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Abstract
Skin cancer is one of the main causes of low life expectancy in the world. To diagnose skin cancer,
a specialist looks at different patterns which may appear in a skin lesion. Thus, identifying these
patterns is an important step for early diagnosis and prognosis. Previous work in this topic revolves
around the use of classical image processing techniques to extract features from the images and
building a feature vector for classification. This type of work is laborious and involves a careful
selection of the feature extraction techniques to be successful. Convolutional Neural Networks
(CNNs), on the other hand, which are a part of Deep Learning, have the ability to learn such
feature extractors from the data. Under this perspective, the main goal of this work is to study the
use these techniques for the identification of global patterns in dermoscopic images of skin lesions.
Although CNNs have already been used in other problems related to skin lesion classification, its
suitability for the global pattern classification problem has not been thoroughly assessed yet. Our
experiments indicate that the lack of large datasets and their unbalanced nature cause problems
for the use of CNNs. Nevertheless, by applying techniques of data augmentation and transfer
learning, these problems can be mitigated, and CNNs can become a useful tool. Among the
compared CNN architectures, the best performing one was the SqueezeNet. Since it is a compact
architecture, it may suffer less from the lack of a large data set. Its weighted average accuracy,
sensitivity and specificity was 84.6%, 61.1% and 91.2%, respectively. Top-down hierarchical
models were later used but they did not improve the overall sensitivity.

Keywords: CNN, Skin Lesion, Global Patterns, Image Classification, Ensemble of Classifiers.



Resumo
O câncer de pele é uma das principais causas da baixa expectativa de vida no mundo. Para seu
diagnóstico, um médico especialista examina os diferentes padrões que podem aparecer em uma
lesão de pele. Assim, identificar esses padrões é uma etapa importante para o diagnóstico e
prognóstico precoce. Os trabalhos anteriores neste tópico giram em torno do uso de técnicas
clássicas de processamento de imagem para extrair recursos das imagens e construir um vetor de
características para classificação. Esse tipo de abordagem é trabalhosa e envolve uma seleção
cuidadosa das técnicas de extração de características para ter sucesso. As redes neurais convolu-
cionais (CNNs), por outro lado, que fazem parte do Deep Learning, têm a capacidade de aprender
esses extratores de características a partir dos dados. Sob essa perspectiva, o objetivo principal
deste trabalho é estudar a utilização dessas técnicas para a identificação de padrões globais
em imagens dermatoscópicas de lesões de pele. Embora os CNNs já tenham sido usados em
outros problemas relacionados à classificação de lesões de pele, sua adequação para o problema
de classificação de padrão global ainda não foi completamente avaliada. Nossos experimentos
indicam que a falta de grandes conjuntos de dados e sendo eles bem desbalanceados dificultam o
uso de CNNs. No entanto, aplicando técnicas de aumento de dados e aprendizagem por transfer-
ência, esses problemas podem ser mitigados e as CNNs podem se tornar uma ferramenta útil.
Entre as arquiteturas CNN comparadas, a de melhor desempenho foi a SqueezeNet. Por ser uma
arquitetura compacta, ela pode sofrer menos com a falta de um grande conjunto de dados. Sua
média ponderada de acurácia, sensibilidade e especificidade foi de 84, 6%, 61, 1% e 91, 2%, re-
spectivamente. Modelos hierárquicos foram testados posteriormente, mas não obtiveram melhora
na sensibilidade geral.

Keywords: CNN, Lesão de pele, Padrões globais, Classificação de imagem, Ensemble de classi-
ficadores.
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1 Introduction

Skin diseases can affect 30% up to 70% of the population and it gets higher in rural areas
of developing countries Hay e Fuller (2011). They are the 4th biggest cause of low life expectancy,
according to the DALY metric (Disability-Adjusted Life Year) Hay et al. (2014).

Skin cancer is one of the most diagnosed cancers worldwide Skin. . . () and melanoma is
its most aggressive form, as well as the one with the highest mortality rate. The American Cancer
Society American. . . (2020) estimates that, in 2020, there will be more than 100, 000 new cases
of melanoma skin cancer in the United States. These cancers can appear anywhere on the skin
surface, mostly due to excessive exposure to ultraviolet rays. The chances of cure increase the
earlier the disease is detected in the patient.

Dermoscopy is a non-invasive examination of the skin that provides a detailed view of
its layers. Analysis of lesion patterns in dermoscopic images has proven to be a very efficient
method for early diagnosis (CARLI et al., 2003; CELEBI et al., 2007; CELEBI; MENDONCA;
MARQUES, 2015).

Several clinical diagnostic methods have been developed over the years, among them, the
ABCD rule is very commonly used Ali, Li e Yang (2020). This method is based on observing the
asymmetry (A), border (B), color (C) and differential structures (D) to differentiate malignant
from benign lesions. In addition, recognizing the textured structures observed in dermatoscopic
images (see Figure 1.1), known as global skin lesion patterns, is an important step to differential
diagnosis and can also be useful to define the courses of treatment (SÁEZ; ACHA; SERRANO,
2014; SERRANO; ACHA, 2009).

The automatic analysis of global patterns on a skin lesion allows for quick screening and
helps the assessment of a specialized healthcare professional (CELEBI et al., 2007; CELEBI;
MENDONCA; MARQUES, 2015). These patterns can be characterized in the following nine
categories (SÁEZ; ACHA; SERRANO, 2014; SERRANO; ACHA, 2009): reticular (patchy
network), globular (aggregated globules), cobblestone (similar to aggregated cobblestones),
homogeneous (diffuse pigmentation), starbursts (characterized by radial structures), parallel
(along furrows), multicomponent (combination of three or more patterns), lacunar (larger globules
separated with bigger gaps) and unspecific (used to refer to those who do not belong to any of
the previous patterns). Examples of some global patterns can be seen in Figure 1.1.

