UNIVERSIDADE FEDERAL DE OURO PRETO

Departamento de Engenharia Elétrica

MONITORAMENTO REMOTO DE FALHAS EM CONVERSORES DE FREQUÊNCIA

Edson Camillo Giaccheto

João Monlevade, MG

2017

UNIVERSIDADE FEDERAL DE OURO PRETO

Departamento de Engenharia Elétrica

MONITORAMENTO REMOTO DE FALHAS EM CONVERSORES DE FREQUÊNCIA

Edson Camillo Giaccheto

Monografia apresentada ao Departamento de Engenharia Elétrica da Universidade Federal de Ouro Preto como parte dos requisitos exigidos para a obtenção do título de Bacharel em Engenharia Elétrica.

Orientador: Víctor Costa da Silva Campos

João Monlevade, MG

2017

G429m

Giaccheto, Edson Camillo. Monitoramento remoto de falhas em conversores de frequência [manuscrito] / Edson Camillo Giaccheto. - 2017.

77f.:

Orientador: Prof. Dr. Victor Costa da Silva Campos.

Monografia (Graduação). Universidade Federal de Ouro Preto. Instituto de Ciências Exatas e Aplicadas. Departamento de Engenharia Elétrica.

1. Engenharia de controle automático. 2. Controladores programáveis. 3. Conversores . 4. Sistemas de controle supervisório. I. Campos, Victor Costa da Silva. II. Universidade Federal de Ouro Preto. III. Titulo.

CDU: 681.5

Catalogação: ficha@sisbin.ufop.br

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Aplicadas Colegiado do Curso de Engenharia de Elétrica

ANEXO IV - ATA DE DEFESA

Aos 03 dias do mês de maio de 2017, às 10 horas, no bloco C deste instituto, foi realizada a defesa de monografia pelo (a) formando (a) Edson Camillo Giaccheto, sendo a comissão examinadora constituída pelos professores: Anny Verly, Márcio Feliciano Braga, e Víctor Costa da Silva Campos.

O (a) candidato (a) apresentou a monografia intitulada: Monitoramento Remoto de Falhas em Conversores de Potência. A comissão examinadora deliberou, por unanimidade, pela ______ do(a) candidato(a), com a nota média ______, de acordo com a tabela 1. Na forma regulamentar foi lavrada a presente ata que é assinada pelos membros da comissão examinadora e pelo (a) formando(a).

Tabela 1 - Notas de avaliação da banca examinadora

/ Banca Examinadora	Nota
Marcio Feliciano Braga	17,5
Amour Herty a	7,5
Giter late de litre lampes	7.5
Média	2.5

João Monlevade, <u>03</u> de de 2017. malio

Idson Comillo Giachota

Edson Camillo Giaccheto Aluno (a)

Anny Verly

Víctor Costa da Silva Campos

Professor(a) Orientador(a)

Professor(a) Convidado(a)

Márcio Feliciano Braga Professor(a) Convidado(a)

ANEXO V - AUTORIZACAO DO COLEGIADO PARA LANCAMENTO DA NOTA ATV600 NO HISTÓRICO ESCOLAR EM SUBSTUIÇÃO À ATA DE DEFESA

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto – UFOP Instituto de Ciências Exatas e Aplicadas Colegiado do Curso de Engenharia de Elétrica

ANEXO X - TERMO DE RESPONSABILIDADE

O texto do trabalho de conclusão de curso intitulado <u>"Montanamenta Aemata de folhas em Convertas de freguência</u>" é de minha inteira responsabilidade. Declaro que não há utilização indevida de texto, material fotográfico ou qualquer outro material pertencente a terceiros sem a devida citação ou consentimento dos referidos autores.

João Monlevade, O3 de

mary

de QOI7

Nome completo do(a) aluno(a)

RESUMO

Na automação industrial, há uma busca constante em melhorar os índices de disponibilidade e qualidade da produção assim o setor industrial vem se amparando nos avanços tecnológicos para atingir melhores resultados. Neste trabalho apresenta-se um sistema de monitoramento remoto, cujo objetivo é enviar mensagens SMS para telefones celulares pré-cadastrados quando houver ocorrência de falhas em um conversor de frequência. O envio das mensagens SMS é realizado por um controlador lógico programável através da rede GSM e para estabelecer conexão com a rede GSM faz-se necessária à utilização de um processador de comunicação. Os resultados obtidos ao término do projeto foram satisfatórios e demonstram que através do monitoramento remoto é possível obter uma tomada de decisão mais rápida para eliminar a causa da falha, portanto um melhor índice de disponibilidade da máquina pode ser obtido com este sistema.

Palavras-chave: GSM. Monitoramento. Remoto. SMS.

ABSTRACT

In industrial automation there is a constant search to improve the availability and quality of production, thus the industrial sector has been relying on the technological advances to improve the results. This work presents the integration of a remote monitoring system, whose purpose is to send SMS messages to cellular phones when there is a fault in a frequency converter. The sending of the SMS messages is carried out by a Programmable Logic Controler (PLC) in the GSM network and to establish connection with the GSM network it is necessary to use a communication processor. The results obtained at the end of the project were satisfactory, through remote monitoring it was possible to obtain a faster decision and eliminate the cause of the failure. Therefore, a better availability index of the machine can be obtained with this system.

Keywords: GSM. Monitoring. Remote. SMS.

LISTA DE FIGURAS

Figura 1 – Envio de mensagens para celulares pré-cadastrados	. 12
Figura 2 – Topologia com todos os elementos do projeto	. 15
Figura 3 – Componentes básicos do conversor de frequência	. 16
Figura 4 – Diagrama de blocos SINAMICS V20	. 18
Figura 5 – Topologia do CLP S7-1200 declarada no software de programação TIA	
Portal	. 19
Figura 6 – Fonte de alimentação PM 1207	. 20
Figura 7 – Módulo de comunicação CM 1241	. 20
Figura 8 – Processador de comunicação CP 1242-7.	. 21
Figura 9 – Elementos associados ao módulo GSM/GPRS	. 22
Figura 10 – Unidade de Processamento Central CPU 1214C.	. 22
Figura 11 – Centralização das funções das botoeiras no dispositivo IHM	. 23
Figura 12 – Dispositivo IHM SIMATIC IHM KTP 700 Basic PN	. 24
Figura 13 – Estrutura do telegrama do protocolo de comunicação MODBUS RTU	. 26
Figura 14 – Comparativo de tempos de processamento da rede PROFINET.	. 28
Figura 15 – Arquitetura TCP/IP para PROFIBUS e PROFINET	. 29
Figura 16 – Flexibilidade às aplicações através da PROFINET	. 29
Figura 17 – Portal de automação totalmente integrado	. 32
Figura 18 – Lista de <i>software</i> instalados no TIA Portal	. 32
Figura 19 – Fluxograma do processo de monitoramento remoto	. 34
Figura 20 – Macro de conexão Cn011 disponível no SINAMICS V20	. 36
Figura 21 – Bloco parametrizável MB_COMM_LOAD.	. 38
Figura 22 – Bloco parametrizável MB_MASTER	. 39
Figura 23 – Configurações do processador de comunicação CP 1242-7	. 41
Figura 24 – Topologia de hardware declarada no software TIA Portal	. 42
Figura 25 – Topologia de <i>rack</i> do CLP SIMATIC S7-1200.	. 42
Figura 26 – Tempo de 1 minuto estabelecido para inicialização da CPU	. 43
Figura 27 – Textos das mensagens de falha	. 44
Figura 28 – Bloco parametrizável TC_CON	. 45
Figura 29 – Bloco de dados DB3 com a variável TCON_Phone	. 46
Figura 30 – Bloco parametrizável TC_SEND.	. 46

Figura 31 – Bloco parametrizável TC_DISCON.	. 47
Figura 32 – Envio de SMS para o primeiro número de celular cadastrado	. 49
Figura 33 – Envio de SMS para o segundo número de celular cadastrado	. 50
Figura 34 – Tela do dispositivo IHM com a mensagem "CPU INICIALIZANDO"	. 51
Figura 35 – Tela do dispositivo IHM com a mensagem "Operando"	. 52
Figura 36 – Tela do dispositivo IHM com a mensagem "OPERAÇÃO PARADA"	. 53
Figura 37 – Acesso online a topologia de hardware declarada no TIA Portal	. 54
Figura 38 – Acesso <i>online</i> a árvore do projeto	. 55
Figura 39 – Acesso <i>online</i> a DB5 antes da ocorrência de falhas	. 56
Figura 40 – Acesso <i>online</i> a DB5 com falha ativa.	. 56
Figura 41 – Acesso online ao bloco MB_COMM_LOAD.	. 57
Figura 42 – Acesso online ao bloco MB_MASTER	. 57
Figura 43 – Acesso online aos status dos blocos de comunicação MODBUS	. 58
Figura 44 – Acesso online ao status do processador de comunicação CP 1242-7	. 59
Figura 45 – Acesso <i>online</i> ao bloco TC_CON sem falha ativa	. 60
Figura 46 – Acesso online ao bloco TC_SEND sem falha ativa	. 60
Figura 47 – Acesso <i>online</i> ao bloco TC_DISCON sem falha ativa	. 61
Figura 48 – Acesso online a DB3 sem falha ativa	. 61
Figura 49 – Acesso online ao bloco TC_CON, envio do primeiro SMS	. 62
Figura 50 – Acesso online ao bloco TC_SEND, envio do primeiro SMS	. 62
Figura 51 – Acesso <i>online</i> a DB3 com falha ativa.	. 63
Figura 52 – Acesso <i>online</i> a DB3 com falha ativa.	. 63
Figura 53 – Acesso online ao bloco TC_CON, envio do segundo SMS	. 64
Figura 54 – Acesso online ao bloco TC_SEND, envio do segundo SMS	. 64
Figura 55 – Acesso online ao bloco TC_DISCON, envio do segundo SMS	. 65
Figura 56 – Acesso online ao Diagnostics buffer da CPU.	. 65

LISTA DE ABREVIATURAS

1G	Primeira Geração
2G	Segunda Geração
3G	Terceira Geração
4G	Quarta Geração
AMPS	Advanced Mobile Phone System
ASCII	American Standard Code II
CA	Corrente Alternada
CC	Corrente Contínua
CLP	Controlador Lógico Programável
СМ	Communication Module
СР	Communication Processor
CPU	Central Processing Unit
CRC	Cycling Redundancy Check
EDGE	Enhanced Date Rates for GSM Evolution
EIA485	Electronic Industries Alliance 485
FDMA	Frequency Division Multiple Access
GPRS	General Package Radio Services
GSM	Global System Mobile
IHM	Interface Homem máquina
IP	Internet Protocol
IRT	Isochronous Real Time

LCD	Liquid Crystal Display
LTE	Long Term Evolution
PM	Power Module
RS485	Recommended Standard 485
RT	Real Time
RTU	Remote Terminal Unit
SIM	Subscriber Identity Module
TI	Tecnologia da informação
TIA	Totally Integrated Automation
ТСР	Transmission Control Protocol
USS	Universelles Serielles Schnittstellen

SUMÁRIO

1 Apresentação do Trabalho	11
1.1. Introdução	11
1.2. Objetivos Gerais	
1.2.1. Objetivos Específicos	
1.3. Organização do Trabalho	
2 Fundamentação Teórica	15
2.1. Conversor de frequência	15
2.1.1. Conceito	
2.1.2. Vantagens	16
2.1.3. Nomenclaturas e Jargões	16
2.1.4. Aplicações	17
2.1.5. Descrição do conversor de frequência utilizado	
2.2. Controlador lógico programável	
2.2.1. Fonte de alimentação	
2.2.2. Módulo de comunicação RS485	
2.2.3. Módulo de comunicação GSM/GPRS	
2.2.4. Unidade de Processamento Central	
2.3. Interface homem máquina	
2.3.1. Conceito	
2.3.2. Descrição da IHM utilizada	
2.4. Redes	
2.4.1. Rede MODBUS	
2.4.2. Rede PROFINET	
2.4.3. Protocolos de telefonia móvel	
2.5. Software de programação	
2.5.1. TIA Portal – Totally Integrated Automation	
3 Procedimento experimental	
3.1. Configuração do conversor de frequência	
3.1.1. Etapas para parametrização do conversor	
3.2. Configurações para comunicação MODBUS RTU	
3.2.1. Etapas para estabelecimento da rede MODBUS RTU	
3.3. Configuração do processador de comunicação GSM/GPRS	

3.4. Programação do CLP S7-1200	41
3.4.1. Declaração da topologia de <i>hardware</i>	42
3.4.2. Tempo de inicialização da CPU	43
3.4.3. Textos das mensagens de falha	43
3.4.4. Bloco FB2 – GPRS Communication	45
3.4.5. Bloco FC1 – SMS	48
3.5. Programação das telas do dispositivo IHM	50
3.5.1. Status: CPU inicializando	51
3.5.2. Status: Operando	51
3.5.3. Status: Operação parada	52
3.6. Validação do projeto	53
3.6.1. Verificação da topologia do projeto	54
3.6.2. Verificação de erros de programação	54
3.6.3. Verificação da troca de dados via rede MODBUS RTU	55
3.6.4. Verificação do funcionamento dos blocos MODBUS	57
3.6.5. Verificação do Diagnostic status do CP 1242-7	58
3.6.6. Verificação do envio de mensagens SMS	59
3.6.7. Verificação do Diagnostics buffer da CPU 1214C	65
4 Considerações finais	66
4.1. Conclusões	66
4.2. Trabalhos futuros	67
REFERÊNCIAS	68
ANEXOS	70
APÊNDICES	73

1 Apresentação do Trabalho

1.1. Introdução

A automação industrial consiste em manipular vários processos na indústria por meios mecânicos e automáticos, substituindo o trabalho humano por diversos equipamentos. De acordo com SILVEIRA (2003), uma boa definição para automação é um conjunto de técnicas destinadas a tornar automática a realização de tarefas, substituindo o gasto de bioenergia humana, com esforço muscular e mental, por elementos eletromecânicos computáveis.

