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Resumo

Esforços interessantes foram realizados nas últimas duas décadas para construir fer-
ramentas que facilitam e agilizam o desenvolvimento de workflows de Machine Learning
(ML) compostos de vários pipelines. De scripts Unix à componentes de ML desenhados
para Web e soluções para automatizar e orquestrar etapas de ML e Data Mining (DM),
nós tentamos muitos serviços de alto nível para o processo iterativo do cientista de dados.
De outro lado, nós temos os serviços de baixo nível sendo investigados com os mesmos
proprósitos, como ambientes em nuvem, orquestração de contêineres, tolerância a falhas,
etc. Normalmente, scripts são produzidos para simplificar as operações dos serviços de
baixo nível. Infelizmente, nenhuma solução existente coloca ambos os serviços - alto e
baixo níveis - na mesma instalação. Além disso, nenhum deles possibilita a utilização
de diferentes ferramenta durante a construção de um único workflow. Tais soluções não
são, portanto, flexíveis o suficientes para permitir uma ferramenta, como o Scikit-Learn,
construir um pipeline, e outras ferramentas de ML, como TensorFlow ou Spark MLlib,
construírem outros pipelines. Uma Application Programming Interface (API) Represen-
tational State Transfer (REST) interoperável é muito útil para expor esses serviços, mas
apenas algumas alternativas atendem esse requisito. Para suprir tais limitações, nós ap-
resentamos um sistema open source denominado Learning Orchestra, uma solução para
construir workflows complexos usando diferentes ferramentas de ML de forma transpar-
ente. Com uma única e interoperável API é possível construir fluxos analíticos que podem
ser instalados em ambientes com contêineres em nuvens computacionais capazes de es-
calar e tolerar falhas. Experimentos demonstraram que nosso sistema é uma alternativa
promissora e inovadora para o problema de simplificar e agilizar o processo iterativo de
ML.

Palavras Chave: Aprendizado de Máquina. Mineração de Dados. Sistemas Distribuídos.
Arquitetura de Microserviços. Computação em Nuvem. Workflow. Pipeline. Contêiner-
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Abstract

Interesting efforts were done to construct tools to facilitate and streamline the devel-
opment of Machine Learning (ML) workflows composed of several pipelines in the last two
decades. From Unix scripts to Web based ML components and solutions to automate and
orchestrate ML and Data Mining (DM) pipes, we have tried many high level services for
the data scientist iterative process. On the other hand, we have the low level services
being investigated, like cloud environments, container orchestration, fault tolerance service
and so forth. Normally, scripts are produced to simplify such low level services operations.
Unfortunately, no existing solution put both low and high level services on a unique service
stack. Furthermore, none of them enables the utilization of different existing tools during
the construction of a single workflow, i.e., they are not flexible enough to permit a tool, like
Scikit-learn, to build one pipeline and other ML tools, such as Spark MLlib or TensorFlow,
to build other pipes. A Representational State Transfer (REST) interoperable Applica-
tion Programming Interface (API) is very useful to expose these tools services, but few
existing alternatives attend this requirement. To address these limitations, we present the
open source Learning Orchestra system, a solution to construct complex workflows using
different ML tools or players transparently, i.e., from a single interoperable API we can
build interesting analytical flows. The workflows can be deployed on a containerized cloud
environment capable to scale and be resilient. Experiments demonstrated that our system
is a promising and innovative alternative for the problem of simplify and streamline the
ML iterative process.

Keywords: Machine Learning. Data Mining. Distributed System. Microservice Archi-
tecture. Cloud Computing. Workflow. Pipeline. Containerization.
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Chapter 1

Introduction

The data scientist activity normally works in an iterative process composed of the fol-
lowing activities: gathering available data, performing exploratory data analysis, clean-
ing/enriching those data, building models, validating their predictions, and deploying
results. The utilization of standalone tools to build workflows composed of analytical
pipelines, like WEKA Hall et al. (2009), is not sufficient nowadays because the volume of
data and the number of algorithms for classification, pre-processing, tuning and so forth
increased a lot in the last decade. Even the distributed version of WEKA Koliopoulos et al.
(2015) is not so realist because the deployment and other important low level activities are
complex and very often not familiar for the data scientist.

Interesting efforts were done to construct tools to facilitate and streamline the devel-
opment of Machine Learning (ML) workflows composed of several pipelines in the last two
decades. From UNIX scripts Breck (2008) to general purpose containerized extensions for
Pegasus Vahi et al. (2019) and Web based drag and drop R/Python components McClure
(2018), we have tried to deliver many alternatives for the data scientist. Some works tried
to automate the workflow construction, i.e., the orchestration of its pipes using annota-
tions or any sort of high level descriptions from the specialist. These alternatives adopt
planning and learning algorithms to suggest analytical workflows Beygelzimer et al. (2013);
Walkowiak (2017); He et al. (2019).

We understand that the goal to facilitate and streamline the data scientist iterative
process explained previously continues to have a gap. Users should load, optimize and exe-
cute useful existing ML models from companies like Google and Facebook, but they should
also have an Application Programming Interface (API) to build their own pipelines in a
traditional way. These efforts normally do not coexist with a simple deploy and execution

1



1. Introduction 2

of an analytical infrastructure capable to be fault tolerant, scalable and other important
issues that are complex for non specialists. In terms of heterogeneity, where interoperable
ML microservices can be called via a Representational State Transfer (REST) Application
Programming Interface (API) using different ML players, like Spark MLlib Meng et al.
(2016), Scikit-learn Pedregosa et al. (2011) or TensorFlow Abadi et al. (2016), produc-
ing several pipelines deployed over containers on different cloud platforms, the literature
alternatives do not present any system with all these benefits.

1.1 Goal

The goal of this work is to develop a tool, named Learning Orchestra, to reduce a
bit more the existing gap in facilitate and streamline the data scientist iterative process
composed of gather data, perform exploratory analyze, clean/enrich those data, build
models, validate their predictions and deploy the results.

For that, the Learning Orchestra system enables the deployment and execution of
several layers of software over several hardware architectures. It can be deployed/executed
on market-leaders cloud platforms, resulting in elastic and on demand services. It is a
containerized system, thus resilient, lightweight and fair in terms of workload. It offers
containers orchestration transparently. It implements several ready to use services for ML
entire pipelines or pipelines steps, like dataset, model, transform, tune, train, predict and
observe, the last for notification purpose. It is interoperable, since its API sends/receives
messages written in JavaScript Object Notation (JSON), so data scientists with little
programming skills in any language can build complex analytical workflows. Finally, it puts
together players, like Spark MLlib, Scikit-learn and TensorFlow in a single ML solution.

1.2 Scope

As we can see, it is out of scope of this work the development of new algorithms, methods
or approaches for ML or any pipe of the previous presented iterative process, precisely
gather available data, clean/enrich those data, build models, validate their predictions and
deploy results.

It is out of scope any auto ML facility via Learning Orchestra, precisely the automatic
execution of the pipeline presented on the auto ML survey work He et al. (2019). Off-
course, if the ML tool, like Scikit-learn, Spark MLlib or TensorFlow, provides services like
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Neural Architecture Search (NAS) Zoph and Le (2016) or hyperparameters optmization,
for instance, the Learning Orchestra calls it like it calls any other model configuration
strategy, being it manual or automatic. The data scientist needs just to configure the
model and perform anotherAPI call to run it, but there is no auto ML pipe on our system
API. It is part of future research investigations the support for such requirement, similar
to Katib Zhou et al. (2019).

The Learning Orchestra system did not has specific API microservices to build neural
networks from scratch, this way the data scientists can load existing ones on their pipelines.
There is a service called Builder, where the data scientist can run an entire ML pipeline
using the Python programming language, so we assume it can be also used to construct
a neural network in TensorFlow, for instance, and run it after the building phase, but
without any API facility in terms of deep learning on the Learning Orchestra.