Argenziano et al. (2003) found that the diagnosis of skin lesions, aided by the information
of global patterns, allowed improved diagnosis performance. Under this perspective, Deep Neural
Networks, in particular, Convolutional Deep Neural Networks, have been achieving superhuman
level in many tasks of computer vision LeCun, Bengio e Hinton (2015). Thus, they become a
natural candidate for the task of global pattern recognition.
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(a) Cobblestone. (b) Globular. (c) Homogeneous.

(d) Starburst. (e) Lacunar. (f) Multicomponent.

(g) Reticular. (h) Unspecific. (i) Parallel.

Figure 1.1 – Sample of dermoscopic images for each global pattern - Argenziano G, Soyer HP,
De Giorgi V, Piccolo D, Carli P, Delfino M, et al.Dermoscopy: A Tutorial. EDRA
Medical Publishing NewMedia, 2002.

At this point, we do not know of any work that addresses the classification of all the nine
skin patterns depicted in Figure 1.1 combined, using CNNs. In this context, this work aims to
study the most popular CNN architectures and their suitability in the classification of global
patterns in dermoscopic images.

1.1 Justification

Several studies have been made targeting the classification of skin lesions in the past
years. To our knowledge, none of them has considered all the nine global skin patterns (this term
is defined in the theoretical background section). The accurate classification of skin patterns
impacts the accuracy of the patient’s diagnostic by a medical doctor. By improving skin lesion
classifiers we can aid several patients and dermatologists to identify early malignant lesions and
potentially save their lives.
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1.2 Objectives

The main objective of this work is to study and develop methods of deep learning for the
identification of skin lesion global patterns in dermoscopic images.

The main objective can be divided into the following specific objectives:

• Review of the state-of-the-art methods proposed for the target problem;

• Evaluate deep learning methods for the target problem;

• Find an artificial neural network architecture which is able to efficiently learn and classify
the most important skin lesion patterns;

• Experiment with different types of ensemble learning in order to improve the baseline
models performance.
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2 Literature Review

As mentioned in the introduction, the identification of global patterns in skin lesions is
an important yet challenging task. Classical methods of image processing and pattern recognition
have been applied to the identification of global patterns problem in Tanaka et al. (2008), Iyatomi
et al. (2008), Serrano e Acha (2009), Mendoza, Serrano e Acha (2009), Situ, Yuan e Zouridakis
(2011), Isasi, Zapirain e Zorrilla (2011), Abbas, Celebi e Fondón (2012), Abbas et al. (2013). In
these references, techniques such as principal component analysis Iyatomi et al. (2008), image
segmentation Tanaka et al. (2008), Mendoza, Serrano e Acha (2009), Isasi, Zapirain e Zorrilla
(2011), Situ, Yuan e Zouridakis (2011), statistical analysis of the image color space Serrano e
Acha (2009), Abbas, Celebi e Fondón (2012), Abbas et al. (2013), and color intensity Tanaka et
al. (2008) are used to extract a feature vector for each image. Then, a classifier is built to identify
each pattern in the defined feature space.

Despite the fact that these methods perform reasonably well (reported accuracy of over
90% for most of the cases), there is no consensus about the right feature space. Besides, the
construction of the feature spaces is laborious and requires the application of several different
techniques which are, in some cases, handcrafted, Situ, Yuan e Zouridakis (2011). Under this
perspective, the use of Deep Learning (DL) techniques seems to be a reasonable choice since one
of its main strengths is the ability of automating the feature extraction process. Another useful
attribute of DL is its ability of reusing feature extractors learned from other applications through
transfer learning. Below, we review applications of DL to other classification problems related to
dermoscopic lesions.

Demyanov et al. (2016) created a CNN with three convolutional layers among pooling
layers, followed by two dense layers (128 neurons ending in 2) and ReLU functions. The aim of
the paper was to classify dermoscopic images, provided by ISIC, containing 211 images, manually
labeled by professionals, of local skin lesion patterns set as "typical network" or "regular globes".
They extracted random parts of the images, labeled as sub-images, and applied scale and rotation
as data augmentation in each one of them, yielding almost 30,000 images. These images made
four sets: positive and negative sets for each class. A positive set of a class means the images
belong to the class, and the negative set are the group of images that does not belong to it. For
feature extraction, three algorithms were used: K means clustering, sparse coding and Fischer
kernel-feature encoding. In addition, 20 experiments for each algorithm was done, varying the
seeds to generate the parameters. The best results had an average accuracy of 88% and 83% for
typical networks and regular globes, respectively.

The following papers used pre-trained CNNs to aid the feature vector generated at the
end of the convolution phase of the network. Using CNNs trained on unrelated image classes
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proved to be efficient to skin lesion classification.

Lopez et al. (2017) compared 3 methods for detecting melanoma in dermoscopic images,
using images from ISIC 2016 and VGG16 CNN architecture. In the first method, they used a
VGG16 convolutional network, training it from scratch. In the second method, they used the same
VGG16 CNN architecture, but pre-trained with the images from ImageNet, a database of tens of
millions of images separated into 1, 000 classes. In the third method, they applied fine-tuning to
method two. In total, 1, 279 images of benign and malignant skin lesions were used, of which
900 for training and 379 for testing. The third method proved to be more efficient than the other
two, yielding an overall average 78.66% sensitivity and 79.74% precision and 81.33% accuracy.
Although the authors achieved a good result, they only considered 2 types of lesion patterns and
used a set of few images. There are currently more types of skin lesion patterns that need to be
included in automatic classifications. Their work made clear the importance of using pre-trained
CNNs and opened the possibility to use this method on more classes, other than just use it on a
melanoma classifier. In our work, a more recent set of lesion skin patterns were used, containing
9 classes.