Atualmente, empresas que não investem em automação não são vistas como empresas competitivas. Sendo assim, empresas do Brasil e do restante do mundo investem cada vez mais no segmento em busca de aumento de qualidade e rapidez nos processos de produção. Convém notar que, quanto mais um processo se encontrar automatizado, maiores serão os benefícios da automação na regularidade da qualidade de um produto e na economia de energia. Com a implantação da automação é possível ainda apresentar alguns outros benefícios, como aumento da produtividade, maior segurança de funcionamento, maior precisão, maior flexibilidade para modificações e ainda possibilidade de acesso e monitoramento remoto.

O acesso remoto e o monitoramento de sistemas à distância são um dos benefícios da automação, além disso, é o benefício que mais obteve avanço nos últimos anos. Isto porque a operação remota e os sistemas de controle estão cada vez mais integrados na maioria dos sistemas de automação industrial. Estes sistemas permitem a um operador monitorar e controlar, se necessário, os processos de produção a partir de uma determinada distância (CITISYSTEMS, 2016).

Serviços de monitoramento de condições de uma planta industrial ou de monitoramento de diagnósticos de uma máquina são focados em índices de disponibilidade, desempenho, qualidade e segurança. Com o monitoramento de máquinas, tem-se como principais vantagens a diminuição de ocorrência de falhas e o aumento da disponibilidade, reduzindo o tempo de máquina parada.

O monitoramento remoto de falhas de um conversor de frequência, com o objetivo de redução do tempo de soluções e assim redução do tempo de máquina parada, é considera uma motivadora desta monografia, que pretende desenvolver e apresentar um sistema de monitoramento remoto de falhas, onde as falhas apresentadas em um conversor de frequência serão enviadas por mensagem SMS (*Short Message Service*) via rede GSM/GPRS para os números de celulares previamente cadastrados.

1.2. Objetivos Gerais

O sistema proposto no projeto é o monitoramento remoto de falhas detectadas e cadastradas no sistema do conversor de frequências via rede GSM/GPRS. Na Figura 1 é ilustrada a topologia básica do projeto de monitoramento remoto. Quando houver ocorrência de falha no conversor de frequência, esta falha será transmitida pela rede de campo para o CLP. Conectado ao CLP está o *modem* GSM/GPRS que irá enviar mensagens SMS com a informação da falha para números de celulares previamente cadastrados. Assim, o operador, o chefe de manutenção e, também, a assistência técnica autorizada seriam notificados com maior rapidez e, com isto, tem-se redução do tempo de resposta, redução do tempo de soluções e, também, maior precisão nos diagnósticos.

Figura 1 – Envio de mensagens para celulares pré-cadastrados.

Fonte: SIEMENS, 2014

1.2.1. Objetivos Específicos

- Estudar e familiarizar-se com o conversor de frequência utilizado.
- Comissionar e programar o conversor de frequência para utilização no projeto.
- Estudar e compreender o protocolo de comunicação Modbus RTU que será o meio de comunicação entre CLP e conversor.
- Estudar e familiarizar-se com o CLP utilizado.
- Desenvolver o programa do CLP que irá executar as condições para envio de mensagens durante o monitoramento remoto.
- Estudar e familiarizar-se com a Interface Homem Máquina utilizada no projeto.
- Desenvolver telas que serão mostradas na IHM (Interface Homem Máquina) para o monitoramento dos estados do sistema.
- Estudar e compreender o protocolo de comunicação PROFINET que será o meio de comunicação entre CLP e IHM.
- Estudar e configurar o módulo de comunicação GSM/GPRS.
- Realizar um estudo sobre a rede GSM e o serviço GPRS.
- Implementar o projeto com todos os elementos: Conversor, CLP, IHM e Módulo GSM/GPRS.
- Testar o funcionamento do monitoramento remoto através do envio de mensagens para números de celulares cadastrados.

1.3. Organização do Trabalho

Este trabalho está organizado de forma a apresentar a evolução de cada ponto e seus aspectos técnicos.

Este primeiro capítulo apresentou uma visão geral da importância da automação industrial nas empresas, destacando os benefícios da automação e apresentando as vantagens de se utilizar um sistema de monitoramento remoto. Este capítulo apresentou ainda os objetivos e motivações para o desenvolvimento do sistema de monitoramento remoto de falhas via rede GSM/GPRS.

Além deste capítulo, esta monografia apresenta mais três capítulos. O Capítulo II apresenta a fundamentação teórica do trabalho, destacando conceitos e dados técnicos das redes de comunicação utilizadas (Modbus RTU, PROFINET e GSM/GPRS), dos elementos de *hardware* utilizados (Conversor, CLP, IHM, Módulo GSM/GPRS) e ainda traz as informações sobre o *software* utilizado para desenvolvimento de toda a programação do projeto.

O Capítulo III mostra os procedimentos experimentais realizados para desenvolvimento do projeto, apresentando a configuração do conversor de frequência, a configuração do módulo GSM/GPRS e o desenvolvimento das lógicas de programação necessárias. Além disso, é apresentado um fluxograma do funcionamento do sistema de monitoramento e ainda os testes para validação do projeto.

Por fim, o Capítulo IV apresenta as principais conclusões deste trabalho e propostas para desenvolvimentos futuros.

2 Fundamentação Teórica

Ao longo deste capítulo serão destacados todos os elementos utilizados no desenvolvimento deste projeto. Serão apontados conceitos e dados técnicos dos componentes de *hardware* do projeto, das redes de comunicação envolvidas e do *software* de programação utilizado. Através da Figura 2 é ilustrada a topologia completa do projeto, onde podem ser vistos todos os elementos a serem destacados neste capítulo.

Figura 2 – Topologia com todos os elementos do projeto.

Fonte: Adaptado de SIEMENS, 2014

2.1. Conversor de frequência

2.1.1. Conceito

O conversor de frequência é um dispositivo que converte energia elétrica CA com tensão e frequência fixa em energia elétrica CA com tensão e frequência variável. Assim, uma das funções dos conversores de frequência é o controle de motores elétricos, isso ocorre através do controle de frequência e da tensão e, por sua vez, do torque e da potência produzidos pelo motor e entregues à carga (SEGUNDO; RODRIGUES, 2015).

O conversor de frequência é composto basicamente por dois sistemas: sistema de potência e sistema de controle. O sistema de potência tem como principais elementos o retificador (conversor CA-CC), o barramento CC (banco de capacitores) e a ponte de IGBTs (conversor CC-CA). Já o sistema de controle é formado basicamente por unidade de processamento, módulo I/O, interface de comunicação e painel de operação. Os componentes básicos do conversor de frequência podem ser vistos na Figura 3 (WEG, 2005).

Figura 3 – Componentes básicos do conversor de frequência.

Fonte: WEG, 2005

2.1.2. Vantagens

Os conversores de frequência possuem grande utilização no setor industrial, as principais vantagens de sua utilização são:

- Proporcionam economia de energia elétrica;
- Reduzem o pico de corrente na partida do motor;
- Partidas e paradas controladas;
- Partida suave, sem gerar estresses mecânicos na máquina;
- Automatização de processos.

2.1.3. Nomenclaturas e Jargões

Os conversores de frequência são referenciados por diferentes nomes em diferentes literaturas ou fabricantes. Assim, seguem abaixo as principais nomenclaturas e jargões.

- Inversor de frequência;
- Inversor;
- Conversor de frequência;
- Conversor;
- Acionador;
- Drive.

2.1.4. Aplicações

Os conversores de frequência possuem diversas aplicações no setor industrial, abaixo são apresentadas algumas dessas aplicações.

- Manuseios de materiais:
 - Pontes rolantes;
 - o Transportadores;
 - Máquinas de embalagem;
 - Máquinas para secagem de tecidos.
- Movimento de pessoas:
 - o Elevadores;
 - o Escadas rolantes.
- Controle de vazão:
 - Compressores;
 - o Ventiladores;
 - o Bombas.
- Plásticos:
 - o Extrusoras;
 - o Bobinadoras.

2.1.5. Descrição do conversor de frequência utilizado

Para desenvolvimento deste projeto foi necessário escolher um modelo de conversor de frequência, para que as falhas ocorrentes no mesmo fossem enviadas para o CLP e, posteriormente, para os telefones celulares via mensagens de texto. O modelo de conversor escolhido foi o V20, este conversor é da família SINAMICS do fabricante SIEMENS.

Os principais motivos para escolha deste modelo foram: trata-se de um modelo atual e bastante difundido no mercado, disponibiliza duas interfaces de comunicação (USS e Modbus RTU), interface de programação amigável proporcionando rápido tempo de comissionamento, painel de operação integrado que permite acessar os menus de configuração, diagnósticos e parâmetros, e ainda possibilita o aumento da eficiência energética por meio de técnicas de controle que buscam o melhor consumo energético através da adaptação automática do fluxo de magnetização.

O conversor de frequência SINAMICS V20 pode ser encontrado em quatro tamanhos diferentes atendendo potências de 0,25 a 20 CV, neste projeto foi utilizado um conversor de 0,25 CV de potência. Na Figura 4 é ilustrado o diagrama de blocos do conversor SINAMICS V20, onde são apresentados os principais blocos e conexões deste conversor, como: terminais de conexão das entradas/saídas digitais e analógicas, terminais de conexão para interface de comunicação, terminais de conexão do módulo *chopper* ou resistor de frenagem e ainda as conexões de entrada da rede de alimentação do conversor e os terminais de saída para alimentação do motor.

Fonte: SIEMENS, 2014

2.2. Controlador lógico programável

O controlador lógico programável (CLP) é um equipamento eletrônico digital com *hardware* e *software* compatíveis com aplicações industriais. Surgiu na década de 70 e revolucionou os sistemas de comandos e controles industriais. Antes de seu surgimento essas tarefas eram realizadas por relés eletromagnéticos especialmente projetados para esse fim (VIANNA, 2000).

Neste projeto foi utilizado o controlador SIMATIC S7-1200, do fabricante SIEMENS. A topologia do CLP utilizado neste projeto é mostrada na Figura 5, fazem parte da topologia a fonte de alimentação (não declarada no *software* de programação), o módulo de comunicação RS485, o processador de comunicação GSM/GPRS e a unidade de processamento central.

Fonte: print screen da aba Topology view do TIA Portal

2.2.1. Fonte de alimentação

O primeiro módulo da topologia do CLP SIMATIC S7-1200 é a fonte de alimentação, a fonte não é declarada na topologia de *hardware* do *software* de programação, assim, a fonte de alimentação é o primeiro módulo do CLP apesar de não ser vista na Figura 5. A identificação para este módulo é PM 1207 (*Power supply module*), esta fonte de alimentação tem entrada de 120/230V CA e saída de 24V CC, 2,5A. Segue na Figura 6 a ilustração da fonte de alimentação.

Figura 6 – Fonte de alimentação PM 1207.

Fonte: Catálogo SIEMENS, 2012

2.2.2. Módulo de comunicação RS485

Neste projeto utiliza-se o protocolo de comunicação Modbus RTU via padrão RS485 entre o conversor de frequência e o CLP. Assim sendo, para ser possível estabelecer a comunicação é necessária a utilização de um módulo de comunicação RS485. Então, o segundo módulo da topologia trata-se do módulo de comunicação identificado como CM 1241 (*Communication Module*). A Figura 7 ilustra este módulo.

Figura 7 – Módulo de comunicação CM 1241.

Fonte: Catálogo SIEMENS, 2012

2.2.3. Módulo de comunicação GSM/GPRS

O terceiro módulo da topologia é o módulo GSM/GPRS, também identificado como CP 1242-7 (*Communications Processor*). Este dispositivo é um processador de comunicação que permite o controlador SIMATIC S7-1200 se conectar a rede GSM/GPRS. E assim, realizando as configurações necessárias, torna-se possível enviar mensagens SMS para telefones celulares previamente cadastrados. A Figura 8 ilustra o dispositivo CP 1242-7.

Fonte: Catálogo SIEMENS, 2012

Para envio de mensagens através do módulo GSM/GPRS, além das configurações que serão mostradas posteriormente, faz-se necessário a inserção de um cartão SIM (*Subscriber Identity Module*) vinculado à operadora de telefonia móvel e ainda a utilização de uma antena para estabelecimento do sinal de rede GSM. A Figura 9 ilustra os componentes mencionados. Neste projeto foi utilizado o modelo de antena ANT 794-4MR.

Figura 9 - Elementos associados ao módulo GSM/GPRS.

Fonte: Adaptado de Applications & Tools, 2013

2.2.4. Unidade de Processamento Central

O quarto módulo trata-se da Unidade de Processamento Central (CPU) utilizada no CLP SIMATIC S7-1200 deste projeto. A identificação desta unidade é CPU 1214C (DC/DC/DC), o código do produto é 6ES7214-1AE30-0XB0. Esta CPU possui quatorze entradas digitais, dez saídas digitais, duas entradas analógicas e interface PROFINET integrada. Na Figura 10 é ilustrada a CPU 1214C.