1.3 Work Organization

The rest of this work is organized as follows: Chapter 2 discusses the basic concepts
for a better understanding of the work. Chapter 3 presents the related work about tools
for building analytical workflows. Chapter 4 details the architecture and design of the
Learning Orchestra system. Chapter 5 details the experiments and experimental results.
Finally, in Chapter 6 the conclusion and future research directions are described.



Chapter 2

Basic Concepts

In this chapter, all the basic concepts that are useful for a better understanding of the
work are presented.

2.1 Cloud Computing

Cloud Computing offers a shared set of flexible and configurable computing resources,
such as network, CPU, GPU, RAM, hard disk, but also software layers, such as Operation
System (OS), basic software (Ex. database, compilers, etc.) and applications (Ex. stream
processing tools, graph tools and so forth). These resources can be easily deployed and
used at scale with minimal efforts Mell et al. (2011).

A single hardware can be abstracted as several small devices or a cluster of machines
can be abstracted as a single device. The elasticity is another fundamental property in
cloud environments, so the user can increase the processing or storage capacities, as well
as any other hardware or software configuration on-the-fly, thus cloud computing became
very useful for high availability demands.

2.2 Virtual Machine

The Virtual Machine (VM) is the core of cloud computing and it is an emulated com-
puter system with all the layers (hardware, OS and applications) running over another
computer system. This architectural design provides efficiency and isolation for users
Goldberg (1974).

4



2. Basic Concepts 5

A hypervisor (or virtual machine monitor - VMM) is a computer software, firmware or
hardware that creates and runs VMs. A computer on which a hypervisor runs one or more
VMs is called a host machine, and each VM is called a guest machine. The hypervisor
presents the guest OS with a virtual operating platform and manages the execution of
the guest OS. Multiple instances of a variety of OS may share the virtualized hardware
resources. Any application can be deployed over such OS, being also virtualized.

2.3 Application Programming Interface

The Application Programming Interface (API) is used by computer systems for their
communications, thus it defines how to make requests, the used data types, and how
to interact to allow system communication 1. The API can be customized for specific
utilization, such as interoperability or transaction services.

In Web context, the API use Hypertext Transfer Protocol (HTTP) protocol to send
the content of requests and responses. The common used format is the Extensible Markup
Language (XML) or JavaScript Object Notation (JSON). The communication mechanism
of Web APIs are migrating from Simple Object Access Protocol (SOAP) to Representa-
tional State Transfer (REST), thus a transaction or a request can take long periods to occur
(hours, days or even months), a fundamental requirement for justice services, government
services, scientific experiments and many more.

2.4 Microservices

One of several definitions of Microservices is:

"A Microservice is an independently deployable component of bounded scope that supports
interoperability through message-based communication. Microservice Architecture is a

style of engineering highly automated and where software systems are made up of
capability-aligned microservices." Nadareishvili et al. (2016)

Microservices are small in size, being more cohesive, if compared with a monolithic
architecture. Web APIs are often used to intercommunicate microservices. This software
architecture enables the development of low coupling components and each of them can
be developed at different stage. Normally, each microservice has its metadata that is very

1https://en.wikipedia.org/wiki/Application_programming_interface

https://en.wikipedia.org/wiki/Application_programming_interface
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useful for both service discovery and service composition, a fundamental activity of service
orchestration explained further in this chapter.

2.5 Service Orchestration and Choreography

Service orchestration refers to a centralized process responsible to interact and manage
microservices. The interactions happen at message level and the orchestration includes
business logic, including service composition, and task execution order Peltz (2003), this
way the microservices must be flexible and adaptable to business needs.

Choreography services represent a decentralized architecture, where each participant,
i.e., each microservice has a communication pattern focused in collaboration, thus elec-
tions and other decision strategies are used Busi et al. (2005). The same orchestration
responsibilities (service discover, service composition, task ordering, etc.) are included in
choreography, but in a distributed way.

2.6 Container

The container is also a virtualization layer and used together with VMs, since the
containers operate at OS level Merkel (2014). In containers, there are abstraction layers
for process, network, hard disks and so forth. Containers running on the same machine
preserve the isolation, thus memory, processor and disk are not visible among them.

As we can see, containers are more light than VMs, this way faster during deployment,
creation and destruction of computer environments. The VM requires kernel level, OS
libraries, drivers and many more, so even when it is not running it consumes a huge amount
of memory. Normally, containers are fault tolerant, so if a containerized application crashes
for any reason, the container can call any procedure to restart it. The recover service in
terms of backlogs and operations ordering are domain application responsibilities.

2.6.1 Docker

Docker is one of the market-leaders container technology, which uses few features from
Linux kernel to provide a lightweight tool to manage the life-cycle of many applications
Merkel (2014). Docker uses Linux containers and Linux Container (LXC), a package from
Linux containers to provide user-namespaces, separating container’s database and network
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from host. Docker adopts Advanced Multi-Layered Unification Filesystem (AuFS) as its file
system. It is a layered file system, enabling Docker containers to deploy several customized
images derived from the same image. The LXC also provides cgroups, a package used to
both analyze and limit containers resources, such as memory usage, disk space and I/O
bandwidth.

Docker also provides a Web repository where there are images from several frameworks,
OS, and programming languages (Ex. Python and MongoDB images). The most common
way to manage Docker containers is through command line, but it also has a REST API.

2.6.2 Docker Swarm

Docker Swarm is a clustering tool, orchestrating Docker containers (nodes) into a virtual
Docker system Naik (2016). It adopts nodes to provide a redundancy system in the case of
processing failure. The Docker Swarm has Manager and Worker nodes, where the manager
node allows the cluster state management, precisely the node deploy, update, and remove
services in an existing cluster of nodes. On the other hand, the worker nodes are responsible
for running tasks.

2.7 Spark processing solution

Spark is a cluster computing framework which supports applications with specific tasks,
such as ML, stream and Structured Query Language (SQL) ones. It also provides scalability
and fault tolerance services transparently, being faster than another market-leader named
Hadoop in ML operations Zaharia et al. (2010). The main abstraction of Spark is the
resilient distributed dataset (RDD), which stores an object collection across machines in a
cluster.

2.8 MongoDB - No SQL storage

MongoDB is a powerful, flexible, and scalable general-purpose database. It combines
the ability to scale out with features, such as secondary indexes, range queries, sorting,
aggregations, and geo-spatial indexes Chodorow (2013). The MongoDB, as Non-relational
database, uses the document concept to storage the rows or registers. The document has
no predefined schemas, this way the document keys do not require prefixed types and sizes,
thus they allow insertions or removals of fields more freely.
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2.9 Kafka publishers and subscribers

Kafka is an open-source distributed event streaming platform developed for collecting
and delivering high volumes of log data with low latency Kreps et al. (2011). It joins the
benefits of traditional messaging systems and log aggregators, providing an API similar to
message systems, allowing applications to consume log events in real time. Inside the main
Kafka concepts, there are publishers, topics, brokers, partitions and subscribers, where
the publishers publish messages to specific abstractions called topics. The topic content is
stored in a broker, which is a set of Kafka servers. A topic can be fragmented into several
partitions deployed on several brokers to provide scalable write/read operations. Finally,
the subscriber can register to a topic to be notified when the topic changes.

2.10 Scikit-learn Python solution

Scikit-learn is a rich environment to provide state-of-the-art implementations of many
well known machine learning algorithms, while maintaining an easy-to-use interface tightly
integrated with the Python language Pedregosa et al. (2011).

It differs from other machine learning toolboxes in Python for various reasons: i) it
is distributed under the BSD license ii) it incorporates compiled code for efficiency, iii)
it depends only on numpy and scipy to facilitate easy distribution, and iv) it focuses on
imperative programming, not using, for instance, data-flow based approaches.

2.11 TensorFlow - ML at scale

TensorFlow is a machine learning system that operates at large scale and in heteroge-
neous environments. TensorFlow uses data-flow graphs to represent computation, shared
state, and the operations that mutate that state. It maps the nodes of a data-flow graph
across many machines in a cluster, and within a machine across multiple computational
devices, including multicore CPUs, general purpose GPUs, and custom-designed ASICs
known as Tensor Processing Units (TPUs) Abadi et al. (2016).