Using a pre-trained AlexNet with images from ImageNet, Hosny, Kassem e Foaud
(2019) also aimed at the problem of classification of skin lesions. The image set was taken
from MEDNODE, DermIs and ISIC 2018 databases. MEDNODE has 70 melanoma and 100

nevus images. DermIs has 119 melanoma images and 87 for nevus, and ISIC provided 374, 254
and 1, 372 for melanoma, seborrheic keratosis and nevus, respectively. The exception of the
latter with three classes, the images were divided into two classes (melanoma and nevus). In the
pre-processing phase, the image set was enlarged using a data augmentation technique: for each
image, 71 copies were made, each one rotated 5◦ of each other (0◦, 5◦, 10◦, ... 355◦), ending with
72 images. In addition, for the same image, 72 random rotations were applied, resulting in 143
images rotated from the same image, plus the original image. Using 10-fold cross-validation,
the reported results were 96.86%, 97.70%, and 95.91% of average accuracy for MED-NODE,
DermIs–DermQuest and ISIC, respectively. The authors made use of a lot of data augmentations
over a significant amount of images, in comparison to the previous work. This gave them excellent
results in conjunction to the pre-trained network.

Mahbod et al. (2019) had AlexNet, VGG16 and ResNet-18 architectures for skin lesion
feature extraction on images provided by ISIC 2016 and ISIC 2017 for the training phase. These
features were used to train non-linear support vector machines for later skin leasion classification.
The dataset have 2037 dermoscopic images in high resolution (1022 × 767 to 6748 × 4499).
Their classifier output one of the three considered classes: melanoma (411), seborrheic keratosis
(254) and nevi (1372). After classifying with the different network architectures, a fusion of the
results is made averaging the class scores. The final result reported an average of 90.69% of AUC.
The authors introduced a hybrid approach, also combining the CNNs architectures for feature
extraction. Like the previous works, it still lacks the inclusion of many other skin lesion patterns.
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On the HAM10000 dataset, Chaturvedi et al. (2019) used a set of 10, 015 dermoscopy
images, including melanocytic nevi, melanoma, benign keratosis, basal cell carcinoma, actinic
keratosis, vascular lesion and dermatofibroma addressing the classification of skin lesions. They
applied data augmentation to the unbalanced classes using the Keras ImageDataGenerator and
resulted in a total of 38, 569 images. Then, after data augmentation, a MobileNet, pre-trained on
the 2014 ImageNet Challenge dataset, was used for training the resulted images. They reported
an weighted average, among all classes, of precision, recall and f1-score of 89%, 83%, and 83%,
respectively. The authors focused their classification on the final diagnose of the skin lesion,
which differs from our work that focuses on identifying patterns on the lesions to facilitate future
diagnoses.

Regarding relevant CNN architectures for skin cancer classification between melanoma
and nevi, Munir et al. (2019) did a bibliographic review and concluded, based on values of
accuracy, sensitivity and specificity, that papers that used AlexNet, VGG16, VGG19, Res-Net,
SVM and KNN, SkinNet, U-net CNN and DenseNet-201 yielded the most significant results
compared to other CNN architectures on different datasets.

In the next sections, we present a theoretical background of everything used in this work,
and then proceed to our methodology and results.
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3 Theoretical Background

3.1 Dermatoscopy

In dermatology, dermatoscopy is a skin analysis aided by a dermatoscope. It is used to
diagnose several skin conditions, such as skin tumors, fungal infections, scalp diseases, skin
cancer, and many other issues. The dermatoscope allows the experts to have higher accuracy on
the skin condition diagnosis. Further definition is presented on the subsections below.

3.1.1 Dermoscopic images

Dermoscopic images are images of pigmented sections of the skin taken with the aid of a
dermatoscope. A dermatoscope is a microscope with a light source, which can enlarge the image
by up to 20 times so that it is possible to observe deeper layers of the skin and the presence of
multiple lesions or spots (nevi). Digital dermatoscopy, on the other hand, manages to enlarge the
image by up to 70 times and allows its storage for the patient’s follow-up.

Dermoscopy is used in the diagnosis of skin lesions and is important for the early identi-
fication of skin cancers.

3.1.2 Dermoscopic images classification

The diagnosis of skin lesions, as mentioned before, is aided by its dermoscopic images.
The classification of these lesions occurs according to the goal of the analysis to be made. In
the case of cancer detection, for example, dermoscopic images can be split into benign and
malignant lesions, among them basal cell carcinoma (low lethality) Basal. . . (2021), squamous
cell carcinoma (most common skin cancer) and melanoma (highest index of mortality). The
classification considered by this work, however, follows the pre-diagnosis objective, that is, in
order to assist health professionals in the conclusion of the aforementioned types.

3.2 Deep Learning and CNNs

Deep Neural Networks are computer simulated networks loosely based on the functioning
of the human brain, with multiple layers of interconnected neurons, and are part of machine
learning methods. These networks can be very effective when you have a large amount of data
for training. In the field of computer vision, CNNs are the most commonly used. These networks
usually consist of multiple convolution blocks followed by pooling layers, which are responsible
for image feature extraction and the decrease of image size. These layers are followed by a dense
neural network, or fully connected layers, capable of classifying the images into the expected
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groups. A simple schematic diagram is shown in Figure 3.1: an image of a skin lesion is given
as an input for a further binary classification between benign and malignant lesion. The aim
of the convolution layers is to detect common features in the images that are used to identify
their classes LeCun, Bengio e Hinton (2015). Given the input image and a filter, the network
produces one convoluted image. These filters or kernels are small two dimensional data that
sweep the inputed image, multiplying their pixel values, producing an altered picture which can
have certain important features, for later classification, highlighted. Pooling layers are able to
decrease the quantity of parameters of the network, reducing the size of the images. The most
common pooling layers are called max-pooling, where each previously determined squared area
of pixel values is reduced to the highest value within that area. Fully connected networks are
typically disjoint sets of layers of neurons connected to the previous and next set of neurons. The
last set of neurons in the dense network is responsible to classify the input image based on the
most activated output neuron.