Fonte: Catálogo SIEMENS, 2012

2.3. Interface homem máquina

2.3.1. Conceito

IHM (Interface Homem Máquina) é uma tradução do termo HMI (Human Machine Interface) e como o próprio nome diz é uma interface gráfica que permite ao homem interagir com a máquina. O dispositivo IHM é um *hardware* muito utilizado na automação industrial composto normalmente por uma tela de cristal líquido e um conjunto de teclas para navegação ou inserção de dados que se utiliza de um *software* proprietário para a sua programação (MORAES; CASTRUCCI, 2007).

O uso de IHM é cada vez mais comum no cenário industrial, isso se explica devido ao fato da IHM possibilitar supervisão, controle e aquisição de dados de todo o sistema, permitindo a análise das informações pela operação e a alteração de parâmetros quando houver necessidade. O uso da IHM proporciona diversas vantagens como visualização de alarmes gerados por alguma condição anormal do sistema ou ainda modernização do controle de processos através da substituição de botoeiras, onde a IHM possibilita a centralização de todas as funções das botoeiras em único local como mostra a Figura 11.

Fonte: Citisystems, 2016

2.3.2. Descrição da IHM utilizada

O uso da IHM neste projeto é essencial, pois através das IHM é possível visualizar o andamento e *status* de todas as etapas, ou seja, a inicialização da CPU, o monitoramento de falhas no conversor de frequência e as notificações de envio de mensagens de texto para os telefones celulares cadastrados.

Uma IHM para atender aos requisitos deste projeto, necessita de poucos recursos gráficos e de resolução, pois as funções principais são mostrar o andamento das etapas do processo como mencionado anteriormente. Sendo assim, chegou-se a conclusão que uma IHM do modelo KTP 700 Basic PN, do fabricante Siemens, seria suficiente para atender a todas as solicitações.

A Figura 12 ilustra o modelo de IHM utilizado. Algumas características deste modelo de IHM podem ser destacadas, este modelo possui tela *Touch* e oito teclas de função, possui também *display* LCD de 6,7 polegadas com 256 cores e interface de comunicação PROFINET.

Figura 12 – Dispositivo IHM SIMATIC IHM KTP 700 Basic PN.

Fonte: Support Industry Siemens

2.4. Redes

Segundo BORGES (2007), a utilização das redes permite a comunicação rápida e confiável entre equipamentos e permite também o uso de mecanismos padronizados, esses são fatores indispensáveis no conceito de produtividade industrial. No desenvolvimento do projeto deste trabalho foram utilizadas três redes de comunicação: A rede de campo MODBUS foi utilizada para estabelecer comunicação entre o conversor de frequência e o CLP, a rede de campo PROFINET foi utilizada para estabelecer comunicação entre o dispositivo IHM e o CLP e, por fim, a rede de telefonia GSM/GPRS foi utilizada para envio de mensagens SMS para telefones celulares. A seguir serão destacadas as principais características dessas redes de comunicação.

2.4.1. Rede MODBUS

MODBUS é um protocolo de comunicação de dados utilizado em sistemas de automação industrial. Este protocolo foi criado em 1979 pela fabricante de equipamentos Modicon que hoje é controlada pela Schneider *Electric*. A Schneider transferiu os direitos do protocolo para a *Modbus Organization* e a utilização do protocolo passou a ser livre de taxas de licenciamento. Por esta razão, e também por se adequar facilmente a diversos meios físicos, o protocolo MODBUS é utilizado por vários fabricantes em diversos equipamentos existentes (NASCIMENTO; LUCENA, 2003).

O protocolo MODBUS possui as versões para aplicações seriais (MODBUS RTU e MODBUS ASCII) e a versão para aplicações Ethernet (MODBUS TCP). O conversor de frequências SINAMICS V20 utilizado neste projeto disponibiliza a comunicação através do protocolo MODBUS RTU com interface RS485. Assim sendo, a seguir serão destacadas as características deste tipo de protocolo de comunicação.

2.4.1.1. Características da interface RS485

A interface RS485 (*Recommendad Standart* 485) é muito utilizada na indústria e é uma das interfaces mais utilizadas pelo protocolo MODBUS. A seguir são apresentadas algumas das características da interface RS485.

- Segue o padrão EIA485 (*Electronic Industries Alliance* 485);
- Possibilita a comunicação utilizando taxas de 1200 até 57600 Kbps.
- Permite a conexão de até 32 dispositivos no mesmo segmento.
- Comprimento máximo do barramento de 1000 metros.

2.4.1.2. Estrutura das mensagens no modo MODBUS RTU

A rede MODBUS RTU utiliza o sistema mestre-escravo para a troca de mensagens. Permite até 247 escravos, mas somente um mestre. Toda comunicação inicia com o mestre fazendo uma solicitação a um escravo e este responde ao mestre o que foi solicitado. Em ambos os telegramas (pergunta e resposta), a estrutura utilizada é a mesma: Endereço, Código da Função, Dados e CRC (*Cycling Redundancy Check*). Apenas o campo de dados poderá ter tamanho variável, dependendo do que está sendo solicitado (WEG, 2013).

Figura 13 – Estrutura do telegrama do protocolo de comunicação MODBUS RTU.

	Unidad	e dos Dados de Aplicação		
Endereco Unidade de Dados do Protocolo.			CRC	
slave	Códigos de função	Dados	2 by	tes
1 byte	1 byte	0 252 bytes	CRC baixo	CRC alto

Fonte: Instruções de funcionamento SINAMICS V20, 2012

- Endereço: O mestre inicia a comunicação enviando um byte com o endereço do escravo para o qual se destina a mensagem (*unicast*). Ao enviar a resposta, o escravo também inicia o telegrama com o seu próprio endereço. O mestre também pode enviar uma mensagem destinada a todos os escravos da rede (*broadcast*) através do endereço 0 (zero).
- Código da função: Este campo também contém um único byte, onde o mestre especifica o tipo de serviço ou função solicitada ao escravo (leitura, escrita, etc.). De acordo com o protocolo, cada função é utilizada para acessar um tipo específico de dado.
- Campo de dados: Campo com tamanho variável. O formato e conteúdo deste campo dependem da função utilizada e dos valores transmitidos.

 CRC: A última parte do telegrama é o campo para checagem de erros de transmissão. O método utilizado é o CRC.

2.4.2. Rede PROFINET

O PROFINET é o padrão aberto e inovador para Ethernet industrial. Satisfaz todos os requisitos da tecnologia de automação. O PROFINET está presente em todos os mercados industriais: indústria automotiva, fabricação de máquinas, indústrias de alimentos, bebidas, embalagem e logística industrial. Além disso, os aprimoramentos contínuos do PROFINET trazem benefícios aos usuários, como o *PROFIenergy* que possibilita o monitoramento de energia nos processos de produção (PROFINET, 2014).

PROFINET é uma rede padronizada pela PROFIBUS & PROFINET *International*, utiliza TCP/IP e padrões da TI (Tecnologia da Informação) com transmissão de dados em tempo real. Uma grande vantagem desta rede de campo é que ela suporta comunicação integrada entre a direção e o nível de campo, ou seja, o seu uso permite interligar todos os níveis da Cadeia de Suprimentos (Pirâmide da automação). Assim, o nível de gerência ou vendas tem acesso ao chão de fábrica em tempo real, aumentando a agilidade e o nível de produção (PROFINET, 2014).

2.4.2.1. Tipos de redes PROFINET

Segundo PROFINET (2014), basicamente há dois tipos de redes PROFINET: PROFINET I/O e PROFINET CBA (Component Based Communication). O PROFINET I/O é utilizado em aplicações em tempo real e o PROFINET CBA é utilizado em aplicações onde o tempo não é crítico. Porém, o PROFINET I/O se ramifica em duas formas de operação: PROFINET I/O RT (Real Time) e PROFINET I/O IRT (Isochronous Real Time).

Figura 14 - Comparativo de tempos de processamento da rede PROFINET.

Fonte: PROFINET – Descrição do Sistema – Tecnologia e Aplicação, 2014

Através da Figura 14 e da arquitetura de camadas TCP/IP da Figura 15 é possível fazer um comparativo entre as três formas de operação da rede PROFINET.

- PROFINET CBA: Baseia-se na arquitetura TCP/IP pura, utilizando Ethernet na camada um e dois, o IP na camada três e o TCP/UDP na camada quatro. Essa arquitetura é chamada de Non-RT (*Non Real Time*), pois seu tempo de processamento aproxima-se de 100 ms. Essa rede é muito utilizada quando se faz necessária a conversão entre diferentes protocolos.
- PROFINET I/O RT: Baseia-se no conceito de Real Time com tempo de processamento próximo de 10 ms. Caracteriza-se por ser um canal que interliga diretamente a camada Ethernet à camada de aplicação. Assim, com a eliminação de vários níveis de protocolo, há uma redução no comprimento das mensagens transmitidas, necessitando-se menos tempo para transmitir os dados na rede.
- PROFINET I/O IRT: É utilizado em aplicações em que o tempo de resposta é crítico e deve ser menor que 1 ms. Aplicações típicas deste conceito são o controle de movimento de robôs e o sincronismo de eixos. Para se obter um tempo de resposta menor que 1 ms é preciso um *hardware* específico que consiga processar as informações nesse tempo, um exemplo muito utilizado é o processador ERTEC 400.

Figura 15 – Arquitetura TCP/IP para PROFIBUS e PROFINET.

Fonte: Associação PROFIBUS Brasil

Como mostra Figura 16, PROFINET CBA e PROFINET I/O podem ser operados separadamente ou de forma combinada.

Figura 16 – Flexibilidade às aplicações através da PROFINET.

Fonte: PROFINET - Descrição do Sistema - Tecnologia e Aplicação, 2014

2.4.2.2. Características da PROFINET

O principal objetivo do PROFINET é a criação de um ambiente de rede industrial integrado, robusto e seguro. Assim sendo, seguem algumas características desta rede.

- Velocidade da rede de 100Mbps;
- Capacidade de 16.777.216 nós na rede;
- Comprimento máximo de um segmento entre dois nós é de 100 m;
- Se tratando de aplicações, têm-se três tipos de dispositivos diferentes: I/O Controller (são os mestres da rede), I/O Device (são os dispositivos escravos) e I/O Supervisor (são as estações de engenharia).

2.4.3. Protocolos de telefonia móvel

2.4.3.1. Primeira e segunda geração dos protocolos de telefonia móvel

Em 1975 a operadora Illinois Bell desenvolveu o sistema AMPS (*Advanced Mobile Phone System*), surgiu então o primeiro protocolo de telefonia móvel, também chamado de primeira geração (1G). Em 1979 o AMPS entrou em operação, e já em 1983 tornou-se o sistema analógico dominante no mundo (TUDE, 2003). O AMPS se caracteriza por um sistema de canal de voz analógico baseado em FDMA (*Frequency Division Multiple Access*). Oferecia serviços de voz, porém dados eram transmitidos com taxa de transmissão de 9600 bps.

Com o sistema analógico chegando ao seu limite de capacidade, veio a necessidade de sistemas digitais, a segunda geração (2G) caracterizou-se, principalmente, pela digitalização do canal de voz, além da disponibilização de serviços suplementares para os usuários tais como serviços de mensagens SMS, identificador de chamadas e outros. Surgiu então, o segundo protocolo de telefonia móvel, o GSM (*Global System Mobile*). Esta geração também proveu o acesso à rede de dados entre as operadoras com taxas de transmissão em torno de 64 Kbps.

2.4.3.2. A evolução da segunda geração até os dias atuais

A geração 2,5G é uma fase intermediária entre as gerações 2G e 3G, seu grande diferencial foi uma técnica avançada de modulação que permitia a comutação por

pacotes em vez de comutação por circuitos, essa técnica é a mesma adotada pelo IP da arquitetura TCP/IP. Isso se deve aos serviços GPRS (*General Package Radio Services*) e EDGE (*Enhanced Date Rates for GSM Evolution*), estes serviços permitem o envio e o recebimento de dados em redes GSM com maior qualidade (FORTUNA; SILVA; MENDES, 2009).

O GPRS permite serviços de dados sem a necessidade de estabelecer uma conexão e a tarifação é feita por utilização e não por tempo de conexão, sendo assim o serviço está sempre disponível ao usuário. O EDGE é uma versão melhorada do GPRS e um passo lógico de custo efetivo para o sistema de terceira geração. A terceira geração (3G) é a mais utilizada no mundo e revolucionou oferecendo velocidades que pela primeira vez atingiam a faixa de 400 Kbps a 4 Mbps. Por fim, a quarta geração (4G) ou também conhecida como LTE (*Long Term Evolution*), é o padrão mais recente e ainda em implantação pelo mundo, que promete transmissões de dados em bandas ultra largas tendo potencial para atingir até 300 Mbps.

2.4.3.3. Conclusão

Portanto, é importante destacar que o módulo CP 1242-7 é um processador de comunicação que permite o controlador SIMATIC S7-1200 se conectar a rede GSM/GPRS. Para o envio de mensagens SMS somente a tecnologia que incrementa a rede GSM já seria suficiente, porém o serviço GPRS é um avanço da tecnologia GSM e o módulo CP 1242-7 já suporta essa implementação. Assim sendo, neste trabalho o envio de mensagens SMS é realizado através de um dispositivo que possui tecnologia para suportar a rede GSM/GPRS.