Unlike traditional data-flow systems, in which graph vertices represent functional com-
putation on immutable data, TensorFlow allows vertices to represent computations that
own or update mutable state. Edges carry tensors (multi-dimensional arrays) between
nodes, and TensorFlow transparently inserts the appropriate communication between dis-
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tributed subcomputations. This way, TensorFlow allows programmers to experiment with
different parallelization schemes that, for example, offload computation onto the servers
that hold the shared state to reduce the amount of network traffic.

2.12 Keras

Keras is an open-source software library that provides a Python API that is simple,
flexible, and consistent API for developing deep learning workflows. Keras acts as an
interface for the TensorFlow solution.

Up until version 2.3 Keras supported multiple backends, but as of version 2.4, only Ten-
sorFlow is supported. Designed to enable fast experimentation with deep neural networks,
it focuses on being user-friendly, modular, and extensible. Keras (2021)

2.13 Data Mining and Machine Learning - concepts

and differences

Data Mining (DM) is the process of discovering interesting patterns and knowledge from
data. The data sources can include databases, data warehouses, the Web, other information
repositories, or data that are streamed into the system dynamically Han et al. (2011). The
DM task is a step in a knowledge discovery from data (KDD) process composed of several
steps, like selection, pre-processing, transformation, interpretation and so forth. As a highly
application-driven domain, DM has incorporated many techniques from other domains such
as statistics, Machine Learning, pattern recognition, database and data warehouse systems,
information retrieval, visualization, algorithms, high- performance computing, and many
application domains Han et al. (2011).

ML investigates how computers can learn (or improve their performance) based on
data. It is divided into four main classes:

• Supervised learning - a set of labeled data is used as input to ML algorithms, so they
can learn the patterns previously, making predictions on non labeled data based on
a train process;

• Unsupervised learning - these ML algorithms can build an internal structure to rec-
ognize the underlying patterns on unlabeled data;
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• Semi-supervised learning - the algorithms make use of both labeled and unlabeled
examples when learning a model. In one approach, labeled examples are used to
learn class models and unlabeled examples are used to refine the boundaries between
classes;

• Active learning - it is a type of iterative supervised learning approach that lets users
play an active role in the learning process. An active learning approach can ask a user
(e.g., a domain expert) to label an example, which may be from a set of unlabeled
examples or synthesized by the learning program. The goal is to optimize the model
quality by actively acquiring knowledge from human users, given a constraint on how
many examples they can be asked to label Han et al. (2011).



Chapter 3

Related Work

In this chapter, it is detailed the most similar papers of literature, where the core topic is
the development of Machine Learning/Data Mining workflows. We are interested in manual
or automated, visual or programmatic development of analytical workflow services, such as
gathering available data, cleaning/preparing those data, building models, validating their
predictions and deploying results. Besides that, we are also interested in low level service
facilities, such as cloud services, containerized solutions, fault tolerance, scalability and
container orchestration services provided for data scientists transparently.

We have searched the following paper repositories to build the related work: IEEE,
ACM and ISI Web of Science. The Google search engine was also used to find white
papers and magazine reports. The keywords searched were:

(workflow OR pipeline) AND (machine learning OR data mining) AND (middleware OR
framework OR library OR tool)

All the related works are evaluated according to the following requirements:

• Fault tolerance (FAULT)- evaluates if the solution is resilient regarding data storage
and service processing;

• Timers and schedulers (TS) - evaluates if it is possible to attach timer and scheduler
components on ML/DM workflows;

• Workflow programming (WP) - evaluates if the user can build workflows program-
matically or visually;

11
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• Specific ML components to build workflows (SML) - evaluates if the solution has
ready and configurable ML/DM services to build analytical workflows;

• Interoperability (INT) - evaluates if the solution enables several existing ML/DM
solutions to work together, i.e., to interoperate on workflows, precisely on several
pipelines;

• Web Designs (WEB) - evaluates if the solution is designed for Web;

• Containerized, elastic and scalable (CON) - evaluates if the solution is containerized,
elastic and scalable;

• Service Orchestration or Choreography (ORCH) - evaluates if the solution provides
service discovery and service composition of ML/DM services to build analytical
workflows. Auto ML issues are included.

The seminal visual DM workflow tool is Waikato Environment for Knowledge Analysis
(WEKA) Hall et al. (2009), a framework developed for data scientists, where a set of
learning and data pre-processing algorithms can be adopted. The framework has an API
for specific learning algorithms, such as deep learning ones, this way programming skills
are required. WEKA turns feasible and popular the development of visual analytical
workflows. A large number of DM algorithms, the WEKA knowledge flow component and
the fact that WEKA is open source allowed its maintenance and longevity, since it is active
with a large community for almost three decades.

The WEKA project entered the era of large scale analytical services, and for that, it
was integrated with Spark Apache solution Zaharia et al. (2010). These improvements
were detailed in Koliopoulos et al. (2015). Unfortunately, WEKA is not designed for Web
and it cannot discover ML/DM service alternatives or enable service compositions using
its API. Furthermore, it is not simple to interoperate its algorithms with other ML/DM
tools. Finally, its is not containerized, thus no container orchestration is supported, and it
is not a cloud solution with deploy and execution facilities, for instance.

In Breck (2008), it was presented a workflow system tool for ML and Natural Language
Processing (NLP) processing, named Zymake. The main goal of it is to simplify the
workflow execution system for users. It is a UNIX shell based solution, so scripts impose a
programming complexity for ordinary users. Since it is not a distributed solution, Zymake
is not resilient, not containerized, cannot run in a browser and it does not have user
interface. The interoperability and orchestration features are not mentioned.
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The Beygelzimer et al. (2013) work presented an analytic workflow orchestrator to han-
dle ML tasks. The core idea is to create an analytic workflow set and in sequence uses
a meta ML kernel to predict the best workflow to be deployed and executed. It demon-
strated the usage of WEKA tool in a workflow, where a prediction task of a healthcare
dataset was performed. The Web design is not present and there is no support for elastic
cloud environments, including containers, container orchestrator and so forth. Timers and
schedulers are also omitted on its workflows. There is no catalog of existing ML/DM tools
to be used, so interoperability was not addressed. In summary, the automatic discover of
ML tasks to compose a workflow is the core advantage of this work.

An important work to build Natural Language Processing (NLP) micro-services or-
chestration is Walkowiak (2017). A Language Processing Modeling Notation (LPMN) was
introduced and it has three main stages on its orchestrator: the first one loads and trans-
forms the data, the second partitions the data, and the third stage starts parallel NLP
micro-services to handle the partitioned data, joining the results into a unique file. The
LPMN was used to create several web applications 1. The LPMN was designed for several
programming languages and more than 500000 engine tasks were processed in half-year, at
the paper publication date. The Walkowiak (2017) tool is not designed for Web, no visual
workflows is supported, no containers and other elastic cloud features were detailed. The
fault tolerance support was not mentioned. Interoperability among existing tools is also
absent.

In 2018, Sean McClure wrote a magazine report with the title ”GUI-fying the Machine
Learning Workflow: Towards Rapid Discovery of Viable Pipelines” McClure (2018). He
developed a Web rapid prototype solution for data scientists, where R and Python functions
are wrapped and added to a pipeline using a simple Graphical User Interface (GUI). The
solution is a Web based alternative where drag-and-drop operations are possible and it
runs in the cloud using containers, thus fault tolerant. The Gui-fy solution supports
some specific ML components for training, evaluation, pre-processing and visualization
ML steps. Sometimes the data scientist is responsible for selecting and writing their own
ML components. No automatic orchestration of services was done. There is no catalog of
existing ML/DM tools to be used, so interoperability was not addressed. No unsupervised
or semi-supervised service discovery and service composition of analytical components for
building workflows were mentioned.