It is known that the use of deep neural networks, in particular the CNNs, can help in
the classification of different groups of images. Before the use of CNNs became popular, the
researchers relied on manual feature extraction of images to input in their various types of
classification algorithms. The CNNs changed this scenario by presenting an automatic way of
extracting features from images, using convolution.

In the context of this work, it can be used on the classification of the aforementioned
global patterns, as long as we have a large amount of dermoscopic images with their global
patterns previously identified.

Figure 3.1 – Schematic diagram of a basic convolutional neural network performing a binary
classification between benign and malignant skin lesions.

3.2.1 The class imbalance problem

Unfortunately, especially for dermoscopic images with the ground truth shown in Figure
1.1, large balanced sets are scarce. In our case, we have 1, 039 images for 9 classes, which are,
comparing to the literature on image classification, very few for a good and generalized outcome
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on a neural network to be trained from scratch. Moreover, an important issue is the unbalanced
amount of images for each class, defined by the global skin patterns. Often, the number of images
on each class differs a lot, which can affect the generalization performance negatively since it
tends to be more biased towards the classes with more images Buda, Maki e Mazurowski (2018).
Therefore, techniques to train our networks and balance the data set classes are needed.

3.2.2 Transfer Learning

One way to deal with a small number of images, as it is our case, is to use transfer learning.
Transfer learning is a technique that uses a pre-trained neural network to benefit from the features
it has already learned. The use of previously trained CNN models may prove to be more efficient
on classifying images than training a CNN from scratch Shin et al. (2016). Therefore, in the
case of neural networks focused on the skin lesion classification, especially those that lack the
necessary large amount of images for training, it is essential to use this technique to obtain
satisfactory results Menegola et al. (2017). Transfer learning consists of fine-tuning a pre-trained
network based on the input data. Fine-tuning consists in unfreezing the weights update of some
convolutional layers, during the training phase, in order to the CNN have a better generalization
of the classes when extracting their features. In this work, dermoscopic images of skin lesions
will be used to feed CNNs pre-trained with the ImageNet dataset.

3.2.3 Data augmentation

As said before, the dataset available to this work is very unbalanced. To help with this
issue, data augmentation techniques are used in order to balance the amount of data among the
classes and increase their number. These are techniques used to increase the number of images to
improve the performance and generalization capacity of the neural network. These techniques
are required and effective for small data sets, as well as to improve the results of already large
datasets, as in the case of our dermoscopic images Perez et al. (2018). In the literature, there
are several attempts to create new methods of data augmentation, such as transferring style
Mikołajczyk e Grochowski (2018) and neural augmentation Perez e Wang (2017). The more
traditional techniques, as image rotation, zoom and horizontal flip are commonly used along with
other methods.

3.2.4 CNN Architectures

The main goal of this work is to assess the suitability of DNNs for the skin lesion global
patterns classification problem. To achieve this goal we compare several different, commonly
used, CNN architectures, using transfer learning - all of them pre-trained on the ImageNet dataset
Deng et al. (2009). The architectures used in this work are listed below.
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3.2.4.1 AlexNet

The AlexNet architecture Krizhevsky, Sutskever e Hinton (2012) is a relatively shallow
DNN, shown in Figure 3.2. It contains 4 convolutional and 3 max-pooling layers followed by 3

fully connected layers. This architecture is composed of 60million parameters and was used in the
2010 and 2012 ImageNet’s competition, achieving the best result among their competitors. The
top-5 test error rate was 17.0% and 15.3%, respectively, against 28.2% and 26.2% as the second
place entries. The authors listed ReLU funtion, overlapping max-pooling layers and dropout as
its important and distinguishable features. The inclusion of ReLU activation function, which led
to its later popularization, played a major role on the training time of large datasets. The new
dropout concept allowed their network to be trained with more iterations and less overfitting.

Figure 3.2 – Alexnet architecture scheme. The communication among the convolution layers and
their kernal maps occur on two different paths until they merge only at certain layers.
Source: Krizhevsky, Sutskever e Hinton (2012)

3.2.4.2 DenseNet

The DensetNet was proposed in 2017 Huang et al. (2017) and was used on CIFAR-10,
CIFAR-100, SVHN and ImageNet datasets, achieving significant improvements over the state-of-
the-art of that time. In the latter, DenseNet-264 showed performance similar to the ResNet-152
with the half of the number of parameters and execution time. This architecture was built on
the idea of the loss of image or gradient information through the layers of very deep neural
networks. To address this issue, the authors connected all convolutional layers to each other, in a
feed-forward way - every layer obtains the feature maps of all preceding layers. This allows the
reuse of previous features and also the use of fewer parameters (20 million). The convolutional
blocks containing this implementation are called dense blocks which are depicted in Figure 3.3.

3.2.4.3 VGGs

The VGG16 Simonyan e Zisserman (2014) is a model presented in the 2014 ImageNet
competition, which showed a significant improvement of the AlexNet architecture in the previous
competitions. The VGG16 achieved a 92.7% top-5 accuracy when testing on the competition
dataset. What differentiated the VGG models from other architectures was the use of multiple
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Figure 3.3 – DenseNet convolutional layers building blocks (dense blocks) are based on the
idea of connecting the convolutional layers to every preceding others, preserving
information of the feature maps generated on the first layers. Adapted from Huang
et al. (2017).