2.5. Software de programação

2.5.1. TIA Portal – Totally Integrated Automation

Neste projeto toda programação e configuração dos dispositivos utilizados foram realizadas no *software* TIA Portal. O TIA Portal na verdade não é apenas um *software*, se trata de um portal de automação totalmente integrado, onde todas as ferramentas de *software* de automação estão unificadas em um único ambiente de desenvolvimento (Support Industry SIEMENS, 2017). A Figura 17 ilustra esse *software* único que

trabalha como um portal de automação totalmente integrado para dispositivos SIEMENS.

Figura 17 – Portal de automação totalmente integrado.

Fonte: Support Industry Siemens

É muito comum para os engenheiros trabalhar em vários editores ao mesmo tempo, mas com o TIA Portal todas as ferramentas de engenharia podem ser acessadas a partir de uma única interface gráfica. No desenvolvimento deste projeto a utilização do TIA Portal otimizou o tempo para configuração e programação dos dispositivos utilizados. Dentro deste portal foi instalado o *software* STEP 7 Professional que é utilizado na programação do CLP e ainda foi instalado o *software* WinCC *Professional* que permite a programação da IHM. A Figura 18 mostra cada software instalado dentro do TIA Portal que foi utilizado no desenvolvimento deste projeto.

Figura 18 – Lista de software instalados no TIA Portal.

IS1	talled software
C	Siemens AG, 2008-2016
Ir	istalled software
•	¹ Totally Integrated Automation Portal
	Version V13 SP1 Update 9
•	SINAMICS Startdrive
	Version V13 SP1
•	STEP 7 Professional
	Version V13 SP1 Update 9
Installed software © Siemens AG, 2008-2016 Installed software • Totally Integrated Automation Portal Version V13 SP1 Update 9 • SINAMICS Startdrive Version V13 SP1 Update 9 • WinCC Professional Version V13 SP1 Update 9 [Detailed information about installed software Check for updates Additional information This software contains Microsoft software. DPC Material is used in this application. OPC Foundation home page http://www.opcfoundation.org Close	
	Version V13 SP1 Update 9
	Detailed information about installed software
	Check for updates
A	dditional information
Tł	nis software contains Microsoft software.
0	PC Material is used in this application. OPC Foundation home page http://www.opctoundation.org
	Close

Fonte: print screen da aba de informações do TIA Portal

3 Procedimento experimental

Ao longo deste capítulo serão apresentadas as configurações de todos os elementos utilizados no desenvolvimento deste projeto. Portando, serão mostrados os seguintes detalhes: a parametrização do conversor de frequência, a parametrização dos blocos de comunicação MODBUS, a configuração do processador de comunicação GSM/GPRS, o desenvolvimento da programação em LADDER para possibilitar o envio de mensagens SMS e o desenvolvimento das telas do dispositivo IHM.

Além disso, na Figura 19 é apresentado o fluxograma de todo o processo de monitoramento remoto proposto neste trabalho. Assim, é possível notar que enquanto não há falha no conversor, o sistema está operando e nenhuma mensagem SMS será enviada. Porém, a partir da ocorrência de falha, uma mensagem SMS será enviada para o primeiro número cadastrado, se não houver o reconhecimento de falha no intervalo de tempo de 60 segundos, então, a mensagem SMS será enviada também para o segundo número cadastrado e novamente se não ocorrer o reconhecimento da falha em 60 segundos, então, a mensagem "OPERAÇÃO PARADA – FALHA PERMANENTE" será mostrada na tela do dispositivo IHM. Todas as etapas do processo são mostradas na tela do dispositivo IHM e se houver o reconhecimento da falha, em qualquer momento, o sistema fica operante novamente.

Por fim, foi feito o *download* da programação para fins de testes e validação do projeto. Sendo assim, foi realizado o acesso *online* durante os testes para verificação de possíveis erros. Todas as etapas e *status* foram acompanhados, nenhum erro ocorreu durante o processo e o sistema correspondeu às expectativas iniciais.

Figura 19 – Fluxograma do processo de monitoramento remoto.

Fonte: Ilustração própria

3.1. Configuração do conversor de frequência

Para que o conversor funcione de forma satisfatória, não basta instalá-lo corretamente, é preciso informá-lo em que condições de trabalho ele irá operar, o que consiste na parametrização do conversor. Quanto maior o número de recursos que o conversor oferece, maior será o número de parâmetros disponíveis (CAPELLI, 2002).

A configuração do conversor de frequência SINAMICS V20 pode ser tratada como uma etapa muito importante no desenvolvimento deste projeto. As falhas ocorridas no conversor de frequência serão transmitidas via rede MODBUS RTU para o CLP e posteriormente enviadas por mensagens SMS para os telefones celulares. Assim sendo, o conversor precisa estar configurado para o estabelecimento de comunicação MODBUS RTU, além disso, algumas configurações adicionais são necessárias.

O conversor de frequência SINAMICS V20 possui aproximadamente quatro mil parâmetros, esses parâmetros podem ser números prefixados com a letra "r" que indica que o parâmetro é somente de leitura, ou também podem ser números prefixados com a letra "P" que indica que o parâmetro é gravável. Uma vantagem importante desse conversor é a disponibilização de macros de configuração em sua programação, as macros são conjuntos de parâmetros pré-definidos, assim, dependendo da aplicação é possível utilizar uma macro pré-definida e otimizar o tempo de configuração.

3.1.1. Etapas para parametrização do conversor

Toda parametrização do conversor SINAMICS V20 pode ser feita através do painel de operações integrado ao conversor, também conhecido como BOP (*Basic Operator Panel*). A seguir são apresentadas as etapas para parametrização do conversor.

3.1.1.1. Primeira etapa: Reinicialização de fábrica

Inicialmente foi feita a reinicialização de fábrica do conversor para que todos os parâmetros retornassem aos seus valores padrões de fábrica e, assim, evitar que alguma parametrização remanescente pudesse alterar o funcionamento desejado. A reinicialização de fábrica é feita através da configuração dos seguintes parâmetros.

■ P0010 = 30

■ P0970 = 1

3.1.1.2. Segunda etapa: Escolha da macro de conexão

O conversor SINAMICS V20 oferece, através de macros, diferentes configurações previamente definidas. Entre as macros disponíveis, existe a Macro de Conexão "Cn011" para controle MODBUS RTU. Sendo assim, para se estabelecer comunicação MODBUS RTU entre o conversor e o CLP foi selecionada a macro "Cn011". A escolha desta macro define os parâmetros mostrados na Figura 20.

Figura 20 – Macro de conexão Cn011 disponível no SINAMICS V20.

Parâmetro	Descrição	Padrões de Fábrica	Padrão para Cn011	Observações:		
P0700[0]	Seleção da fonte de comando	1	5	RS485 como fonte de comando		
P1000[0]	Seleção da frequência	1	5	RS485 como ponto de ajuste da velocidade		
P2023[0]	Seleção do protocolo RS485	1	2	Protocolo RTU MODBUS		
P2010[0]	Taxa de transmissão USS / MODBUS	8	6	Taxa de transmissão de 9600 bps		
P2021[0]	Endereçamento MODBUS	1	1	Endereçamento MODBUS para o inversor		
P2022[0]	Tempo de resposta do MODBUS	1000	1000	Tempo máximo para enviar resposta para o equipamento mestre		
P2014[0]	USS / telegrama fora de tempo MODBUS	2000	100	Tempo para o recebimento de dados		

Fonte: SIEMENS, 2014

3.1.1.3. Terceira etapa: Associação do status de falha ativa em uma saída digital

Para melhor visualização da ocorrência de falhas no conversor, foi associado o bit de indicação de falha ativa em uma saída digital do próprio conversor. É importante destacar que o bit de indicação de falha é invertido, ou seja, em nível lógico baixo o conversor está em falha e em nível lógico alto o conversor está sem falha. Para associação do bit de falha na saída digital DO1 do conversor, foi necessário o ajuste do parâmetro a seguir.

• P0731 = r0052.3

3.1.1.4. Quarta etapa: Falha programada em uma entrada digital

Uma forma mais simples de gerar uma falha no conversor é programar uma entrada digital para gerar uma falha programada. Assim sendo, a entrada digital DI1 foi programada para gerar a falha F85 (*External Fault*). A seguir o parâmetro para esta configuração.

■ P0701 = 29

3.1.1.5. Quinta etapa: Configuração do reconhecimento de falha

Após uma falha ser gerada no conversor de frequência e a causa da falha ter sido remediada, então, se faz necessário o reconhecimento da falha. Assim sendo, a entrada digital DI2 foi configurada para executar a função de reconhecimento de falhas, o parâmetro para esta configuração segue abaixo.

■ P0702 = 9

3.2. Configurações para comunicação MODBUS RTU

Como já mencionado anteriormente, a comunicação entre o conversor de frequência e o CLP se faz através do protocolo MODBUS RTU via RS485. As configurações do escravo, o conversor de frequência, para estabelecer esta comunicação já foram mostradas. Porém, ainda resta a configuração do mestre da rede, ou seja, o CLP.

Inicialmente é importante destacar que no protocolo MODBUS RTU a maioria dos dispositivos possuem uma tabela de registradores. Com o conversor SINAMICS V20 não é diferente, ele possui uma tabela de registradores onde os parâmetros de leitura e escrita são mapeados a registradores específicos. Assim, quando se deseja ler ou escrever em uma determinada variável do conversor, é necessário verificar o número do registrador associado àquela variável. A tabela de registradores do SINAMICS V20 é mostrada no Anexo A.

3.2.1. Etapas para estabelecimento da rede MODBUS RTU

Para realizar a comunicação MODBUS RTU entre o CLP S7-1200 e o conversor SINAMICS V20 é necessário a configuração dos blocos de comunicação MODBUS do *software* STEP 7 (TIA Portal). A configuração será feita em duas etapas: a primeira etapa é a parametrização do bloco MB_COMM_LOAD para configuração da porta de comunicação e a segunda etapa é a parametrização do bloco MB_MASTER para habilitar a leitura de variáveis do conversor de frequência.

3.2.1.1. Primeira etapa: Parametrização do bloco MB_COMM_LOAD

Neste projeto foi utilizado o módulo CM 1241 para possibilitar a comunicação MODBUS RTU entre o CLP e o conversor de frequência. Este módulo disponibiliza uma porta de comunicação com interface RS485. Para configuração da porta de comunicação é preciso parametrizar o bloco MB_COMM_LOAD. Os detalhes da parametrização do bloco são mostrados a partir da Figura 21.

Fonte: print screen do software TIA Portal

- Parâmetro "REQ": A instrução do bloco só é executada com uma borda de subida neste parâmetro. Assim sendo, foi utilizada a *System Memory* M100.0 que irá para nível lógico alto durante o primeiro ciclo de leitura da CPU.
- Parâmetro "PORT": É a identificação da porta de comunicação a ser configurada. Para que a porta de comunicação da CM 1241 seja configurada é

preciso informar neste parâmetro o seu número de identificação de *hardware*. Acessando a CM 1241 foi possível identificar o número 271.

- Parâmetro "BAUD": Este parâmetro se refere à taxa de transmissão da rede. O valor de 9600 bps foi configurado neste parâmetro e também no conversor de frequência.
- Parâmetro "PARITY": A paridade se trata de uma forma simples de verificação de erro na comunicação. Tanto o mestre quanto o escravo devem selecionar a mesma opção de paridade. Neste projeto foi selecionada a opção 2 (par).
- Parâmetro "MB_DB": Este parâmetro se refere ao *Data Block* do MB_MASTER. Na inserção do bloco MB_MASTER ao projeto foi criada a DB7 que será apontada neste parâmetro.

3.2.1.2. Segunda etapa: Parametrização do bloco MB_MASTER

Nesta segunda etapa foi feita a parametrização do bloco MB_MASTER, através da configuração deste bloco é possível habilitar a leitura ou a escrita de variáveis do conversor de frequência. Neste projeto não é realizado o controle do conversor, na verdade é realizado apenas o monitoramento, assim sendo, foi habilitada apenas a leitura de variáveis do conversor. Os detalhes da parametrização do bloco são mostrados a partir da Figura 22.

Figura 22 – Bloco parametrizável MB_MASTER.

Fonte: print screen do software TIA Portal

- Parâmetro "REQ": Neste caso não é necessário somente um borda de subida. O parâmetro REQ em nível lógico baixo significa que não haverá solicitação de dados do escravo MODBUS. Porém, com o parâmetro REQ em nível lógico alto haverá solicitação de dados, então, na entrada deste parâmetro foi colocado a *System Memory* M100.2 que permanecerá em nível lógico alto todo o tempo.
- Parâmetro "MB_ADDR": Este parâmetro se refere ao endereço do escravo MODBUS. Portanto, o endereço deve ser o mesmo colocado no conversor, neste caso, endereço 1.
- Parâmetro "MODE": Neste parâmetro é feita a seleção do modo de operação do mestre MODBUS. O valor do parâmetro em 0 (zero) significa que foi selecionado o modo de leitura.
- Parâmetro "DATA_ADDR": Este parâmetro se refere ao endereço inicial dos dados a serem acessados no escravo MODBUS. O status da saída digital DO1 é o primeiro endereço da tabela de registradores do SINAMICS V20 a ser acessado neste projeto. Portanto, o endereço inicial é o 40014.
- Parâmetro "DATA_LEN": Especifica o número de *words* que serão acessadas no escravo MODBUS. Cada registrador é uma *word* e neste projeto será feito o acesso do registrador 40014 ao registrador 40060, logo, o valor inserido neste parâmetro é 47.
- Parâmetro "DATA_PTR": É a indicação do local onde os valores dos registradores acessados serão armazenados. Para isso, foi criada a DB5 (db_aux_modbus).