In Vahi et al. (2019), the authors presented a scientific workflow tool for Pegasus Work-
1http://ws.clarin-pl.eu

http://ws.clarin-pl.eu
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flow Management System Deelman et al. (2015). The idea is to deploy, thus reproduce,
scientific workflows in several cloud environments, so independent of OS and Computer
architectures. The tool is containerized, supporting technologies such as Docker Merkel
(2014), Singularity Kurtzer et al. (2017) and Shifter Jacobsen and Canon (2015). Unfortu-
nately, all containers images are transferred via data network to the execution host and not
build on host. The authors did not inform the existence of specific ML/DM components
to be used on the workflows, simplifying the development. The user development tool is
not designed for Web, thus it requires manual installations and updates, as well as it does
not run in all devices, specially the mobile ones. Furthermore, no orchestration service was
mentioned in such a work (discovery and composition services).

Recently, the platform Kubeflow was presented Bisong (2019). It is created to en-
hance and simplify the process of deploying ML workflows on Kubernetes Hightower et al.
(2017). Thus, it is a containerized solution designed for cloud environments and with con-
tainer orchestration service. It enables a visual Web interface for deployments of existing
workflows. One of its main advantage is its interoperability, working with Chainer Tokui
et al. (2015), Jupyter Kluyver et al. (2016), Katib Zhou et al. (2019), MXNet Chen et al.
(2015), PyTorch Paszke et al. (2019), TensorRT Vanholder (2016) and TensorFlow Abadi
et al. (2016). Scheduler and timer components are feasible in Kubeflow. Unfortunately,
the pipelines are coded on these existing tools and only deployed on Kubeflow, so there is
no way to develop the pipelines on it. This way, workflows with multiple pipelines coded
using several ML tools are impossible. Another limitation is the absence of ML orchestra-
tion services from the existing ecosystem tools and this is because Kubeflow only deploys
existing workflows as black boxes.

The TensorFlow Extended (TFX) Baylor et al. (2017) is a general-purpose machine
learning platform implemented at Google. One of its main goals is to produce one machine
learning platform for many learning tasks and for that it adopts the TensorFlow tool Abadi
et al. (2016), which provides full flexibility for implementing any type of model architecture.
TFX supports several continuation strategies that result from the interaction between data
visitation and warm-starting options. Data visitation can be configured to be static or
dynamic (over a rolling range of directories). Warm-starting initializes a subset of model
parameters from a previous state. Model validation must be coupled with data validation
in order to detect corrupted training data and thus prevent bad models from reaching
production. On this direction, TFX provides implementations of these components that
encode best practices observed in many production pipelines. Since TFX is a TensorFlow
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extension, it adopts the same programming style, thus no visual pipeline is supported,
including visual Web development support. Heterogeneity is not the core of TFX, so it
does not have an interoperable REST API to invoke ML services and it does not handle
different ML tools, like PyTorch or Scikit-learn, in a single workflow. No scheduler and
observer services are performed for each pipe of a single pipeline, this way the data scientist
cannot observe the state or schedule the pipe of complex workflows. Finally, there is no
evidence of service orchestration on TFX.

Airflow Apache (2021) is a lightweight workflow manager, initially developed by AirBnB
Guttentag (2019), and in sequence supported by Apache Incubator. It executes each work-
flow as a directed acyclic graph (DAG) of tasks. The tasks are usually atomic and are not
supposed to share any resources with each other; therefore, they can be run independently.
The DAG describes relationships between the tasks and defines their order of execution.
The DAG objects are initiated from Python scripts placed in a designated folder. Airflow
has a modular architecture and can distribute tasks to an arbitrary number of workers
and across multiple servers while adhering to the task sequence and dependencies speci-
fied in the DAG. Unlike many of the more complicated platforms, Airflow imposes little
overhead, is easy to install, and can be used to run task-based workflows in various en-
vironments ranging from stand-alone desktops and servers to Amazon or Google cloud
platforms. Unfortunately, the data scientist cannot adopt multiple ML tools, like Tensor-
Flow, Scikit-learn or PyTorch, to produce their pipelines in Python. They also cannot
observe the pipelines steps executions remotely, transparently and using an interoperable
strategy. There is no visual development of ML pipelines on the Web, so only Python code,
including reusable analytical components, are feasible. It does not have a REST API for
interoperable services and there is no evidence of service orchestration on it. On the other
hand, it has schedulers and a vast amount of third-party integrator components.

The Amazon SageMaker Liberty et al. (2020) is another market-leader in terms of
at scale ML platforms for pipeline deployment and development. It supports incremental
training, resumable and elastic learning as well as automatic hyper-parameter optimization.
SageMaker assumes distributed streaming data and a shared model state. The combina-
tion of a streaming model and shared state enables a convenient and simple abstraction
for distributed learning algorithms. As a result, large scale learning algorithms can be
integrated by implementing only three functions, namely, initialize, update, and finalize.
This way, no visual ML components are possible to build Web pipelines. Furthermore,
the update function is simultaneously executed on many machines in parallel, and must
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be implemented such that the updates on partitions of the input stream can be merged
together. This requirement is very complex for many data scientists, once parallelism is
explicitly introduced and it is well known that concurrence, data partition and some other
high performance programming skills are not very simple. The heterogeneity is performed
in some level, since any existing ML algorithm in any tool can be executed, but an interop-
erable REST API for multi-language service calls is not addressed. The SageMaker is from
Amazon, so it runs on AWS cloud environment and we do not have information about its
cloud portability or even its container or container orchestrator solutions portability.

Mahout was first announced in 2008 and at that time it focused on MapReduce pro-
gramming style. Recently, a new release Anil et al. (2020) offered a domain-specific lan-
guage for declarative machine learning in cluster environments and its name is Samsara
Schelter et al. (2016). Samsara allows its users to specify programs using a set of common
matrix abstractions and linear algebraic operations, which at the same time integrate with
existing dataflow operators. Mahout does not consider visual ML components. Low level
services deployment are not addressed. It operates over clouds and containers, but without
orchestration services. Multiple ML solutions are not feasible in a single workflow. Web
designs, including a REST API, are not included. The Samsara programming skills are the
main drawback of Mahout because the new matrix and linear algebra features integration
with the old MapReduce features is not quite simple.

The scope of this work does not include auto ML, but it is important to highlight that
we have found just one paper describing a library to write pipelines for such a purpose and
its name is Katib Zhou et al. (2019). It can be deployed on cloud using Kubeflow Bisong
(2019), thus it runs on containers and is designed for large scale. Basically, Katib imple-
ments the following pipes for its data scientists: "Suggestion, which provides the topology
of the next candidate or the modification decisions of the previous architecture to Model-
Manager, which constructs the model and sends it to Trial. Then the model is evaluated
and the performance metrics are fed back to Suggestion, starting a new iteration"Zhou
et al. (2019). A detailed study about the algorithms used to implement auto ML emerging
technology is found in He et al. (2019).

The Learning Orchestra system differentiates from the literature in terms of providing
a full stack of services to facilitate and streamline the data scientist activities or pipeline
steps, varying from low level services, like cloud, container and container orchestration, to
high level services, like ready to use model API services, tuning and training services and
so forth. These low and high level services are implemented using three existing players
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established worldwide: Scikit-learn, Spark-ML and TensorFlow. A single API enables an
integration layer of high level services and several scripts enable the deploy and execution
of low level services. Complex workflows can emerge from several pipelines using several
tools and deployed on different cloud environments running lightweight containers.

Traditional pipelines, composed of tasks like data cleaning, data transformation, data
enrichment, model training, hyperparameters tuning, model evaluating, and model’s pre-
diction, the last representing the production phase, can coexist with existing models trained
and tuned previously by Google and Facebook, for instance, on Learning Orchestra. In
the literature, this flexibility is quite rare. Very often, only low level or high level services
are investigated, as we detailed in this chapter. Sometimes only the automation of services
is the interest, like in Katib. None of the existing works enable different ML tools to be
used during a single workflow construction using the same interoperable API. As we can
see, the literature is different from the present works.