3 × 3 kernels along a very deep convolutional network. Filters this size are the smallest ones
which can take into account the adjacent pixel values to alter the pixels in the image, therefore
they can make more subtle changes on each layer and have a lower computational cost. The
AlexNet architecture, for example, have a filter size of 11× 11. The number of the VGG model
tells us the sum of convolutional and fully connected layers, all the other parameters are the same
(VGG19 is 19 layers deep). By increasing the depth of the network, Simonyan and Zisserman
showed that the depth of a CNN was beneficial to the classification test accuracy.

3.2.4.4 GoogLeNet and Inception-v4

GoogLeNet Szegedy et al. (2015), also known as Inception-v1, was presented in the
2014 ImageNet competition, achieving the first place with slightly better results than the VGG
networks, and significantly better than AlexNet. The Inception-v4 architecture is a Inception
variant, evolved from GoogLeNet. When used in conjunction with InceptionResNets Szegedy
et al. (2016), achieved a state-of-the art performance in the 2015 ImageNet competition dataset.
Both architectures have in common the Inception Module. This module emphasizes the idea that
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a CNN does not need to be a simple linear progression of inputs of convolutional layers. Thus,
each Inception block computes the image with different kernel sizes for later concatenation. It is
composed of three parallel 1× 1 filter size kernels and one 3× 3 max-pooling, followed by 3× 3

and 5× 5 kernels operating on two of them, and 1× 1 kernel on the max-pooled output. At the
end, all the outputs are concatenated. This was based on the idea that smaller kernels can provide
a more precise classification of two similar but different type of objects, for example two dogs of
different breed and the type of a boat, and their use with conjunction of larger kernels contributes
to a better generalization. The v4 CNN is deeper, using more Inception modules along with batch
normalization layers and factorization, which were introduced in the previous Inception versions
(v2 and v3). The overall inception module scheme is shown in Figure 3.4.

Figure 3.4 – Inception module scheme. Adapted from Szegedy et al. (2016).

3.2.4.5 ResNets

The ResNet He et al. (2016), also called Residual Network, was presented in the 2015
ImageNet competition and achieved a 3.57% top-5 error on the competition’s dataset. An impor-
tant difference of this CNN is the big leap on the number of layers. The previous model with the
greatest number of layers was the VGG with 19. The models used in this work are 50 and 101

layers deep. The idea behind the residual network is to make short connections between every
other layer. Since the training error tends to increase when the network is too deep, these short
connections help mitigating this problem. The ResNet architectures proved that the classification
accuracy can still be significantly improved when using residual networks. A residual network
scheme is shown in Figure 3.5.
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Figure 3.5 – Schematic of a standard residual network. Skipping every other convolutional layer,
a shortcut connection is inserted. Adapted from He et al. (2016).

3.2.4.6 SqueezeNet

The SqueezeNet architecture Iandola et al. (2016), released in 2016, was presented as
a better alternative to AlexNet. It was based on the idea of constructing a network with fewer
parameters while presenting a good classification accuracy. To make this happen, one strategy
was to replace the 3× 3 filters with 1× 1. This strategy is contained in what the authors called
the “fire module”. The idea of these modules is to squeeze the data in 1× 1 convolution filters
and feed them into expanded layer with 1× 1 and 3× 3 filters, decreasing the number of input
channels. An example of this filters is shown in Figure 3.6. To compensate for a possible loss in
the classification accuracy, iandola2016squeezenet downsample the data late in the network. This
way, the image information is kept for longer, extracting better features. One important detail to
be noted is the lack of a fully connected layer on top of the fire modules. The authors showed that,
as the paper’s title suggest, SqueezeNet reaches the AlexNet’s levels of accuracy while having
50× less parameters in the same ImageNet database.

3.2.4.7 ShuffleNet

The ShuffleNet architecture Zhang et al. (2018) aims at running under limited computing
power, while presenting a competitive accuracy on image classification. The idea behind this
network is to shuffle the input between two convolution groups, instead of linear channels.
Convolution groups were also used on the AlexNet architecture, where two groups of linear
convolution layers, computed in different GPUs, only meet at certain point of the network. In
the case of ShuffleNet, the input channels between some layers are randomly shuffled, and the
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Figure 3.6 – Example of the convolutional filters on the SqueezeNet, which decreases the number
of input channels after the expansion on the bottom half set of filters. The top half
represents the squeezing phase. Adapted from Iandola et al. (2016).

use of group convolutions allows for a reduction of computational cost of the pointwise (1× 1)
operations and better performance. This method also allows the exchange of information across
convolutional groups, which led to good results. The model was evaluated on the ImageNet 2012
competition dataset achieving a 7.8% top-1 error.

3.2.4.8 MobileNet

The MobileNet Howard et al. (2017) was also developed on the premise of reducing the
number of parameters to allow its use on mobile and embedded applications. The key method
proposed by the authors was to use depthwise convolutions. Similarly to pointwise convolutions,
which performs convolutions on single pixels, depthwise convolutions apply a single filter on
the input channel. Later, the pointwise convolution is performed in a linear combination. To
decrease the computational cost, a hyperparameter was introduced to make the network thinner.
This parameter allows the CNN to reduce the number of input and output channels in each layer.
The authors also added a resolution multiplier, which is applied to every internal representation
of the inputted image in order to reduce the parameters when running on limited computers. The
MobileNet has proved to be especially accurate in object detection and face attributes. The CNN
showed better results than GoogleNet and VGG16 on the ImageNet dataset.