3.3. Configuração do processador de comunicação GSM/GPRS

Neste projeto se faz necessário o acesso à rede GSM para envio de mensagens SMS para telefones celulares. Assim sendo, como já foi mencionado anteriormente, foi utilizado o processador de comunicação CP 1242-7 para possibilitar que o CLP S7-1200 pudesse se conectar a rede GSM/GPRS. Neste processador foi inserido um cartão SIM (*Subscriber Identity Module*) vinculado à operadora de telefonia móvel VIVO e, também, foram feitas as configurações necessárias. A partir da Figura 23 é possível destacar melhor as configurações realizadas.

CP 1242-7 [CP 1242-7]			Roperties	🗓 Info 🔒 🎚 Diagnostics] •			
General IO tags Sys	tem constants Texts							
▼ General	Services and settings							
Project information								
Catalog information	CP phone number:	+5511997674525						
Identification & Maintenance	er prote namber.	-						
Telecontrol interface		Activate PIN						
Time synchronization	PIN:	••••						
DNS configuration	Repeat PIN:	••••						
•		🗹 Enable SMS						
	SMSC:	+550101102010						

Figura 23 - Configurações do processador de comunicação CP 1242-7.

Fonte: print screen do software TIA Portal

- CP *phone number*: Neste campo foi inserido o número do telefone vinculado ao cartão SIM inserido na CP 1242-7.
- PIN: É necessário também inserir o número PIN (*Personal Identification Number*) que é recebido ao adquirir o cartão SIM.
- Enable SMS: Esta opção obrigatoriamente precisa ser selecionada para que o envio de mensagens SMS seja habilitado.
- SMSC: Por fim, para ser possível o envio de mensagens SMS, é necessária a inserção do número SMSC (*Short Message Service Center*). Este número é informado pela operadora de telefonia móvel e está vinculado a região do número de DDD (Discagem Direta a Distância) do cartão SIM, neste caso, a região é São Paulo.

3.4. Programação do CLP S7-1200

Além da configuração dos blocos para comunicação MODBUS RTU, que já foi mostrada, outras configurações e programações foram desenvolvidas no *software* STEP 7 PROFESSIONAL para conclusão deste projeto. Todas as programações referentes ao CLP serão destacadas, como configuração da topologia de *hardware*, programação em LADDER das condições e intertravamentos do projeto, e configuração dos blocos de conexão, envio de SMS e desconexão da rede GSM.

3.4.1. Declaração da topologia de hardware

Todos os elementos não passivos utilizados no projeto devem ser declarados na topologia de *hardware* do *software* TIA Portal. A Figura 24 mostra a topologia do projeto configurada.

Figura 24 – Topologia de hardware declarada no software TIA Portal.

Fonte: print screen do software TIA Portal

É importante destacar que os códigos de cada elemento declarado na topologia e as versões de *firmware* ou sistema operacional devem ser os mesmo dos dispositivos utilizados, isso evita erros de configuração na hora do *download*. A Figura 25 é a topologia de *rack* do CLP.

Figura 25 - Topologia de rack do CLP SIMATIC S7-1200.

Fonte: print screen do software TIA Portal

3.4.2. Tempo de inicialização da CPU

Para garantir que as mensagens SMS sejam enviadas é necessário haver sinal com a rede GSM/GPRS. Portanto, durante a inicialização da CPU foi estipulado um tempo de espera de 60 segundos para que o sinal com a rede GSM/GPRS possa ser estabelecido e, assim, na programação foi intertravado para que o envio de mensagens SMS fique disponível apenas após esse intervalo de tempo. Na Figura 26 é mostrada a programação em LADDER para esta finalidade.

Fonte: print screen do software TIA Portal

3.4.3. Textos das mensagens de falha

Após a inicialização da CPU, o programa fica disponível para envio de mensagens SMS quando houver ocorrência de falhas no conversor de frequência. Neste projeto foi desenvolvida a programação para envio de mensagens a partir da ocorrência de duas falhas: falha F85 (*External Fault*) e falha F3 (subtensão). Assim, na Figura 27 é mostrado o desenvolvimento da programação para envio do texto pré-definido para o bloco apropriado de envio de mensagens SMS.

Figura 27 – Textos das mensagens de falha.

Fonte: print screen do software TIA Portal

Portanto, é importante destacar que o texto com a mensagem que será enviada por SMS foi declarado em duas memórias: para falha F85 o texto "Sinamics V20 – DTDRV54311. Drive em Falha. Falha externa (F85)" foi declarado no endereço de memória DB3.DBX194.0, e para falha F3 o texto "Sinamics V20 – DTDRV54311. Drive em Falha. Falha de subtensão (F3)" foi declarado no endereço de memória DB3.DBX356.0. Quando ocorrer uma dessas falhas, o texto pré-definido será movido para o endereço de memória DB3.DBX518.0 que foi apontado na entrada do bloco de envio de mensagens SMS, este bloco será mostrado posteriormente. Porém, quando não houver falhas a string de caracteres será deletada, ou seja, não haverá nenhum texto no endereço de memória DB3.DBX518.0.

3.4.4. Bloco FB2 – GPRS Communication

Para envio de mensagens SMS através da rede GSM é necessário utilizar e parametrizar três blocos da CP 1242-7 do *software* STEP 7 PROFESSIONAL (TIA Portal). Esses blocos são: TC_CON, TC_SEND e TC_DISCON. Para inserção desses blocos ao projeto foi criado o bloco de função FB2 (GPRS *Communication*) e a parametrização de cada um desses blocos será mostrada detalhadamente a seguir.

3.4.4.1. Parametrização do bloco TC_CON

Este bloco tem a função de estabelecer, via rede GSM, conexão da CP 1242-7 com o cliente SMS. Os detalhes da parametrização do bloco são mostrados a partir da Figura 28.

Comment			
	%DB1 "TC_CON_DB		
	TC_CON		
	EN	ENO	
#CON_EDGE -	REQ	BUSY	
#ID	ID	DONE	
268		ERROR #erro_con	
"Local~CP 1242-		STATUS — #status_con	
7~GPRS" -	INTERFACE		
P#DB3.DBX0.0			
GPRS".TCON			
Parameters _	CONNECT		
. a.ametera	CONNECT		

Figura 28 – Bloco parametrizável TC_CON.

Fonte: print screen do software TIA Portal

- Parâmetro "REQ": A execução da instrução de conexão só é realizada a partir de uma borda de subida neste parâmetro.
- Parâmetro "ID": Este parâmetro se refere à identificação da conexão de rede.
- Parâmetro "INTERFACE": É a identificação da interface de comunicação a ser configurada. Para que a interface de comunicação da CP 1242-7 seja configurada é preciso informar neste parâmetro o seu número de identificação de *hardware*. Acessando a CP 1242-7 foi possível identificar o número 271.
- Parâmetro "CONNECT": Como mostra a Figura 29, foi necessário criar o Data Block DB3 (parameters GPRS). Neste Data Block foi criada uma variável do

tipo TCON_Phone, esta variável carrega todas as informações necessárias para configuração e conexão da CP 1242-7 com a rede GSM. Neste parâmetro é necessário apontar o endereço desta DB.

TCC - Monitoramento Remoto + PLC_1 [CPU 1214C DC/DC/DC] + Program blocks + parameters GPRS [DB3] 🦸 🔮 💺 🖟 🗞 🖧 🖧 🗮 🔢 🖤 parameters GPRS Name Data type Offset Start value Retain Accessible f... Visible in ... Setpoint Comment 🕣 💌 Static 0.0 📶 💶 🔻 TCON_Parameters TCON Phone InterfaceId HW-identifier of IE-interface submodule 3 🕣 HW ANY 0.0 268 4 📶 🔹 ID CONN_OUC 2.0 16#0 connection reference / identifier \square ConnectionType 4.0 16#0E type of connetion: 14=TCON Phone Byte ŏ 6 📶 🔹 ActiveEstablished Bool 5.0 active/passive connection establishment False PhoneNumber String[22] 8.0 \checkmark \checkmark phone number of remote partner 32.0 'A CPU S7 1214... 8 🤕 🔹 🛛 Inicializacao CPU String[160] Falha externa (F85) String[160] 194.0 'Sinamics V20 - ... \checkmark 10 🕣 🔳 Falha subtensao (F3) String[160] 356.0 'Sinamics V20 - ... 11 🕣 🗉 Aux_Falha String[160] 518.0 12 🕣 🔳 Mateus String[22]
 680.0
 '+5531991892...

 704.0
 '+5511973479...
 13 📶 🔳 Eiji String[22]

Figura 29 – Bloco de dados DB3 com a variável TCON_Phone.

Fonte: print screen do software TIA Portal

3.4.4.2. Parametrização do bloco TC_SEND

Este bloco permite o envio de mensagens SMS através da conexão com a rede GSM. Os detalhes da parametrização do bloco são mostrados a partir da Figura 30.

Figura 30 – Bloco parametrizável TC_SEND.

Fonte: print screen do software TIA Portal

- Parâmetro "REQ": A execução da instrução de envio só é realizada a partir de uma borda de subida neste parâmetro.
- Parâmetro "ID": Este parâmetro se refere à identificação da conexão de rede.
- Parâmetro "INTERFACE": É a identificação da interface de comunicação a ser configurada. Para que a interface de comunicação da CP 1242-7 seja configurada é preciso informar neste parâmetro o seu número de identificação de *hardware*. Acessando a CP 1242-7 foi possível identificar o número 271.
- Parâmetro "LEN": Este parâmetro se refere ao tamanho do dado a ser enviado, neste caso será o número de caracteres da variável tipo string que carrega o texto com a mensagem.
- Parâmetro "DATA": Neste parâmetro é apontado o endereço onde a mensagem está escrita. Conforme dito anteriormente, o texto da mensagem é movido para o endereço de memória DB3.DBX518.0.

3.4.4.3. Parametrização do bloco TC_DISCON

Este bloco permite que a CP 1242-7 se desconecte da rede GSM, a desconexão se faz necessária para que possa ser estabelecida uma nova conexão com outro cliente SMS. Os detalhes da parametrização do bloco são mostrados a partir da Figura 31.

Figura 31 – Bloco parametrizável TC_DISCON.

Fonte: print screen do software TIA Portal

- Parâmetro "REQ": A execução da instrução de envio só é realizada a partir de uma borda de subida neste parâmetro.
- Parâmetro "ID": Este parâmetro se refere à identificação da conexão de rede.

 Parâmetro "INTERFACE": É a identificação da interface de comunicação a ser configurada. Para que a interface de comunicação da CP 1242-7 seja configurada é preciso informar neste parâmetro o seu número de identificação de *hardware*. Acessando a CP 1242-7 foi possível identificar o número 271.

3.4.5. Bloco FC1 – SMS

Após ter sido mostrada as parametrizações dos blocos TC_CON, TC_SEND e TC_DISCON, é necessário indicar as condições de envio de mensagens SMS pra o primeiro e segundo número de telefone celular cadastrado. Como visto anteriormente, foi criado o bloco FB2 onde foram inseridos os blocos TC_CON, TC_SEND e TC_DISCON. Em seguida foi necessário criar um bloco de função FC1 (SMS), neste bloco são tratadas as condições para envio de mensagem para os dois números cadastrados, assim, o bloco FB2 é chamado duas vezes dentro do bloco FC1 (uma vez para cada número de telefone cadastrado, ou seja, uma vez para cada conexão com a rede GSM).

3.4.5.1. Envio de SMS para o primeiro número cadastrado

Quando há ocorrência de falha, a mensagem SMS é enviada para o primeiro número de telefone cadastrado (cliente SMS). O número do primeiro telefone foi inserido no endereço de memória DB3.DBX680.0, e quando ocorre falha este número é movido para o endereço de memória DB3.DBX8.0 que corresponde a uma das informações da variável TCON_Phone. Além disso, quando há ocorrência de falha o bloco FB2, chamado pela primeira vez no bloco FC1, é habilitado para que haja conexão e envio da SMS. Os detalhes da parametrização do bloco são mostrados na Figura 32.

Figura 32 – Envio de SMS para o primeiro número de celular cadastrado.

Fonte: print screen do software TIA Portal

A partir da Figura 32 é possível ver também que a conexão com o primeiro número foi programada para durar o intervalo de 60 segundos que na verdade é o tempo de espera para que a falha possa ser reconhecida antes da mensagem também ser enviada para o segundo número.

3.4.5.2. Envio de SMS para o segundo número cadastrado

Após a mensagem SMS com o código de falha ser enviada para o primeiro número, ocorre um tempo de espera de 60 segundos, se neste tempo de espera a falha permanecer ativa, então, ocorre a desconexão da rede GSM com o primeiro número e assim o bloco FB2 chamado pela segunda vez é habilitado. Com isso a conexão e envio de SMS pro segundo número cadastrado é realizado. O número do segundo telefone foi inserido no endereço de memória DB3.DBX704.0, e posteriormente também é movido para o endereço de memória DB3.DBX8.0. Além disso, novamente foi estipulado um tempo de espera de 60 segundos até a desconexão com segundo número ser realizada.

Se a falha permanece ativa após este tempo, então, uma nova mensagem é mostrada no dispositivo IHM. Os detalhes da parametrização do bloco são mostrados na Figura 33.

Figura 33 - Envio de SMS para o segundo número de celular cadastrado.