Two limitations of our presented system are: it is not designed to build neural networks
from scratch and it does not support auto ML on its API. For the first limitation, the
Learning Orchestra API has the builder service to encapsulate Spark-ML or TensorFlow
codes that could be the construction of a deep neural network, but as we can see the
API is not designed for that. In the next chapter, we detail how the Learning Orchestra
system architecture is organized, how its services communicate and how its scripts are
executed/configured.



Chapter 4

Development

In this chapter, it is detailed the Learning Orchestra architecture, this way how its com-
ponents are organized and how they interact. Besides the architecture, several examples
of how we can use the Learning Orchestra services are presented at the end of the chapter.

4.1 Architecture

The Learning Orchestra architecture is organized into layers, precisely into eight layers
as Figure 4.1 illustrates.

Figure 4.1: Learning Orchestra architecture
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4.1.1 The Virtual Machine (VM) Layer

The VM represents the first layer, this way the lowest abstraction level of the Learning
Orchestra system where the OS type, network configuration, memory capacity, number of
cores on each virtual CPU or GPU and disk technology are applied. The Cloud environment
turns the deploy and the maintainability of the systems a bit easier due to its elastic
property. The Google Cloud Platform (GCP) and the AWS Platform are the two biggest
players nowadays in Cloud Computing industry, so we decided to operate using GCP, but
the Learning Orchestra is compatible with AWS infrastructure and any other public Cloud
Computing platform.

The Learning Orchestra needs to be executed on Linux Debian and requires at least a
cluster composed of VMs with 4GB of RAM and 64GB of disk space. It is important to
stress that the ML model drives the deployment, so if the model is huge or if the input
dataset is huge, the amount of disk space and RAM capacity, as well as the number of cores
and VMs will increase. From the data scientist perspective, this layer is almost transparent,
i.e., no detailed configuration is necessary. In summary, we just need to configure an elastic
cluster environment, composed of VMs of any size, similar to Figure 4.2.

Figure 4.2: GCP cluster configuration example
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4.1.2 Container Orchestrator

The second layer is responsible for the container orchestration, where services like dis-
covery of ML services, precisely the gateway routes, cluster deployment, on demand cluster
resize, services migration from one container to other and issues related with network are
covered. There are two leaders nowadays: Docker Swarm Naik (2016) and Kubernetes
Hightower et al. (2017). We decided to use Docker Swarm to scale the Learning Orchestra
services.

To simplify all containers management, we decided to use Portainer Portainer (2021).
It enables to manage the global cluster state, including delete images and volumes, track
the memory/CPU usage on each container, and observe the microservices and VMs of
the cluster. It is deployed with Learning Orchestra, so transparent for the data scientist.
It is available through the IP address and port 9000. All these software dependencies
and Docker cluster tuning issues are configured via Docker Swarm configuration file, so
Learning Orchestra has its own Docker Swarm configuration file.

4.1.3 Containers

Once we have deployed the container orchestrator, its necessary to deploy the contain-
ers. We have choose the Docker container technology Merkel (2014) due to its popularity
and simplicity. Besides that, Docker Swarm and Docker containers are build from the same
company, thus with high compatibility.

Figure 4.3 details the idea inside a container in the Learning Orchestra system. Basi-
cally, we have processing containers and storage containers. On each container we have an
image previously mounted, so we have Spark Zaharia et al. (2010), Scikit-learn Pedregosa
et al. (2011), TensorFlow Abadi et al. (2016) and MongoDB Chodorow (2013) images on
two containers type that can be replicated over the deployed VMs and managed by the
Docker Swarm, as explained previously. The system backend was developed using Python
Van Rossum and Drake (2011), this way all images contain such a language interpreter.
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Figure 4.3: Learning Orchestra container types

The processing container has a Spark-ML, Scikit-learn or TensorFlow job doing any of
their responsibilities. There are processing jobs running only Python code and it is because
the data scientists need customized data transformations and dataset manipulations. Very
often the processing jobs read the inputs from MongoDB and store the outputs back to
the database or in a volume transparently managed by Docker Swarm, i.e., Docker Swarm
manages the volume access on the network, so any job can access any volume transparently.
This strategy is useful for two reasons: first, it maintains the intermediate information safe
during a ML pipeline; second, it enables notifications via MongoDB.

The MongoDB storage system is responsible for publishing updates to components
named Observers (explained later in this chapter). These updates occur on MongoDB and
using a collection concept. A collection is a set of documents and each document is a set of
entries. MongoDB is well designed for JSON format and it stores collections of documents.
When a collection is updated, MongoDB notifies its clients, so we created a way for Learning
Orchestra users observe collections changes pretty simple. Learning Orchestra supports
storage fault tolerance and for that there is always two copies of MongoDB running, one
for read/write operations and the other just for read operations. Synchronization aspects
are done by a microservice, named referee, on a separate container, thus transparent for
the data scientist.

From the data scientist perspective, the container configuration of the Learning Or-
chestra is performed as follows: First, it is necessary to have a Docker Swarm cluster,



4. Development 22

configured according to any existing Web tutorial. On the manager machine of the cluster,
you must install the Docker Compose configuration file. Next, you need to clone the source
code from Learning Orchestra1 and, as root user, you have to run the file run.sh, located
on root directory. This file deploys the Learning Orchestra system on Docker Swarm.

To improve the performance of the microservices running on Spark cluster, it is neces-
sary to scale the Spark worker and for that there are two ways: you can use the Docker
Command Line Interface (CLI) or you can edit the configuration file. We illustrate the
option using the configuration file. Before you run the run.sh file, you must set the number
of replicas of the Spark worker on the docker−compose.yml file, located on root directory,
precisely at line 155 of such a file. The default value are three replicas, but this number
must be changed according to your ML model requirements and cluster resources. After
this configuration setup, you just need to run the run.sh file.

4.1.4 Existing Libraries, Frameworks and Middlewares

This is not really a layer, but it is important to explain due to Learning Orchestra
heterogeneity capacity. It represents the wrapped solutions, regardless it is a model con-
figuration step or a dataset transform step in a pipeline. There are several examples of
existing tools (libraries, frameworks and middewares) to develop the pipes of a ML pipeline.
On this work, we adopt the algorithms from Spark MLlib Meng et al. (2016), Scikit-learn
Pedregosa et al. (2011) and TensorFlow Abadi et al. (2016). We understand that the cat-
alog of possibilities for the data scientist is a fundamental requirement for the Learning
Orchestra system.

4.1.5 Services

There are eleven services types and they are: Dataset, Model, Transform, Explore,
Tune, Train, Evaluate, Predict, Builder, Observe and Function. Each service is composed
at least of four microservices: one to insert or run the service, one to search for metadata
or content about the service previously executed, one to delete the service from Learning
Orchestra and one to update some information about the service.

The service types details:
1https://github.com/learningOrchestra/learningOrchestra

 https://github.com/learningOrchestra/learningOrchestra
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• Dataset: Responsible to obtain a dataset. External datasets are stored on MongoDB
or on volumes using an Uniform Resource Locator (URL). Dataset service enables
the use of csv format datasets or generic format datasets.

• Model: Responsible for loading machine learning models from existing repositories.
It is useful to be used to configure a TensorFlow or Scikit-learn object with a tuned
and pre-trained models, like the pre-trained deep learning models provided by Google
or Facebook, trained on huge instances, for example. On the other hand, it is also
useful to load a customized/optimized neural network developed from scratch by a
data scientist team.

• Transform: Responsible for a catalog of tasks, including embedding, normalization,
text enrichment, bucketization, data projection and so forth. Learning Orchestra has
its own implementations for some services and implement other transform services
from TensorFlow and Scikit-learn.

• Explore: The data scientist must perform exploratory analysis to understand their
data and see the results of their executed actions. So, Learning Orchestra supports
data exploration using the catalog provided by TensorFlow and Scikit-learn tools,
including histogram, clustering, t-SNE, PCA, and others. All outputs of this step
are plottable.

• Tune: Performs the search for an optimal set of hyperparameters for a given model.
It can be made through strategies like grid-search, random search, or Bayesian opti-
mization.