3.2.4.9 NasNet

The NASNet architecture Zoph et al. (2018) was developed on the idea of a mutable
network. This means that some architectural configurations of the network elements are automat-
ically determined by a reinforcement learning algorithm (RLA). The network consists of normal
cells and reduction cells. Normal cells generate a feature map with the same size, while in the
reduction cells the feature maps are divided by two since it is applied a stride of 2. This model
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was tested on the CIFAR-10 dataset, using part of it as the input to the RLA. This approach was
based on the fact that creating a new CNN architecture is time and resource demanding, since this
architecture is not made by humans. On the ImageNet dataset, NASNet achieved state-of-the-art
results with significant lower computational costs, exceeding the human designed models.
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4 Methodology

The methodology used in this work is presented below. In section 4.1, hardware used in
the experiments is presented. The section 4.2 details the dataset used in this work. In section 4.3,
the methods used to pre-process our data and tackle the class imbalance problem are presented.
Finally, in sections 4.4 and 4.5 the CNNs parameters and the training procedures are presented,
respectively.

4.1 Hardware

The experiments done in this work used an NVIDIA GeForce GTX 1070 graphics card
and the PyTorch machine learning library.

4.2 Dataset

The dataset used in this work is the EDRA-CDROM (2002) G Soyer HP (2002) and it is
comprised of 1, 039 dermoscopy images of the 9 previously labeled global skin pattern classes,
having 768× 512 pixels each, in RGB color space. Their labels and amount of images are the
following: 30 Cobblestone, 82 Globular, 78 Homogeneous, 15 Lacunar, 332Multicomponent, 47
Parallel, 344 Reticular, 46 Starburst and 64 Unspecific. One of the images in our dataset does
not have a defined global pattern and, therefore, was ignored. The images in the lacunar pattern
were also not used in this work due to their disproportionate low number, which is half of the
second-lowest (cobblestone pattern). Using them would result in too much data augmentation
over the same image when balancing the classes, which could contribute to underfitting. Thus, it
was used 1, 023 images of the original dataset, covering 8 out of the 9 classes. Samples of each
class are shown in Figure 1.1.

4.3 Pre-processing

As mentioned in the previous section, our dataset is very imbalanced. To address this
issue, a pre-processing step is needed to balance the classes before the training phase. In addition,
we used data augmentation techniques to further increase the number of samples available for
the models.

Our dataset needs to be divided into three sets: training, validation and test. The test
dataset was gathered by taking 30% of each global pattern class, randomly, resulting in 307 images
(716 for training and validation); no data augmentation technique was done. To balance the dataset,
before the training and validation phases, the following data augmentation techniques were used:
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zoom, rotation, and horizontal flip. We will divide the pre-processing phase into two steps. The
first step is the creation of the set of new images, achieved by data augmentation techniques. The
second step is the addition of the original images followed by more data augmentation in order to
balance the modified dataset. The first step is shown in Figure 4.1 and explained below:

• 450× 450 cuts

On the first step, all the 716 images were cut on the 450 × 450 square at their center, in
order to remove the non-relevant information, mostly skin that is not part of the lesion.
These cuts were also done in Abbas et. al. (2013) Abbas et al. (2013) on dermoscopic
images of skin lesions. The authors named them regions of interest (ROI).

• Zoomed cuts

On the previous altered dataset, it was applied 4 zoomed cuts of 224× 224 to every image
on each of their quadrants, shifted by 57 pixels from the closest extremities to the center.
This was made as long as the amount of data in its class does not surpass the one with
the highest image count (reticular pattern, 240 images). As an example, the cobblestone
pattern had 105 images after this process (21 initial+21 × 4) and the reticular pattern
images was not altered. The image size choice was done considering the fact that most
of our pre-trained CNNs were trained using this image resolution. The slight shift of the
cuts to the center was due to the fact that our region of interest is located near the center
of every image. At the end of this process, some classes have the maximum quantity of
images (240) except for cobblestone, parallel, starburst and unspecific patterns.

• 5◦ rotations

To correct the class imbalances, 5◦ rotation is applied randomly on the class dataset, and
no more than 2 rotations per image, until it reaches 240. At the end of this, we had 1, 920

images in total.

On the second step, all the original images, except for the test dataset, were added to
the altered dataset from the first step. To balance the dataset again, the horizontal flips (mirror
the image on the vertical axis) and vertical flips (180◦ rotation) were used simultaneously and
randomly on this new set, until each class reaches 480 images. After the described process, our
dataset for training and validation had 3, 840 images. From this, 20% of each class was taken
randomly for the validation dataset, finally leaving 3, 072 images for training, 768 for validation
and 307 for testing.

4.4 CNN parameters

On every CNN architecture, the classifier block, the top dense layers ending in 1, 000

neurons, was removed. The added classifier has two dense layers: 500 neurons connected to 8
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Figure 4.1 – The first step of the pre-processing phase consists on cropping the original images
in their inner quadrants and applying 5 degree rotations.

(equal to the number of classes). The only exception was the SqueezeNet that is built differently,
since it has a convolutional layer on its classifier block. Thus, a fresh new convolutional layer
with the same parameters was added, except for the 8 output classes. The image input size is
224× 224 for all architectures except for the Inception-V4 (299× 299). Resizing was done using
bilinear image scaling.

4.5 Training

The training phase is the same for every architecture. It begins with the base (the convo-
lutional layers) frozen, i.e. the weights are not updated during the training. This is done because,
since the training loss is high at the beginning, some features learned from the ImageNet on the
base layers can be altered dramatically or lost. For 20 epochs, batch size of 32 and using Adam
optimizer Kingma e Ba (2014), the network only updates the weights of the added classifier block
(fully-connected layers) and batch normalization layers. Then, for fine-tuning, the last two layers
of the base are unfrozen with 1/3 and 1/9 of the fully-connected layers learning rate, the last one
with the highest value.