Fonte: print screen do software TIA Portal

3.5. Programação das telas do dispositivo IHM

Através das IHM KTP700 Basic PN é possível visualizar o andamento e *status* de todas as etapas, ou seja, a inicialização da CPU, o monitoramento de falhas no conversor de frequência, as notificações de envio de mensagens de texto para os telefones celulares cadastrados e, por fim, a mensagem de "Falha Permanente", são etapas que o usuário pode acompanhar pela IHM. Para este acompanhamento foi desenvolvida uma tela (*Screen*) com todos os *status* mencionados acima no *software* WinCC Professional.

3.5.1. Status: CPU inicializando

A Figura 34 mostra a tela da IHM desenvolvida, com o *status* de CPU inicializando.

Figura 34 _	Tela do	disnositivo	IHM (rom a mensagem	"CPU INICI	ALIZANDO"
rigui a 54	I cia uo	uispositivo	TTTTTT	com a mensagem		

Fonte: print screen do software TIA Portal

3.5.2. Status: Operando

A Figura 35 mostra a tela da IHM desenvolvida, com o *status* "Operando" quando não há falha ativa.

Figura 35 - Tela do dispositivo IHM com a mensagem "Operando".

Fonte: print screen do software TIA Portal

3.5.3. Status: Operação parada

A Figura 36 mostra a tela da IHM desenvolvida, com o *status* de "OPERAÇÃO PARADA – FALHA PERMANENTE". Esta mensagem é mostrada na IHM quando a mensagem SMS já foi enviada para o primeiro e o segundo número e, ainda assim, a falha permanece ativa.

Figura 36 – Tela do dispositivo IHM com a mensagem "OPERAÇÃO PARADA".

Fonte: print screen do software TIA Portal

É importante destacar também que o código de qualquer falha ou alarme que venha a ocorrer no conversor será mostrado na tela da IHM. Além disso, durante o período de conexão para envio de SMS, os números de telefones cadastrados também são mostrados na tela da IHM.

3.6. Validação do projeto

Após ter sido efetuado o *download* da programação e nenhum erro ter ocorrido, então, foi possível concluir todas as etapas de desenvolvimento. A partir disso, foram realizados os testes para validação do projeto. Foi feito o monitoramento *online* da programação desenvolvida no *software* TIA Portal assim foi possível verificar que não havia nenhum tipo de erro que pudesse afetar o funcionamento do projeto. Através do monitoramento *online* foi possível verificar os seguintes pontos: topologia com a declaração de *hardware* sem apresentação de erros, todos os blocos de programação em pleno funcionamento, funcionamento correto da troca de dados através do protocolo MODBUS RTU, envio de mensagens SMS conforme foi proposto e acompanhamento das etapas através do dispositivo IHM.

3.6.1. Verificação da topologia do projeto

Após o *download* da programação foi feito o monitoramento *online* de todo o projeto e conforme mostra a Figura 37 nenhum erro foi verificado na declaração da topologia de *hardware*.

Figura 37 – Acesso online a topologia de hardware declarada no TIA Portal.

Fonte: print screen do software TIA Portal

3.6.2. Verificação de erros de programação

Após ter sido eliminada a possibilidade de erros na declaração de hardware, foi necessário verificar também a possibilidade de erros no desenvolvimento da programação. A Figura 38 mostra que nenhum erro foi verificado nos blocos estruturais da programação do CLP e da IHM.

Figura 38 – Acesso online a árvore do projeto.

Fonte: print screen do software TIA Portal

3.6.3. Verificação da troca de dados via rede MODBUS RTU

A troca de dados entre CLP e conversor de frequência foi realizada através do protocolo MODBUS RTU. O monitoramento *online* do *Data Block* DB5 confirmou o pleno funcionamento do protocolo de comunicação, onde, os dois principais registradores utilizados foram o 40014 e 40055. A Figura 39 mostra o DB5 antes da ocorrência de falha no conversor, note que o registrador 40014 com o valor 1 (um) indica que não há falha no conversor e o registrador 40055 mostra que nenhum código de falha está sendo enviado.

	db	_aux_modbus								
		Name	Data type	Offset	Start value	Monitor value	Retain	Accessible f	Visible in	Setpoint
1	-	▼ Static								
2	-	40014	Int	0.0	0	1				
3		40015	Int	2.0	0	1				
4		40016	Int	4.0	0	6000				
5		40017	Int	6.0	0	10000				
6		40018	Int	8.0	0	0				
7		40019	Int	10.0	0	3000				
8	-00	40020	Int	12.0	0	0				
9	-00	40021	Int	14.0	0	0				
10		40022	Int	16.0	0	10000				
11		40023	Int	18.0	0	0				
12		40024	Int	20.0	0	0				
13		40025	Int	22.0	0	0				
14		40026	Int	24.0	0	0				
15		40027	Int	26.0	0	0				
16		40028	Int	28.0	0	0				
17		40029	Int	30.0	0	0				
18	-	40030	Int	32.0	0	639				
43		40055	Int 🔳	82.0	0	0				
44	-	40056	Int	84.0	0	0				
45	-00	40057	Int	86.0	0	0				
46		40058	Int	88.0	0	0			~	
47	-	40059	Int	90.0	0	0				
48	-00	40060	Int	92.0	0	0			~	

Figura 39 – Acesso online a DB5 antes da ocorrência de falhas.

Fonte: print screen do software TIA Portal

Na sequência, a Figura 40 mostra o DB5 com a falha F85 ativa no conversor, note que o registrador 40014 passa a ter o valor 0 (zero) que indica que há falha no conversor e o registrador 40055 mostra o código de falha 85.

	db_aux_modbus											
		Name		Data type	Offset	Start value	Monitor value	Retain	Accessible f	Visible in	Setpoint	
1		▼ S	tatic									
2			40014	Int	0.0	0	0					
з	-00	•	40015	Int	2.0	0	0		\checkmark			
4	-00	•	40016	Int	4.0	0	6000		\checkmark			
5	-00	•	40017	Int	6.0	0	10000		\checkmark			
6	-00	•	40018	Int	8.0	0	0		\checkmark			
7	-00	•	40019	Int	10.0	0	3000		~			
8	-00	•	40020	Int	12.0	0	0		~			
9	-00	•	40021	Int	14.0	0	0		~			
10	-00	•	40022	Int	16.0	0	10000					
11	-00	•	40023	Int	18.0	0	0					
12	-00	•	40024	Int	20.0	0	0					
13	-00	•	40025	Int	22.0	0	0			\checkmark		
14	-00	•	40026	Int	24.0	0	0					
15	-	•	40027	Int	26.0	0	0					
16	-	•	40028	Int	28.0	0	0					
17	-	•	40029	Int	30.0	0	0		~			
18		•	40030	Int	32.0	0	642					
43		•	40055	Int 🔳	82.0	0	85				_	
44		•	40056	Int	84.0	0	0			\checkmark		
45	-	•	40057	Int	86.0	0	0					
46		•	40058	Int	88.0	0	0		\checkmark			
47	-	•	40059	Int	90.0	0	0					
48	-	•	40060	Int	92.0	0	0					

Figura 40 – Acesso *online* a DB5 com falha ativa.

Fonte: print screen do software TIA Portal

3.6.4. Verificação do funcionamento dos blocos MODBUS

Para ser possível realizar a troca de dados pelo protocolo MODBUS RTU, foi necessário configurar corretamente os blocos MB_COMM_LOAD e MB_MASTER, como mostrado anteriormente. Com o monitoramento *online* foi possível verificar o funcionamento destes dois blocos, como mostram as Figuras 41 e 42.

Figura 41 – Acesso online ao bloco MB_COMM_LOAD.

Fonte: print screen do software TIA Portal

Fonte: print screen do software TIA Portal

Ambos os blocos possuem os parâmetros de saída ERROR e STATUS, através destes parâmetros é possível verificar a ocorrência de erros nos blocos e o atual *status* de cada um. Como mostra a Figura 43, foi utilizada a *word memory* MW304 para armazenar o *status* de falha do bloco MB_COMM_LOAD e foi utilizada a *word memory* MW308 para armazenar o *status* de falha do bloco MB_MASTER. Durante o funcionamento dos blocos nenhum erro foi registrado.

Figura 43 – Acesso online aos status dos blocos de comunicação MODBUS.

Fonte: print screen do software TIA Portal

3.6.5. Verificação do Diagnostic status do CP 1242-7

O envio de mensagens SMS via rede GSM só é possível devido à utilização do processador de comunicação CP 1242-7, através deste processador o CLP S7-1200 consegue se conectar a rede GSM/GPRS. As configurações necessárias para a utilização correta deste processador já foram mostradas, porém através da Figura 44 é possível visualizar o *status* da CP 1242-7 durante a operação. Como pode ser visto, a qualidade do sinal é boa e a rede tem *status* de *loggedin*.

TCC - Monitoramento Remo	to → PLC_1 [CPU 1214C DC/D	C/DC] > Local modules > CP 1242-7 [CP 1242-7]	_ • •
 Diagnostics General Diagnostic status Telecontrol interface 	Telecontrol interface Network (GPRS) Signal quality	GOOD UNSAFE WEAK NO_SIGNAL	
	Network status	C LOGGEDOUT O BAD_PIN O BAD_SIM O WAITING_PIN O LOGGEDIN	

Figura 44 – Acesso online ao status do processador de comunicação CP 1242-7.

Fonte: print screen do software TIA Portal

3.6.6. Verificação do envio de mensagens SMS

Para que o envio de mensagens SMS para os dois números de celulares précadastrados se tornasse possível, foi necessário configurar os blocos TC_CON, TC_SEND e TC_DISCON. A seguir serão mostrados inicialmente os *status* destes blocos sem ocorrência de falha e em seguida serão mostrados os *status* a partir de uma falha ativa no conversor de frequência.

3.6.6.1. Blocos GSM/GPRS sem ocorrência de falha no conversor

Quando não há nenhuma falha ativa no conversor de frequência, então, os blocos TC_CON, TC_SEND e TC_DISCON ficam desabilitados como mostram as Figuras 45, 46 e 47.

•	Network 1: gsm network	connection block		
	Comment			
		%DB1		
		"TC_CON_DB"		
		TC_CON		
ŀ	EN	ENO		
	ACON EDGE			
	#CON_EDGE -REQ			
	#ID ID	ERROR		
	268			
	"Local~CP_1242-	STATUS	— #status_con	
	7~GPRS" INTERF	ACE		
	P#DB3.DBX0.0			
	"parameters GPRS", TCON			
	Parameters	ECT		
			•	
•	Network 2: trap for error	in the connection block		
	Comment			
_				
	#erro_con MO	OVE		
	EN	ENO		
	#status_con — IN 🔸	▶ OUT1 — #status_out_con		

Figura 45 – Acesso *online* ao bloco TC_CON sem falha ativa.

Fonte: print screen do software TIA Portal

• Network 4: send sms block for gprs module Comment %DB2 "TC_SEND_DB" TC_SEND -1.... #send_edge -DONE -----REQ #ID ---268 "Local~CP_1242-7~GPRS" - INTERFACE STATUS - #status_send 160 - LEN P#DB3.DBX518.0 "parameters GPRS".Aux_ Falha Network 5: trap for error in the send block • Comment #erro_send MOVE $\neg \vdash$ #status_send — IN 😽 OUTI — #status_out_send

Figura 46 – Acesso *online* ao bloco TC_SEND sem falha ativa.

Fonte: print screen do software TIA Portal

Network 6: d	lisconnection from the	e gsm network
Comment		
1		
	ץ דכ_Dו: דכ	LDB8 SCON_DB* DISCON
	EN	ENO
		BUSY
#DISCON_EDO	SE - REQ	DONE
#		ERROR
26 "Local~CP_124 7~GPR	58 2- 5" — INTEREACE	STATUS — #status_discon
Network 7: t Comment	rap for error in the dis	iconnection proccess
#erro_discon	EN ENO	#status_out_ — discon

Figura 47 – Acesso online ao bloco TC_DISCON sem falha ativa.

Fonte: print screen do software TIA Portal

O *Data Block* DB3 onde foi criada a variável do tipo TCON_Phone é mostrado na Figura 48. É possível ver que não há nenhum ID de conexão e também não há nenhum número de telefone celular (cliente SMS) no endereço de memória DB3.DBX8.0.

Figura 48 – Acesso online a DB3 sem falha ativa.