• Train: Probably it is the most computational expensive service of an ML pipeline,
because the models will be trained for best learn the subjacents patterns on data. A
diversity of algorithms can be executed, like Support Vector Machine (SVM), Ran-
dom Forest, Bayesian inference, K-Nearest Neighbors (KNN), Deep Neural Networks
(DNN), and many others.

• Evaluate: After training a model, it is necessary to evaluate it’s power to generalize to
new unseen data. For that, the model needs to perform inferences or classification on
a test dataset to obtain metrics that more accurately describe the capabilities of the
model. Some common metrics are precision, recall, f1-score, accuracy, mean squared
error (MSE), and cross-entropy. This service is useful to describe the generalization
power and to detect the need for model calibrations.
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• Predict: The model can run indefinitely. Sometimes feedbacks are mandatory to
reinforce the train step, so the Evaluate services are called multiple times. This is
the main reason for a production pipe and, consequently, a service of such a type.

• Builder: Responsible to execute Spark-ML entire pipelines in Python, offering an
alternative way to use the Learning Orchestra system just as a deployment alternative
and not an environment for building ML workflows composed of pipelines.

• Observe: Represents a catalog of collections of Learning Orchestra and a publish/-
subscribe mechanism. Applications can subscribe to these collections to receive no-
tifications via observers.

• Function: Responsible to wrap a Python function, representing a wildcard for the
data scientist when there is no Learning Orchestra support for a specific ML service.
It is different from Builder service, since it does not run the entire pipeline. Instead,
it runs just a Python function of Scikit-learn or TensorFlow models on a cluster
container. It is part of future plans the support of functions written in R language.

Figure 4.4 illustrates how complex the pipelines can become. They form a workflow
of services. Note that, each pipeline has a logical clock, precisely the Dataset and Model
service, thus it can schedule its execution for the future, enabling the data scientist to
program pipelines at different time. The formed graph has dependencies among pipes, but
it also has concurrency opportunities to run the pipes in parallel or distributed over mul-
tiple containers. The Learning Orchestra API is asynchronous, thus useful for concurrent
development.

The observers enable notifications at any step of any pipeline, i.e., at any MongoDB
collection update after some pipes runs. As we can see, many opportunities emerge from
the ten service types. The Function service is not present, since it can be called before
or after any step of the five pipelines illustrated in Figure 4.4. As we mentioned, it is a
wildcard very useful when there is no Learning Orchestra support for a specific service.

4.1.6 API Gateway

This layer represents a way to simplify the URL syntax, avoiding to expose internal
design or implementation issues. For instance, to load a dataset the data scientist must per-
form a POST API call like this - ’IPaddress/api/learningOrchestra/v1/dataset/csv/’.



4. Development 25

Figure 4.4: Learning Orchestra workflow composed of five pipelines

Internally, the Learning Orchestra system can call any microservice implementation, in-
cluding third party alternatives. It is an elegant way to isolate user demands from technical
issues, improving maintainability, extensibility and testability.

We have selected the KrakenD gateway KrakenD (2021) and it is configured on run.sh

file of Learning Orchestra, so the data scientist does not need extra configuration demands.

4.1.7 Learning Orchestra REST API

There are eleven services types on Figure 4.1 and all of them are called following three
simple rules. The rules for URL syntax are:

• rule one: Scikit-learn, TensorFlow or Spark-ML services have the tool name on the
URL (Ex. ’IPaddress/api/learningOrchestra/v1/transform/scikitlearn/’,
’IPaddress/api/learningOrchestra/v1/builder/sparkml/’ and
’IPaddress/api/learningOrchestra/v1/train/tensorflow/’). Since these tools
implement several alternatives for tune, train, predict, transform and other service
types, the URL does not contain the service name on such API calls. The JSON
message has all the tool ML method call particularities;
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• rule two: The URL suffix can contain or not the service name when
such a service is implemented internally, i.e., a service implemented
by Learning Orchestra team. Ex. Dataset service and Transform/Ex-
plore services are also provided internally, thus they have the follow-
ing URLs: ’IPaddress/api/learningOrchestra/v1/transform/projection/’,
’IPaddress/api/learningOrchestra/v1/explore/histogram/’ and
’IPaddress/api/learningOrchestra/v1/dataset/csv/’;

• rule three: The Function service is a Python alternative for the data scientist.
Other programming languages will be supported by Learning Orchestra in fu-
ture versions, so we decided to inform the language adopted on the URL (Ex.
’IPaddress/api/learningOrchestra/v1/function/python/’).

The REST API calls are composed of JSON objects on their requests and responses.
There are POST, GET, PUT, PATCH and DELETE HTTP requests. Each service type
(Ex. train or tune) is composed of at least four microservices, as mentioned before, rep-
resenting the Create, Retrieve, Update and Delete operations (CRUD) for each service
type. The POST request is used to proceed an operation, i.e., a train, transform or explore
pipe of a pipeline. All POST requests are asynchronous, this way the API caller receives
an acknowledgment, indicating the URL to obtain the final result forward. Each service
type has at least one GET HTTP request to search for an existing train, predict or any
other pipeline step metadata information. Besides that, all service types have a DELETE
and PUT/PATCH requests to enable all CRUD operations. Only the GET request is
synchronous because the other requests may take long execution periods.

This work is not a tutorial about Learning Orchestra API microservices, thus we decided
to write the API using a specification. We decided to adopt the Open API Initiative
API (2021). The server used to code and host the Learning Orchestra system API is
Swagger Hub Hub (2021). Observer REST CRUD services, as well as the other API
service types illustrated in Figure 4.1 are detailed at - https://app.swaggerhub.com/
apis-docs/learningOrchestra/learningOrchestra/v1.0.

There are two ways to wait for an API call: you can use the acknowledgment mes-
sage with the URL to get the final result and proceed successive HTTP requests of GET
type until a valid result is returned. There is a more elegant and efficient way to adopt
an Observer, where the Learning Orchestra offers two Observer options: the Python Ob-
server component to be imported on data scientist code and used accordingly to wait

https://app.swaggerhub.com/apis-docs/learningOrchestra/learningOrchestra/v1.0
https://app.swaggerhub.com/apis-docs/learningOrchestra/learningOrchestra/v1.0
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for train, projection, tune or any other ML API call. There is also a REST API call
using JSON objects to observe the conclusion of a ML job submitted previously - IPad-
dress/api/learningOrchestra/v1/observe/. The Observer is implemented using MongoDB
client, where notifications of collections updates are performed without blocking the client
with successive job results checks.

The Observe API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/observe/ - informs a pipe to be
observed (tune, predict, train, evaluate or any other pipe of a pipeline);

• method GET: IPaddress/api/learningOrchestra/v1/observe/ - retrieves all observed
pipes metadata stored in Learning Orchestra;

• method GET: IPaddress/api/learningOrchestra/v1/observe/{pipename} - retrieves
a specific observed pipe metadata stored in Learning Orchestra;

• method DELETE: IPaddress/api/learningOrchestra/v1/observe/{pipename} -
deletes a specific observed pipe stored in Learning Orchestra.