The initial learning rate is calculated using a similar approach to the Cyclical Learning
Rates Smith (2017). Before the training phase, over an epoch, the network starts with a learning
rate of 10-8 and grows exponentially at each batch of 32 images. The algorithm halts when the
loss value calculated for the current batch surpasses the best one in 4 times. In other words,
it breaks out if the loss value explodes. In addition, a data vector is built with information on
the learning rate used for the batch and the loss value calculated. A graph of learning rate (in
logarithmic scale) × loss value is built. Then, ignoring the first 10 and the last 5 points of the
vector, the learning rate is chosen where the graph shows the steepest decline. The learning rate
graph of the WideResNet50 is shown in Figure 4.2.
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Figure 4.2 – Learning rate × Loss value over an epoch of the WideResNet-50. The greatest
decline was calculated at learning rate of approximately 0.0034.

For evaluating the results, we compared the accuracy, sensitivity and specificity values
among the architectures, and the average of these metrics for each class among the CNNs. We call
true positives (TP) those images that were correctly identified in their class; false positives (FP)
are the images that, among all images classified as a given class, were incorrectly identified as
belonging to that class; false negatives (FN) are the images that, among all images that belong to
a given class, were incorrectly identified; and true negatives (TN) are the images that, considering
one class, were correctly classified as not belonging to that class. That said, the metrics used are
as follows:

• accuracy = (TN + TP )/(TP + FP + TN + FN);

• sensitivity = TP/(TP + FN);

• specificity = TN/(TN + FP ).

Finally, an ensemble of all the architectures was made, with increased weight on the
architecture with the best result, and the weighted average results for each class is shown in Table
5.5. Our ensemble is a mix of all architectures trained, using a majority vote on their classification
of each image in the test dataset.

The next goal, we will call it approach number 2, was to use the CNN which yielded
the best results to build a hierarchical model for image classification. Thus, for each class on
our pre-processed dataset, we built a binary classifier splitting our target class and all the others
not yet analyzed. The target class and the other class, containing a set of the remaining classes,
were balanced between them and among the classes of the latter. Therefore, as shown in 4.3, in
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the first step, as we separate the parallel lesion from the others, both the classes had the same
quantity of images in the training phase (480). The class named "other" is balanced considering
the remaining classes. The order in which the classes were separated was determined subjectively
after looking at the confusion matrix of the SqueezeNet (Table 5.2): we chose to start by the
easier to classify.

Figure 4.3 – Hierarchical model containing seven neural networks to classify eight global skin
patterns. (*) Contains the other classes, excluding the already identified.

Finally, in approach number 3, although the classes don’t seem to have a natural hierar-
chical division, we divided the classes based on the visual similarities of their images, thus not
considering the confusion matrices, as shown in Figure 4.4. On each of its neural networks, all
the classes were balanced accordingly.



Chapter 4. Methodology 21

Figure 4.4 – Hierarchical model of approach number 3. It contains four neural networks dividing
hand selected groups of classes.
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5 Results and Discussion

Table 5.1 shows the weighted average accuracy, sensitivity and specificity, since the
dataset is not balanced, using the test dataset of 307 images, for every trained architecture. Each
row represents the weighted average of all the eight global patterns. Table 5.3 highlights the
result of the most accurate architecture, SqueezeNet. Table 5.4 is the condensed individual global
pattern results, averaging the metrics of all architectures. In Table 5.5, we show the result of the
ensemble architecture; SqueezeNet with weight 3.

Table 5.1 – Weighted average results for all the global patterns considered, using the test dataset.

Architecture Accuracy Sensitivity Specificity
AlexNet 0.819 0.563 0.870

DenseNet-201 0.816 0.482 0.942
DenseNet-169 0.819 0.511 0.931
GoogLeNet 0.789 0.396 0.934
Inception-V4 0.767 0.396 0.902
MobileNet-V2 0.782 0.399 0.928
NASNet Mobile 0.798 0.450 0.927
ResNet-101 0.786 0.421 0.930
ResNet-50 0.810 0.479 0.941
ShuffleNet 0.801 0.463 0.924
SqueezeNet 0.846 0.611 0.912
VGG16 0.814 0.486 0.938
VGG19 0.799 0.470 0.915

Wide ResNet-50 0.776 0.386 0.926

Table 5.2 – Confusion matrix for the test dataset on the SqueezeNet CNN.

Global Pattern Cob. Glob. Hom. Mul. Par. Ret. Star. Uns.
Cobblestone 6 1 1 1 0 0 0 0
Globular 1 11 1 3 3 2 2 2

Homogeneous 0 2 13 7 0 0 2 0
Multicomponent 5 9 5 61 0 8 8 4

Parallel 0 0 0 0 15 0 0 0
Reticular 0 11 2 17 1 67 3 3
Starburst 0 0 3 1 0 1 9 0
Unspecific 0 2 3 2 1 4 0 8

The results in Table 5.1 show that shallower architectures with fewer parameters were a
better fit for our dataset: SqueezeNet, AlexNet and DenseNets yielded the best overall results.
The difference between shallow and deep NN’s results over smaller datasets is evident both
in the average results for all global patterns and the global patterns individually (Tables 5.1
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Table 5.3 – Classes results for the SqueezeNet using the test dataset.

Global Pattern Accuracy Sensitivity Specificity
Cobblestone 0.971 0.667 0.980
Globular 0.875 0.440 0.913

Homogeneous 0.916 0.542 0.948
Multicomponent 0.775 0.610 0.853

Parallel 0.984 1.000 0.983
Reticular 0.833 0.644 0.928
Starburst 0.936 0.643 0.950
Unspecific 0.933 0.400 0.969

Table 5.4 – Average results for each global pattern using the test dataset.