то	C - N	1oni	toramento Remoto 🔸	PLC_1 [CPU 12140		DC] 🕨 Program I	blocks 🕨 paramet	ers GPRS [DB3]			_ # = ×
1	• 🕐	•	🛃 🎼 🖪 🕾 🖻	B) 🗮 🔢 🛸								3
	para	ame	ters GPRS									
		Nam	e	Data type	Offset	Start value	Monitor value	Retain	Accessible f	Visible in	Setpoint	Comment
1	-	▼ S	tatic									
2	-	• •	TCON_Parameters	TCON_Phone	0.0							
З	-		InterfaceId	HW_ANY	0.0	268	16#010C		V	V		HW-identifier of IE-interface submodule
4	-		ID	CONN_OUC	2.0	16#0	16#0000			V		connection reference / identifier
5	-		ConnectionType	Byte	4.0	16#0E	16#0E			V		type of connetion: 14=TCON_Phone
6	-		ActiveEstablished	Bool	5.0	False	FALSE		V	V		active/passive connection establishme
7	-		PhoneNumber	String[22]	8.0		"		~	V		phone number of remote partner
8	-	•	Inicializacao CPU	String[160]	32.0	'A CPU S7 1214	'A CPU S7 1214C D					
9	-	•	Falha externa (F85)	String[160]	194.0	'Sinamics V20	'Sinamics V20 - DT					
10	-	•	Falha subtensao (F3)	String[160]	356.0	'Sinamics V20	'Sinamics V20 - DT					
11	-	•	Aux_Falha	String[160]	518.0							
12	-	•	Mateus	String[22]	680.0	'+5531991892	'+5531991892627'					
13	-	•	Eiji	String[22]	704.0	'+5511973479	'+5511973479416'					

Fonte: print screen do software TIA Portal

3.6.6.2. Envio de SMS para o primeiro número cadastrado

Quando passa a existir uma falha ativa no conversor de frequência então uma mensagem SMS é enviada para o primeiro número de telefone cadastrado. Como mostram as Figuras 49, 50 e 51, os blocos TC_CON, TC_SEND e TC_DISCON

passam a ficar habilitados para que a conexão com a rede GSM possa ocorrer e, assim, possa ser enviada a mensagem SMS.

omment			
	%DB1		
_	"TC_CON_E	DB"	
	TC_CON		
E	N	ENO	
TRUE		BUSY	⊣
#CON_EDGE RE	Q	DONE	
16#0001			FALSE
#ID ID	1	ERROR	⊣#erro_con
268			16#7000
Local~CP_1242-		STATUS	= #status_con
/~GPRS" — IN	TERFACE		
P#DB3 DBX0 0			
"parameters			
GPRS".TCON_			
Parameters — C	DNNECT		
letwork 2: trap for e	rror in the connecti	on block	
omment			
#erro_con	MOVE		
} }	N ENO		
16#7000	16	#0000	
# - + - +		atus out con	

Figura 49 – Acesso online ao bloco TC_CON, envio do primeiro SMS.

Figura 50 - Acesso online ao bloco TC_SEND, envio do primeiro SMS.

Fonte: print screen do software TIA Portal

Figura 51 – Acesso online a DB3 com falha ativa.

Fonte: print screen do software TIA Portal

Através da Figura 52 é possível notar que no *Data Block* DB3 passa a existir o ID de conexão número 1 (um) e o primeiro número de telefone celular (cliente SMS) cadastrado é movido para o endereço de memória DB3.DBX8.0.

тс	C - I	<i>l</i> onit	oramento Remoto 🕨	PLC_1 [CPU 1214	C DC/DC	DC] 🕨 Program	blocks 🕨 paramet	ers GPRS [DB3]			_ # # X
1	* * • • • • • • • • • • • • • • • • • • •											
	parameters GPRS											
		Name	2	Data type	Offset	Start value	Monitor value	Retain	Accessible f	Visible in	Setpoint	Comment
1	-00	▼ S	tatic									
2	-00	• •	TCON_Parameters	TCON_Phone	0.0							
З	-00		InterfaceId	HW_ANY	0.0	268	16#010C		V	V		HW-identifier of IE-interface submodule
4	-00		ID	CONN_OUC	2.0	16#0	16#0001		V	V		connection reference / identifier
5	-00		ConnectionType	Byte	4.0	16#0E	16#0E		V	V		type of connetion: 14=TCON_Phone
6	-00		ActiveEstablished	Bool	5.0	False	FALSE		\checkmark	V		active/passive connection establishment
7			PhoneNumber	String[22]	8.0		'+5531991892627'		V	~		phone number of remote partner
8	-00	•	Inicializacao CPU	String[160]	32.0	'A CPU S7 1214	'A CPU S7 1214C D					
9	-00	•	Falha externa (F85)	String[160]	194.0	'Sinamics V20	'Sinamics V20 - DT					
10	-00	•	Falha subtensao (F3)	String[160]	356.0	'Sinamics V20	'Sinamics V20 - DT					
11	-00	•	Aux_Falha	String[160]	518.0		'Sinamics V20 - DT					
12	-00	•	Mateus	String[22]	680.0	'+5531991892	'+5531991892627'					
13	-	•	Eiji	String[22]	704.0	'+5511973479	'+5511973479416'					

Figura 52 – Acesso online a DB3 com falha ativa.

Fonte: print screen do software TIA Portal

3.6.6.3. Envio de SMS para o segundo número cadastrado

Por fim, se a falha permanecer ativa após um intervalo de tempo do envio de SMS para o primeiro número então uma mensagem SMS é enviada também para o segundo número de telefone cadastrado. Como mostram as Figuras 53, 54 e 55, os blocos TC_CON, TC_SEND e TC_DISCON passam a ficar habilitados para que a

conexão com a rede GSM possa novamente ocorrer e, assim, possa ser enviada a segunda mensagem SMS. É possível notar que o número de conexão ID passa a ser 2.

Comment			
	%DB		
	"TC_CON	_DB"	
	TC_CC	N	
	EN	ENO	
TRUE		BUSY	
#CON_EDGE -	REQ	DONE	
16#0002	10	50000	FALSE
#10 -	U	ERROR	
268		STATUS	
7~GPRS" -	INTERFACE	51/(105	
P#DB3.DBX0.0			
GPRS [®] .TCON_			
Parameters _	CONNECT		
Network 2: trap	for error in the conne	tion block	
Comment			
#erro con	MOVE		
	EN ENO		
16#7000	1	6#0000	
10#7000		0.0000	

Figura 53 – Acesso online ao bloco TC_CON, envio do segundo SMS.

Figura 54 - Acesso online ao bloco TC_SEND, envio do segundo SMS.

Fonte: print screen do software TIA Portal

		THELWOIK	
Comment			
	%DP9		
	TC DISCON	DB"	
	TC DISCO	N	
	EN	ENO	
FALSE		BUSY	
#DISCON_EDGE	REQ	DONE	
16#0002			FALSE
#ID	ID	ERROR	- → #erro_discon
268			16#7000
"Local~CP_1242-		STATUS	— #status_discon
/~GPRS"	INTERFACE		
Network 7: trap for	or error in the disconne	ection procces	5
Comment			
comment			
#			
#erro_discon	MOVE		
	EN ENO		
16#7000	16	#0000	
	IN #st	tatus_out_	
#status_discon	is our dis	con	
#status_discon	🐥 OUT1 — dis	con	

Figura 55 – Acesso online ao bloco TC_DISCON, envio do segundo SMS.

Fonte: print screen do software TIA Portal

3.6.7. Verificação do Diagnostics buffer da CPU 1214C

Por fim, a última verificação de funcionamento do projeto foi a visualização de uma ferramenta de diagnóstico muito importante do CLP S7-1200, o *Diagnostics buffer*. Através dessa ferramenta é possível visualizar todos os eventos ocorridos durante a operação. Como pode ser visto na Figura 56, nenhum erro ou alarme ocorreu na CPU. Assim, a partir de todos esses testes foi possível testar o funcionamento do projeto sem que nenhum erro fosse verificado e, portanto, foi possível validar o projeto.

TCC - Monitoramento Remoto 🔸	PLC_1 [CPU 1214C DC/DC/DC]	
Online access Diagnostics General	Diagnostics buffer	
Diagnostic status	Events	
Diagnostics buffer	☑ Display CPU Time Stamps in PG/PC local time	
Memory	No. Date and time Event	
PROFINET interface [X1]	1 01/01/1970 11:41:28.43 Follow-on operating mode change - CPU changes from STARTUP to RUN mode 🗹 🖸 🛆	
Functions	2 01/01/1970 11:41:28.37 Communication initiated request: COLD RESTART - CPU changes from STOP to ☑ 0 3 01/01/1970 11:41:38.07 Follow-on operating mode change - CPU changes from STOP (initialization) to ☑ 0	
	4 01011970113004777 Communication initiated request. Memory reset - Croichanges room STOP to S. V 0	
	6 01/01/1970 11:40:46.71 Communication initiated request: STOP - CPU changes from RUN to STOP mode	
	7 01/01/1970 11:30:38.24 Follow-on operating mode change - CPU changes from STARTUP to RUN mode 🔽 🚺	
	8 01/01/1970 11:30:38.18 Communication initiated request: COLD RESTART - CPU changes from STOP to 💟 🚺 🗸	
	Freeze display	
	Details on event	
	Details on event: 1 of 13 Event ID: 16# 02:400C	
•	Description: CPU info: Follow-on operating mode change Power-on mode set: WARM RESTART to RUN (if CPU was in RUN before power off)	
	Pending startup inhibit(s): → No startup inhibit set CPU changes from STARUP to RUN mode	
	× IIII	
	Time stamp: 01/01/1970 11:41:28.433 PM	
	Module: PLC_1	
	Rack/slot: Rack 0 / Slot 1	
	Plant designation: -	
	Location identifier -	
	Priority: OK	
	Incoming/outgoing: Incoming event	
	Help on event Open in editor Save as	

Figura 56 – Acesso online ao Diagnostics buffer da CPU.

Fonte: print screen do software TIA Portal

4 Considerações finais

Este capítulo apresenta as conclusões deste trabalho, bem como as contribuições no âmbito acadêmico e industrial obtidas com o seu desenvolvimento. Além disso, são sugeridas propostas de trabalhos futuros a serem implementadas para a continuação deste trabalho.

4.1. Conclusões

Atualmente, com os avanços gradativos da tecnologia, os dispositivos portáteis se tornam cada vez mais poderosos, oferecendo aos usuários novas formas de comunicação e de gerenciamento para seus negócios. A busca por solução de problemas no setor industrial vem se amparando nos avanços tecnológicos e novos elementos vêm sendo adicionados à automação industrial com o objetivo de mostrar novas soluções para antigos problemas do chão de fábrica.

O desenvolvimento deste projeto visou a implementação de um sistema de monitoramento remoto de falhas em conversores de frequência, onde o foco foi o aumento do índice de disponibilidade da máquina, ou seja, a redução do tempo de máquina parada ocasionado pela ocorrência de falhas. Desse modo, pode-se considerar que os objetivos foram alcançados, a ocorrência de falhas no conversor de frequência passou a ser monitorada através de mensagens SMS e isto possibilita uma tomada de decisão mais rápida para eliminar a causa da falha.

Portanto, diversas tecnologias vêm a cada dia se consolidando como recursos indispensáveis ao homem, gerando informações precisas, atuais e relevantes. É preciso vislumbrar e criar soluções para estas necessidades, pois muitos recursos tecnológicos já estão disponíveis, gerando boas oportunidades de informação *online*, sem fio e móvel.

4.2. Trabalhos futuros

Com este trabalho, é possível vislumbrar vários projetos para a sua continuação, construindo soluções completas para o monitoramento remoto de falhas diversas.

Como complemento, sugere-se a expansão do monitoramento para mais de um dispositivo na rede, ou seja, monitorar paralelamente vários conversores de frequência. Além disso, este projeto é totalmente modular, o conversor de frequência pode ser substituído por qualquer outro equipamento que envie dados para rede, no lugar do conversor poderiam ser utilizados dispositivos como *soft-starter*, por exemplo.

Ainda complementando este trabalho, é possível implementar não apenas o envio de mensagens SMS do processador de comunicação para dispositivos celulares, mas também, o envio de mensagens SMS no sentido oposto, ou seja, celulares enviando mensagens SMS para o processador de comunicação. Assim como existem blocos parametrizáveis para o envio de SMS, também existem blocos que possibilitam o recebimento de SMS no CLP S7-1200.

REFERÊNCIAS

 BORGES, F., Redes de Comunicação Industrial, documento técnico n°2, Setembro,

 2007.
 Disponível
 em:

 <<u>http://www.schneiderelectric.pt/documents/productservices/training/doctecnico_redes/</u>

 >. Acesso em: 2. Abr. 2017.

CAPELLI, A. **Inversores de Frequência**. Mecatrônica Atual. São Paulo: Editora Saber, ano 01, nº 02, fevereiro 2002.

CITISYSTEMS: Sete **benefícios encontrados através da automação industrial**. Disponível em: < <u>https://www.citisystems.com.br/sete-beneficios-automacao-industrial/</u> >. Acesso em: 3. Abr. 2017.

CITISYSTEMS: **IHM: Saiba quais os Tipos e como Selecionar**. Disponível em: < <u>https://www.citisystems.com.br/ihm/</u>>. Acesso em: 5. Abr. 2017.

Controlador SIMATIC: **SIMATIC S7-1200, A integração faz a diferença**. SIEMENS, setembro, 2012.

FORTUNA, B. C.; SILVA, H. K.; MENDES, L. A. M. **Telefonia celular: os recursos e a portabilidade.** Revista Eletrônica da Fundação Educacional São José, v. 2, 2009.

GUIA DE APLICAÇÃO DE INVERSORES DE FREQUÊNCIA – 3ª Ed. – WEG AUTOMAÇÃO, dezembro, 2005.

Instruções de funcionamento: **SINAMICS**, **Inversor SINAMICS V20.** SIEMENS, novembro, 2012.

MORAES, C. C. e CASTRUCCI, P. L. Engenharia de automação industrial. Editora LTC. Rio de Janeiro, 2007.

Operating Instructions: **SIMATIC NET, S7-1200, Telecontrol, CP 1242-7**. SIEMENS, junho, 2014.

PROFINET: **Descrição do Sistema – Tecnologia e Aplicação**. Associação PROFIBUS Brasil, São Paulo-SP, 2014. SEGUNDO, A. K. R.; RODRIGUES, C. L. C. Eletrônica de Potência e Acionamentos Elétricos. INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA, Ouro Preto-MG, 2015.

Support Industry SIEMENS: SIMATIC *HMI* KTP600 *BASIC COLOR* PN. Disponível em: < <u>https://support.industry.siemens.com/cs/br/pt/pv/6AV6647-0AD11-3AX0/</u> >. Acesso em: 5. Abr. 2017.