The Dataset API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/dataset/csv - downloads a csv
format dataset using an URL;

• method GET: IPaddress/api/learningOrchestra/v1/dataset/csv - retrieves all csv
datasets metadata stored in Learning Orchestra;

• method GET: IPaddress/api/learningOrchestra/v1/dataset/csv/{datasetname} - re-
trieves a specific csv dataset metadata stored in Learning Orchestra;

• method DELETE: IPaddress/api/learningOrchestra/v1/dataset/csv/{datasetname}
- deletes a specific csv dataset stored in Learning Orchestra;

• method POST: IPaddress/api/learningOrchestra/v1/dataset/generic - downloads a
generic dataset in any format from an url;

• method GET: IPaddress/api/learningOrchestra/v1/dataset/generic - retrieves all
generic datasets metadata downloaded and stored in Learning Orchestra;
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• method GET: IPaddress/api/learningOrchestra/v1/dataset/generic/{datasetname}
- retrieves a specific dataset metadata downloaded and stored in Learning Orchestra;

• method DELETE: IPaddress/api/learningOrchestra/v1/dataset/generic/{datasetname}
- deletes a specific dataset in Learning Orchestra;

The Transform API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/transform/projection - creates
a projected dataset from a previous inserted dataset;

• method GET: IPaddress/api/learningOrchestra/v1/transform/projection - retrieves
all projections metadata performed previously;

• method GET: IPaddress/api/learningOrchestra/v1/transform/projection/{datasetname}
- retrieves a specific projection metadata performed previously;

• method DELETE: IPaddress/api/learningOrchestra/v1/transform/projection/{datasetname}
- deletes a specific projection created previously;

• method PATCH: IPaddress/api/learningOrchestra/v1/transform/dataType - up-
dates the types of some dataset fields created previously;

• method POST: IPaddress/api/learningOrchestra/v1/transform/scikitlearn - creates
a transformed binary object in a volume using a previous inserted dataset. For that,
it invokes an existing Scikit-learn transform method. Any successive API call must
use Scikit-learn, since the stored binary object format is only compatible with such
a tool;

• method GET: IPaddress/api/learningOrchestra/v1/transform/scikitlearn - retrieves
all transformations metadata performed previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/transform/scikitlearn/{datasetname}
- retrieves a specific transformation metadata performed previously using Scikit-
learn;

• method DELETE: IPaddress/api/learningOrchestra/v1/transform/scikitlearn/{datasetname}
- deletes a specific transformation created previously using Scikit-learn;
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• method PATCH: IPaddress/api/learningOrchestra/v1/transform/scikitlearn/{datasetname}
- updates a specific transformation created previously using Scikit-learn. The trans-
form operation is re-executed;

• method POST: IPaddress/api/learningOrchestra/v1/transform/tensorflow - creates
a transformed binary object in a volume using a previous inserted dataset. For that,
it invokes an existing TensorFlow transform method. Any successive API call must
use TensorFlow, since the stored binary object format is only compatible with such
a tool;

• method GET: IPaddress/api/learningOrchestra/v1/transform/tensorflow - retrieves
all transformations metadata performed previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/transform/tensorflow/{datasetname}
- retrieves a specific transformation metadata performed previously using Tensor-
Flow;

• method DELETE: IPaddress/api/learningOrchestra/v1/transform/tensorflow/{datasetname}
- deletes a specific transformation created previously using TensorFlow;

• method PATCH: IPaddress/api/learningOrchestra/v1/transform/tensorflow/{datasetname}
- updates a specific transformation created previously using TensorFlow. The trans-
form operation is re-executed.

The Function API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/function/python - executes a
Python function, regardless it is used Scikit-learn or TensorFlow methods inside
such a function. The output is a binary object stored in a volume. Any successive
API call must use Scikit-learn or TensorFlow, since the stored binary object format
is only compatible with such tools;

• method GET: IPaddress/api/learningOrchestra/v1/function/python - retrieves all
Python functions metadata executed previously;

• method GET: IPaddress/api/learningOrchestra/v1/function/python/{functionname}
- retrieves a specific Python function metadata executed previously;

• method DELETE: IPaddress/api/learningOrchestra/v1/function/python/{functionname}
- deletes a specific function result created previously;
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• method PATCH: IPaddress/api/learningOrchestra/v1/function/python/{functionname}
- updates a specific function executed previously. The function is re-executed.

The Explore API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/explore/tensorflow - creates an
explore image plot visualization in a volume using a previous object. For that, it
invokes an existing TensorFlow explore method and converts the result in an image
plot;

• method GET: IPaddress/api/learningOrchestra/v1/explore/tensorflow - retrieves a
specific explore image plot performed previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/explore/tensorflow/{objectname}/metadata
- retrieves all explore metadata performed previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/explore/tensorflow/{objectname}
- retrieves a specific explore image plot performed previously using TensorFlow;

• method DELETE: IPaddress/api/learningOrchestra/v1/explore/tensorflow/{objectname}
- deletes a specific explore image plot created previously using TensorFlow;

• method PATCH: IPaddress/api/learningOrchestra/v1/explore/tensorflow/{objectname}
- updates a specific explore image plot created previously using TensorFlow. The
explore operation is re-executed.

• method POST: IPaddress/api/learningOrchestra/v1/explore/scikitlearn - creates an
explore image visualization in a volume using a previous object. For that, it invokes
an existing Scikit-learn explore method and converts the result in an image plot.

• method GET: IPaddress/api/learningOrchestra/v1/explore/scikitlearn - retrieves all
explore metadata performed previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/explore/scikitlearn/{objectname}/metadata
- retrieves a specific explore metadata performed previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/explore/scikitlearn/{objectname}
- retrieves a specific explore image plot performed previously using Scikit-learn;
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• method DELETE: IPaddress/api/learningOrchestra/v1/explore/scikitlearn/{objectname}
- deletes a specific explore image plot created previously using Scikit-learn;

• method PATCH: IPaddress/api/learningOrchestra/v1/explore/scikitlearn/{objectname}
- updates a specific explore image plot created previously using Scikit-learn. The
explore operation is re-executed;

• method POST: IPaddress/api/learningOrchestra/v1/explore/histogram - creates a
histogram from a previous inserted dataset;

• method GET: IPaddress/api/learningOrchestra/v1/explore/histogram - retrieves all
histograms metadata performed previously;

• method GET: IPaddress/api/learningOrchestra/v1/explore/histogram/{datasetname}
- retrieves a specific histogram metadata performed previously;

• method DELETE: IPaddress/api/learningOrchestra/v1/explore/histogram/{datasetname}
- deletes a specific histogram created previously;

The Model API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/model/tensorflow - loads a ML
model in a volume using the TensorFlow API. For that, it invokes an existing Tensor-
Flow method. Any successive API call must use TensorFlow, since the stored binary
object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/model/tensorflow - retrieves all
models metadata created previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/model/tensorflow/{modelname}
- retrieves a specific model metadata created previously using TensorFlow;

• method DELETE: IPaddress/api/learningOrchestra/v1/model/tensorflow/{modelname}
- deletes a specific model object created previously using TensorFlow;

• method PATCH: IPaddress/api/learningOrchestra/v1/model/tensorflow/{modelname}
- updates a specific model object created previously using TensorFlow. The model
creation operation is re-executed.
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• method POST: IPaddress/api/learningOrchestra/v1/model/scikitlearn - loads a ML
model in a volume using the Scikit-learn API. For that, it invokes an existing Scikit-
learn method. Any successive API call must use Scikit-learn, since the stored binary
object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/model/scikitlearn - retrieves all
models metadata created previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/model/scikitlearn/{modelname}
- retrieves a specific model metadata created previously using Scikit-learn;

• method DELETE: IPaddress/api/learningOrchestra/v1/model/scikitlearn/{modelname}
- deletes a specific model object created previously using Scikit-learn;

• method PATCH: IPaddress/api/learningOrchestra/v1/model/scikitlearn/{modelname}
- updates a specific model object created previously using Scikit-learn. The model
creation operation is re-executed.

The Tune API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/tune/tensorflow - creates a tune
binary object in a volume using a previous object. For that, it invokes an existing
TensorFlow tune method. Any successive API call must use TensorFlow, since the
stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/tune/tensorflow - retrieves all
tune metadata performed previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/tune/tensorflow/{objectname} -
retrieves a specific tune metadata performed previously using TensorFlow;

• method DELETE: IPaddress/api/learningOrchestra/v1/tune/tensorflow/{objectname}
- deletes a specific tune object created previously using TensorFlow;

• method PATCH: IPaddress/api/learningOrchestra/v1/tune/tensorflow/{objectname}
- updates a specific tune object created previously using TensorFlow. The tune
operation is re-executed.
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• method POST: IPaddress/api/learningOrchestra/v1/tune/scikitlearn - creates a
tune binary object in a volume using a previous object. For that, it invokes an
existing Scikit-learn tune method. Any successive API call must use Scikit-learn,
since the stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/tune/scikitlearn - retrieves all
tune metadata performed previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/tune/scikitlearn/{objectname} -
retrieves a specific tune metadata performed previously using Scikit-learn;

• method DELETE: IPaddress/api/learningOrchestra/v1/tune/scikitlearn/{objectname}
- deletes a specific tune object created previously using Scikit-learn;

• method PATCH: IPaddress/api/learningOrchestra/v1/tune/scikitlearn/{objectname}
- updates a specific tune object created previously using Scikit-learn. The tune
operation is re-executed.