Global Pattern Accuracy Sensitivity Specificity
Cobblestone 0.936 0.603 0.946
Globular 0.841 0.431 0.877

Homogeneous 0.899 0.554 0.927
Multicomponent 0.730 0.351 0.910

Parallel 0.946 0.862 0.950
Reticular 0.773 0.440 0.941
Starburst 0.908 0.760 0.915
Unspecific 0.897 0.536 0.922

Table 5.5 – Results for each global pattern on ensemble architecture.

Global Pattern Accuracy Sensitivity Specificity
Cobblestone 0.971 0.667 0.980
Globular 0.868 0.600 0.892

Homogeneous 0.913 0.625 0.937
Multicomponent 0.765 0.480 0.900

Parallel 0.958 0.933 0.959
Reticular 0.823 0.567 0.952
Starburst 0.932 0.714 0.943
Unspecific 0.926 0.650 0.945

Weighted average 0.837 0.579 0.930

and 5.4, respectively). The most variance of the results is more evident when comparing the
sensitivities. Our dataset did not seem to benefit from wider implementations of networks nor
parallel operations (Wide ResNet, GoogLeNet, Inception). CNNs that addresses the vanishing-
gradient problem, which occurs when information of the input is lost after several layers of
computation, yielded unsatisfactory results (ResNets), even the shallower ones (DenseNet). Even
though MobileNet being a small CNN, we believe that the presence of too few parameters, also
provided by the use of depthwise separable convolutions, contributed to a not proper learning,
considering a small dataset. SqueezeNet is highlighted as it presents the best predictions.

Given the difference in the number of samples among the classes, data augmentation was
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Table 5.6 – Results for each global pattern on the hierarchical model architecture.

Global Pattern Accuracy Sensitivity Specificity
Cobblestone 0.942 0.556 0.954
Globular 0.849 0.360 0.892

Homogeneous 0.936 0.583 0.965
Multicomponent 0.785 0.420 0.957

Parallel 0.958 0.867 0.963
Reticular 0.775 0.625 0.850
Starburst 0.913 0.786 0.919
Unspecific 0.910 0.350 0.948

Weighted average 0.825 0.534 0.915

heavily applied on the minority classes (i.e. Cobblestone, Starburst, Parallel and Unspecific). The
results for each global pattern in Tables 5.3, 5.4 and 5.5, show outstanding values compared to
the majority classes. Keep in mind that the test dataset was untouched and was not used at any
moment during the training phase. This test on a completely independent dataset indicates that
the augmentation was successful, providing a satisfactory generalization of the network. In the
future, more data augmentation can be done on the majority classes to improve the results. One
idea could be to apply augmentation to them, but extract multiple subsets with its initial class
size, randomly. Then, make multiple training with a same architecture with different subsets of
the majority classes and ensemble the results.

The SqueezeNet results are very similar to the ensemble architecture. However, sensi-
tivity among the minority classes show a significant improvement on the ensemble architecture
compared to SqueezeNet, whilst better in all metrics compared to the overall results. The improve-
ments are highlighted in Table 5.5. This means that the network is more accurate within a global
skin pattern. Table 5.2 shows the confusion matrix for the test dataset on the SqueezeNet CNN.
We can see that homogeneous and reticular patterns were often mistaken for multicomponent
(highlighted in red), and the CNN struggled to identify globular and unspecific patterns in general.

Regarding the approach number 2, although the networks yielded interesting results, the
overall sensitivity actually decreased significantly, as shown in 5.6. The approach number 3 did
not perform well from the beginning, which resulted in worse accuracy and sensitivity compared
to the SqueezeNet and similar sensitivity: 0.829, 0.569 and 0.903, respectively.
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6 Final Considerations

6.1 Conclusion

This work presents a literature review and compares some well known convolutional
neural networks architectures for the problem of identifying global patterns in dermoscopic
images of skin lesions. Since the classes are imbalanced, the lacunar global pattern was dismissed
due to lack of images and data augmentation was applied to the other minority classes. By using
the pre-trained models of the CNNs, the classifier layer was replaced in every one of them by a
standard dense layer. All their initial parameters were the same except for the learning rate, which
was calculated using the same method. Later, an ensemble architecture was developed using
the CNN with the best individual results with increased weight, using majority vote predictions.
The SqueezeNet architecture yielded the best results with our dataset, achieving and average of
84.6% accuracy, 61.1% sensitivity and 91.2% specificity. The ensemble architecture improved
the sensitivity of the minority classes compared to the average results of the CNNs and the
individual SqueezeNet results.

The two subsequent approaches were based on the hierarchical top-down model. The
first one separates each class from the pool of all classes individually, reducing the number of
classes at each step. Each of those steps have their own CNN which were trained considering the
remaining classes. The second approach separates groups of classes, instead of one by one. These
groups were chosen by the visual similarities of their images on the training dataset. Both of
these approaches yielded a worse sensitivity, 0.534 and 0.569, respectively, and similar accuracy
and specificity.

To the best of our knowledge, the experiments that were closer to our work regarding the
number of global skin patterns were done by Abbas et al. (2013), which considered 7 classes
(Reticular, Globular, Cobblestone, Homogeneous, Parallel, Starburst and Multicomponent). Our
methods differ, since the authors used AdaBoost.MC algorithm, instead of CNN. They reached
89.28% sensitivity, 93.75% specificity and 0.986 area under the curve (AUC). Our overall sensi-
tivity was significantly lower.

6.2 Future work

For future work, it is imperative that we seek ways to improve the sensitivity values of our
results, which is the quantity of correct classifications on a given class over the total images that
belongs to that class. One idea, as said in the previous chapter, is to increase data augmentation
and train different CNNs on disjoint sets of the augmented dataset. Then, an ensemble of these
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CNNs would be built. Another idea for future works is to insert a one-shot or few-shot learning
networks as alternatives for image classification.
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