Support Industry SIEMENS: Portal de Automação Totalmente Integrada. Disponível em: < <u>http://w3.siemens.com.br/automation/br/pt/tia-portal/portal-automacao-</u> <u>tia/Pages/Default.aspx</u> >. Acesso em: 6. Abr. 2017.

TUDE, E. Amps/tdma (is-136). **Tutoriais Telefonia Celular**. TELECO, Inteligência em Telecomunicações, 2003.

VIANNA, William S. Controlador Lógico Programável. CEFET, 2000.
ANEXOS

ANEXO A – TABELA DE REGISTRADORES

Nº. do registrador		Descrição	Aces	Unid	Fator de	Faixa ou	texto	Leitura	Gravação
Inversor	MODBUS		SO	ade	escala	On/Off			
0	40001	TEMPO WDOG	R/W	ms	1	0 - 65535		-	-
1	40002	AÇÃO WDOG	R/W	-	1	-		-	-
2	40003	REF FREQ	R/W	%	100	0.00 - 100	0.00	HSW	HSW
3	40004	OPER HABIL	R/W	-	1	0 - 1		STW:3	STW:3
4	40005	CMD AV REV	R/W	-	1	0 - 1		STW:11	STW:11
5	40006	INÍCIO CMD	R/W	-	1	0 - 1		STW:0	STW:0
6	40007	CONF FALHA	R/W	-	1	0 - 1		STW:7	STW:7
7	40008	REF PON AJ PID	R/W	%	100	-200.0 - 2	00.0	P2240	P2240
8	40009	HABILITA PID	R/W	-	1	0 - 1		r0055.8	(BICO) P2200
9	40010	LMT CORRENTE	R/W	%	10	10.0 - 400	0.0	P0640	P0640
10	40011	TEMPO ACEL	R/W	s	100	0.00 - 650	0.0	P1120	P1120
11	40012	TEMPO DESAC	R/W	s	100	0.00 - 650.0		P1121	P1121
12	40013	(Reservado)				_		_	
13	40014	SAÍDA DIGITAL 1	R/W	-	1	ALTA	BAIXA	r0747.0	(BICO) P0731
14	40015	SAÍDA DIGITAL 2	R/W	-	1	ALTA	BAIXA	r0747.1	(BICO) P0732
15	40016	REF FREQ	R/W	Hz	100	1.00 - 599.00		P2000	P2000
16	40017	LMT SUP PID	R/W	%	100	-200.0 - 200.0		P2291	P2291
17	40018	LMT INF PID	R/W	%	100	-200.0 - 200.0		P2292	P2292
18	40019	GAN P	R/W	-	1000	0.000 - 65.000		P2280	P2280
19	40020	GAN I	R/W	s	1	0 - 60		P2285	P2285
20	40021	GAN D	R/W	-	1	0 - 60		P2274	P2274
21	40022	GAN FEEDBK	R/W	%	100	0.00 - 500	0.00	P2269	P2269
22	40023	PASS BAIX	R/W	-	100	0.00 - 60.	00	P2265	P2265
23	40024	SAÍDA FREQ	R	Hz	100	-327.68 -	327.67	r0024	r0024
24	40025	VELOC	R	RPM	1	-16250 -	16250	r0022	r0022
25	40026	CORRENTE	R	Α	100	0 - 163.83	3	r0027	r0027
26	40027	TORQUE	R	Nm	100	-325.00 -	325.00	r0031	r0031
27	40028	POT REAL	R	kW	100	0 - 327.67		r0032	r0032
28	40029	TOTAL KWH	R	kWh	1	0 - 32767		r0039	r0039
29	40030	VOLTS BARR CC	R	V	1	0 - 32767		r0026	r0026
30	40031	REFERÊNCIA	R	Hz	100	-327.68 - 327.67		r0020	r0020
31	40032	POT NOMINAL	R	kW	100	0 - 327.67		r0206	r0206
32	40033	VOLTS SAÍDA	R	V	1	0 - 32767		r0025	r0025
33	40034	AVAN REV	R	-	1	AV	REV	ZSW:14	ZSW:14
34	40035	PARAR OPE	R	-	1	PARE	EXECU ÇÃO	ZSW:2	ZSW:2

Nº. do registrador		Descrição	Aces	Unid	Fator de	Faixa ou texto		Leitura	Gravação
Inversor	MODBUS		SO	ade	escala	On/Off			
35	40036	FREQ MAX AT	R	-	1	MAX	NO	ZSW:10	ZSW:10
36	40037	MODO CONTROLE	R	-	1	SERIAL	LOCAL	ZSW:9	ZSW:9
37	40038	HABIL	R	-	1	LIGAR	DESLIG AR	ZSW:0	ZSW:0
38	40039	PRONTO PARA OPERAR	R	-	1	PRONT O	DESLIG AR	ZSW:1	ZSW:1
39	40040	ENT ANALÓGICA 1	R	%	100	-300.0 - 3	300.0	r0754[0]	r0754[0]
40	40041	ENT ANALÓGICA 2	R	%	100	-300.0 - 300.0		r0754[1]	r0754[1]
41	40042	SAÍDA ANALÓGICA 1	R	%	100	-100.0 - 100.0		r0774[0]	r0774[0]
13	40044	EREO REAL	R	9/2	100	-100.0 - 1	00.0	HIM	HIW
40	40044		R	%	100	-100.0 - 1	00.0	r2250	r2250
45	40046		R	%	100	-100.0 - 1	00.0	r2294	r2294
46	40047		R	%	100	-100.0 - 1	00.0	r2266	r2266
47	40048	ENT DIGITAL 1	R	-	1		BAIXA	r0722.0	r0722.0
48	40049	ENT DIGITAL 2	R	-	1	ALTA	BAIXA	r0722.1	r0722.1
49	40050	ENT DIGITAL 3	R	-	1	ALTA	BAIXA	r0722.2	r0722.2
50	40051	ENT DIGITAL 4	R	-	1	ALTA	BAIXA	r0722.3	r0722.3
53	40054	FALHA	R	-	1	FALHA	DESLIG AR	ZSW:3	ZSW:3
54	40055	ÚLTIMA FALHA	R	-	1	0 - 32767	,	r0947[0]	r0947[0]
55	40056	1. FALHA	R	-	1	0 - 32767	,	r0947[1]	r0947[1]
56	40057	2. FALHA	R	-	1	0 - 32767		r0947[2]	r0947[2]
57	40058	3. FALHA	R	-	1	0 - 32767		r0947[3]	r0947[3]
58	40059	ALARME	R	-	1	ADVER T	ОК	ZSW:7	ZSW:7
59	40060	ÚLTIMA ADVERT	R	-	1	0 - 32767		r2110	r2110
60	40061	VER INVERSOR	R	-	100	0.00 - 327.67		r0018	r0018
61	40062	MODELO ACIONAM	R	-	1	0 - 32767		r0201	r0201
99	40100	STW	R/W	-	1			PZD 1	PZD 1
100	40101	HSW	R/W	-	1			PZD 2	PZD 2
109	40110	ZSW	R	-	1			PZD 1	PZD 1
110	40111	HIW	R	-	1			PZD 2	PZD 2
199	40200	SAÍDA DIGITAL 1	R/W	-	1	ALTA	BAIXA	r0747.0	(BICO) P0731
200	40201	SAÍDA DIGITAL 2	R/W	-	1	ALTA	BAIXA	r0747.1	(BICO) P0732
219	40220	SAÍDA ANALÓGICA 1	R	%	100	-100.0 - 100.0		r0774[0]	r0774[0]
239	40240	ENT DIGITAL 1	R	-	1	ALTA	BAIXA	r0722.0	r0722.0
240	40241	ENT DIGITAL 2	R	-	1	ALTA	BAIXA	r0722.1	r0722.1
241	40242	ENT DIGITAL 3	R	-	1	ALTA	BAIXA	r0722.2	r0722.2
242	40243	ENT DIGITAL 4	R	-	1	ALTA	BAIXA	r0722.3	r0722.3
259	40260	ENT ANALÓGICA 1	R	%	100	-300.0 - 3	0.00	r0754[0]	r0754[0]

Nº. do registrador		Descrição	Aces	Unid	Fator de	Faixa ou texto	Leitura	Gravação
Inversor	MODBUS		SO	ade	escala	On/Off		
260	40261	ENT ANALÓGICA 2	R	%	100	-300.0 - 300.0	r0754[1]	r0754[1]
299	40300	MODELO INVERSOR	R	-	1	0 - 32767	r0201	r0201
300	40301	VER INVERSOR	R	-	100	0.00 - 327.67	r0018	r0018
319	40320	POT NOMINAL	R	kW	100	0 - 327.67	r0206	r0206
320	40321	LMT CORRENTE	R/W	%	10	10.0 - 400.0	P0640	P0640
321	40322	TEMPO ACEL	R/W	s	100	0.00 - 650.0	P1120	P1120
322	40323	TEMPO DECEL	R/W	s	100	0.00 - 650.0	P1121	P1121
323	40324	REF FREQ	R/W	Hz	100	1.00 - 650.0	P2000	P2000
339	40340	REFERÊNCIA	R	Hz	100	-327.68 - 327.67	r0020	r0020
340	40341	VELOC	R	RPM	1	-16250 - 16250	r0022	r0022
341	40342	SAÍDA FREQ	R	Hz	100	-327.68 - 327.67	r0024	r0024
342	40343	VOLTS SAÍDA	R	V	1	0 - 32767	r0025	r0025
343	40344	VOLTS BARR CC	R	V	1	0 - 32767	r0026	r0026
344	40345	CORRENTE	R	Α	100	0 - 163.83	r0027	r0027
345	40346	TORQUE	R	Nm	100	-325.00 - 325.00) r0031	r0031
346	40347	POT REAL	R	kW	100	0 - 327.67	r0032	r0032
347	40348	TOTAL KWH	R	kWh	1	0 - 32767	r0039	r0039
348	40349	HAND AUTO	R	-	1	HAND AUTO) r0807	r0807
	, 	1	' 			· ·		· ·
399	40400	FALHA 1	R	-	1	0 - 32767	r0947[0]	r0947[0]
400	40401	FALHA 2	R	-	1	0 - 32767	r0947[1]	r0947[1]
401	40402	FALHA 3	R	-	1	0 - 32767	r0947[2]	r0947[2]
402	40403	FALHA 4	R	-	1	0 - 32767	r0947[3]	r0947[3]
403	40404	FALHA 5	R	-	1	0 - 32767	r0947[4]	r0947[4]
404	40405	FALHA 6	R	-	1	0 - 32767	r0947[5]	r0947[5]
405	40406	FALHA 7	R	-	1	0 - 32767	r0947[6]	r0947[6]
406	40407	FALHA 8	R	-	1	0 - 32767	r0947[7]	r0947[7]
407	40408	ALARME	R	-	1	0 - 32767	r2110[0]	r2110[0]
498	40499	COD ERRO PRM	R	-	1	0 - 254	-	-
499	40500	HABILITA PID	R/W	-	1	0 - 1	r0055.8	(BICO) P2200
500	40501	REF PON AJ PID	R/W	%	100	-200.0 - 200.0	P2240	P2240
509	40510	PASS BAIX	R/W	-	100	0.00 - 60.0	P2265	P2265
510	40511	GAN FEEDBK	R/W	%	100	0.00 - 500.00	P2269	P2269
511	40512	GAN P	R/W	-	1000	0.000 - 65.000	P2280	P2280
512	40513	GAN I	R/W	s	1	0 - 60	P2285	P2285
513	40514	GAN D	R/W	-	1	0 - 60	P2274	P2274
514	40515	LMT SUP PID	R/W	%	100	-200.0 - 200.0	P2291	P2291
515	40516	LMT INF PID	R/W	%	100	-200.0 - 200.0	P2292	P2292
519	40520	SAÍDA PON AJ PID	R	%	100	-100.0 - 100.0	r2250	r2250
520	40521	FEEDBACK PI	R	%	100	-100.0 - 100.0	r2266	r2266
521	40522	SAÍDA PID	R	%	100	-100.0 - 100.0	r2294	r2294

ronic, birthing, instruções de funcionamento, 2012	Fonte: SINAMICS.	Instruções d	le funcionamento.	, 2012.
--	------------------	--------------	-------------------	---------

APÊNDICES

APÊNDICE A – ELEMENTOS UTILIZADOS NO PROJETO

Fonte: Ilustração própria

APÊNDICE B – PG/PC, CLP e CONVESOR DE FREQUÊNCIA

Fonte: Ilustração própria

APÊNDICE C – CLP SIMATIC S7-1200 EM OPERAÇÃO

Fonte: Ilustração própria

APÊNDICE D – CONVERSOR DE FREQUÊNCIA SINAMICS V20

Fonte: Ilustração própria

APÊNDICE E – SINAMICS V20 EM FALHA (F85)

Fonte: Ilustração própria

APÊNDICE F – DISPOSITIVO IHM "OPERANDO"

Fonte: Ilustração própria

APÊNDICE G – DISPOSITIVO IHM ENVIO DO PRIMEIRO SMS

Fonte: Ilustração própria

APÊNDICE H – DISPOSITIVO IHM ENVIO DO SEGUNDO SMS

Fonte: Ilustração própria

APÊNDICE I – DISPOSITIVO IHM "FALHA PERMANENTE"

Fonte: Ilustração própria

APÊNDICE J – PRINT SCREEN MENSAGENS SMS RECEBIDAS

Fonte: Ilustração própria