2.473 s
1000 2.933 s 3.054 s 3.241 s
2000 4.944 s 5.142 s 5.18 s

5.4.3 Comparative Analysis

In summary, Any.JS is around 3 times slower than Ignite synchronous and around
7 times slower when compared with Ignite asynchronous. There are many reasons for
such differences: i) Any.JS is a RESTful solution with REST common overheads, like
HTTP protocol, JSON and so forth; ii) Any.JS uses MongoDB to store all map entries,
thus MongoDB becomes a bottleneck. A sharding deployment of MongoDB can attenuate
the concurrence level; iii) Ignite runs a Javascript example and Any.JS runs a Javascript
example using a Javascript Any.JS client that calls the Any.JS RESTful API. As we can
see, there are overheads in this Any.JS experimental design. We can evaluate Any.JS
directly using its RESTful API and using Insomnia or any other REST API test tool.
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5.5 Any.JS versus Hazelcast

Figure ?? illustrates both Any.JS implementations (Java - the left most table and
Javascript - the right most table). Besides that, in Figure ?? there are Hazelcast Java
runtimes (the darker left most table). We have submitted the factorial of 17 to the Any.JS
and Hazelcast clusters 50 times each. The same Factorial Java code was used by Hazelcast
and Any.JS. A Javascript Factorial version was implemented to evaluate Any.JS portabil-
ity. Hazelcast requires a manual code registration before execution and Any.JS automatic
register Java, Python and Javascript classes.

Table 5.8: Any.JS Java runtimes

Factorial Java
Any.JS 1 2 4

50 0.754 s 0.607 s 0.597 s

Table 5.9: Any.JS JavaScript runtimes

Factorial JavaScript
Any.JS 1 2 4

50 2.828 s 2.594 s 2.694 s

Table 5.10: Hazelcast Java runtimes

Factorial Java
Hazelcast 1 2 4

50 0.14 s 0.137 s 0.139 s

As we can see, the Java Any.JS version is faster than its Javascript counterpart. In
summary, the cost of calling a Java library from a Javascript code compensates. O average,
Any.JS Java is almost 6 times faster than the Any.JS Javascript.

The Hazelcast is, on average, 5 times faster than Any.JS Java version and as we increase
the number of tasks submitted to the cluster the runtime differences also increase. There
are many reasons for such differences:

• Any.JS is a RESTful solution with REST common overheads, like HTTP protocol,
JSON and so forth;

• Any.JS supports Java, Python and Javascript programming languages and Hazelcast
only Java for both frontend and backend;
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• Any.JS uses MongoDB to store all tasks runs results and metadata, thus MongoDB
becomes a bottleneck. A sharding deployment of MongoDB can attenuate the con-
currence level;

• Any.JS encapsulates the MongoDB client, providing a REST API to receive notifi-
cations from collections updates. This task conclusion notification mechanism intro-
duces overhead. The Any.JS Javascript client can use the MongoDB client directly
to attenuate these overheads;

• To run 50 tasks in Any.JS there is the executeBatch API service, but it was not
used because Hazelcast does not implement such optimization. The executeBatch

reduces communications between the user and the Any.JS backend, as well as it
reduces communications from each service running with MongoDB instance;

• Any.JS maintains the task results after VM faults and Hazelcast does not, so if a
VM with a task result drops down such results are lost forever, even if Kubernetes
starts another VM and another Hazelcast worker container. A task re-execution in
this situation is mandatory for Hazelcast.
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Conclusion

In this work we present a middleware tool, named Any.JS, to reduce a bit more the
existing gap of the RESTful APIs for general-purpose middlewares. Very often, specific
programming languages are mandatory to complete the coding of some fundamental pro-
cessing and storage services, thus interoperability is reduced when we do not use JSON or
BSON objects via HTTP requests/responses.

The Any.JS system is designed to operate over cloud distributed environments, thus it
can be deployed on different cluster configurations and sizes. It is a containerized solution,
so migration, fault tolerance and an flexible deploy over different VMs are feasible. The
Docker Swarm is responsible for the container orchestration, where, for instance, service
discovery and service recovery are done transparently. Processing and storage containers
run JavaScript, Java or Python jobs. An interoperable RESTful API exposes microservices
for users to register compiled modules or classes, store BSON objects, instantiate JSON
objects remotely, create and manage distribute map data structures, and run a single or
multiple tasks asynchronously and remote.

The literature about general-purpose middeware tools did not implement register ser-
vice to perform registering of classes in runtime. The execution of tasks use only String and
primitive types, as well as sometimes a tool does not have the REST service to run tasks
remotely and asynchronously. The instantiate useful service is not performed by the liter-
ature, which means we do not have a way to create a huge object only in the backend-side
and not on the frontend-side and transferred for the backend via costly network commu-
nication. The Map data structure API is incomplete in terms of REST utilization, e.g.,
the iterator Map operator to traverse it, lock/unlock operations into a map entry, and
the storage of complex objects without transforming them in binaries. The concept of
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variables and not always a data structure collection entry is sometimes useful because not
always our abstractions are collections of items, but the literature considers collections as
a fundamental storage abstraction during the code development using Ignite or Hazelcast,
for instance.

We have evaluated Any.JS against Ignite in terms of storage and against Hazelcast
in terms of processing services. Ignite has a Javascript API and an example where four
Pearson objects are inserted into a map and retrieved from it. We extended such example
to produce several API calls to insert many map entries and after that a getAll operation
is performed to obtain all Pearsons from the cluster. Ignite requires object serialization
and Any.JS does not. In terms of runtime, Ignite was 3 to 5 times faster, depending if
we insert all map entries synchronously or asynchronously. It represents a huge difference,
so the REST overhead can be considerable, including the Any.JS architectural design to
implement a REST support. Improvements mentioned in the Experiments Chapter are
fundamental to reduce a bit more these runtime differences.

Hazelcast is a market-leader and it outperformed Any.JS in all 50 task execution scenar-
ios, which means in all cluster and container configuration setups. On average, Hazelcast
was 5 times faster than Any.JS to run 50 times the Factorial task. The Any.JS runs tasks
written in Java or Python or Javascript, so its interoperability pays a high cost. Hazelcast,
on the other hand, has only a Java client to communicate with its backend.

Many improvements in Any.JS must be done. Many new experiments must be con-
ducted. The executeBatch must be tested against Hazelcast. The MongoDB must be
deployed in sharding mode. The current Observer RESTful API service must be improved
to avoid unnecessary delays. The Any.JS Python client must use MongoDB client directly
to accelerate notifications receives. Larger number of tasks and tasks with different work-
loads should be evaluated in Chapter Experiments. Other objects and not only Pearson

must be evaluated with Ignite and Any.JS. Finally, the map iterator experiments must
be included in Chapter Experiments to show how Ignite and Any.JS iterate over the dis-
tributed map entries.
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