The Train API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/train/tensorflow - creates a
train binary object in a volume using a previous object. For that, it invokes an
existing TensorFlow train method. Any successive API call must use TensorFlow,
since the stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/train/tensorflow - retrieves all
train metadata performed previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/train/tensorflow/{objectname} -
retrieves a specific train metadata performed previously using TensorFlow;

• method DELETE: IPaddress/api/learningOrchestra/v1/train/tensorflow/{objectname}
- deletes a specific train object created previously using TensorFlow;

• method PATCH: IPaddress/api/learningOrchestra/v1/train/tensorflow/{objectname}
- updates a specific train object created previously using TensorFlow. The train
operation is re-executed.
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• method POST: IPaddress/api/learningOrchestra/v1/train/scikitlearn - creates a
train binary object in a volume using a previous object. For that, it invokes an
existing Scikit-learn train method. Any successive API call must use Scikit-learn,
since the stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/train/scikitlearn - retrieves all
train metadata performed previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/train/scikitlearn/{objectname}
- retrieves a specific train metadata performed previously using Scikit-learn;

• method DELETE: IPaddress/api/learningOrchestra/v1/train/scikitlearn/{objectname}
- deletes a specific train object created previously using Scikit-learn;

• method PATCH: IPaddress/api/learningOrchestra/v1/train/scikitlearn/{objectname}
- updates a specific train object created previously using Scikit-learn. The train
operation is re-executed.

The Predict API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/predict/tensorflow - creates a
predict binary object in a volume using a previous object. For that, it invokes an
existing TensorFlow predict method. Any successive API call must use TensorFlow,
since the stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/predict/tensorflow - retrieves all
predict metadata performed previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/predict/tensorflow/{objectname}
- retrieves a specific predict metadata performed previously using TensorFlow;

• method DELETE: IPaddress/api/learningOrchestra/v1/predict/tensorflow/{objectname}
- deletes a specific predict object created previously using TensorFlow;

• method PATCH: IPaddress/api/learningOrchestra/v1/predict/tensorflow/{objectname}
- updates a specific predict object created previously using TensorFlow. The predict
operation is re-executed.
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• method POST: IPaddress/api/learningOrchestra/v1/predict/scikitlearn - creates a
predict binary object in a volume using a previous object. For that, it invokes an
existing Scikit-learn predict method. Any successive API call must use Scikit-learn,
since the stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/predict/scikitlearn - retrieves all
predict metadata performed previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/predict/scikitlearn/{objectname}
- retrieves a specific predict metadata performed previously using Scikit-learn;

• method DELETE: IPaddress/api/learningOrchestra/v1/predict/scikitlearn/{objectname}
- deletes a specific predict object created previously using Scikit-learn;

• method PATCH: IPaddress/api/learningOrchestra/v1/predict/scikitlearn/{objectname}
- updates a specific predict object created previously using Scikit-learn. The predict
operation is re-executed.

The Evaluate API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/evaluate/tensorflow - creates an
evaluate binary object in a volume using a previous object. For that, it invokes an
existing TensorFlow evaluate method. Any successive API call must use TensorFlow,
since the stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/evaluate/tensorflow - retrieves
all evaluate metadata performed previously using TensorFlow;

• method GET: IPaddress/api/learningOrchestra/v1/evaluate/tensorflow/{objectname}
- retrieves a specific evaluate metadata performed previously using TensorFlow;

• method DELETE: IPaddress/api/learningOrchestra/v1/evaluate/tensorflow/{objectname}
- deletes a specific evaluate object created previously using TensorFlow;

• method PATCH: IPaddress/api/learningOrchestra/v1/evaluate/tensorflow/{objectname}
- updates a specific evaluate object created previously using TensorFlow. The eval-
uate operation is re-executed.
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• method POST: IPaddress/api/learningOrchestra/v1/evaluate/scikitlearn - creates
an evaluate binary object in a volume using a previous object. For that, it invokes an
existing Scikit-learn evaluate method. Any successive API call must use Scikit-learn,
since the stored binary object format is only compatible with such a tool;

• method GET: IPaddress/api/learningOrchestra/v1/evaluate/scikitlearn - retrieves
all evaluate metadata performed previously using Scikit-learn;

• method GET: IPaddress/api/learningOrchestra/v1/evaluate/scikitlearn/{objectname}
- retrieves a specific evaluate metadata performed previously using Scikit-learn;

• method DELETE: IPaddress/api/learningOrchestra/v1/evaluate/scikitlearn/{objectname}
- deletes a specific evaluate object created previously using Scikit-learn;

• method PATCH: IPaddress/api/learningOrchestra/v1/evaluate/scikitlearn/{objectname}
- updates a specific evaluate object created previously using Scikit-learn. The evalu-
ate operation is re-executed.

The Builder API service summary:

• method POST: IPaddress/api/learningOrchestra/v1/builder/sparkml - creates a
builder pipeline binary object in a volume. For that, it invokes several existing
Spark MLlib ML methods;

• method GET: IPaddress/api/learningOrchestra/v1/builder/sparkml - retrieves all
builder metadata performed previously using Spark MLlib;

• method GET: IPaddress/api/learningOrchestra/v1/builder/sparkml/{objectname} -
retrieves a specific builder metadata performed previously using Spark MLlib;

• method DELETE: IPaddress/api/learningOrchestra/v1/builder/sparkml/{objectname}
- deletes a specific builder object created previously using Spark MLlib;

• method PATCH: IPaddress/api/learningOrchestra/v1/builder/sparkml/{objectname}
- updates a specific builder object created previously using Spark MLlib. The builder
pipeline operation is re-executed.
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4.1.8 Learning Orchestra Clients

The last layer of Figure 4.1 is represented by several clients in different programming
languages or tools, like Insomnia Insomnia (2021), to test REST APIs. This layer repre-
sents a way to simplify even more the Learning Orchestra API microservices presented on
previous section. Each independent company or volunteer can design and implement its
own clients with different microservices composition strategies.

We have developed one client in Python and it is used on the next section to develop the
pipeline examples of this work. Such a Python client interfaces documentation and code are
available at (repository - https://github.com/learningOrchestra/pythonClient) and
(documentation - https://learningorchestra.github.io/pythonClient/. We omit its
details in this section, since on Section 4.2 we have explained its utilization during the
examples explanation.

4.2 Pipeline Examples

In this section, we present three examples to illustrate how to write pipelines for Learn-
ing Orchestra using a Python Client.

4.2.1 A Pipeline using the Builder service

The first example uses the Titanic dataset obtained from Kaggle repository 2, which
is a web platform containing thousands of datasets and several challenges of data science.
The Titanic dataset is the content for one challenge 3, where the target is to predict which
passenger survived in the Titanic disaster using the data of each passenger and the label
survived or not. The dataset contains the fields:

• PassengerId - The id from each tuple, beginning in id 0 and finishing in last tuple
count.

• Pclass - Ticket class, value 1 to first class, 2 to second class and 3 to third class.

• Name - The name of passenger, where each tuple has a unique name.

• Sex - The passenger sex, so the field has the "male" or "female" values.
2https://www.kaggle.com/
3https://www.kaggle.com/c/titanic/overview

https://github.com/learningOrchestra/pythonClient
https://learningorchestra.github.io/pythonClient/
https://www.kaggle.com/
https://www.kaggle.com/c/titanic/overview
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• Age - Age in years of a passenger, and the training dataset has 89 unique age values,
but the test dataset has 80 unique age values.

• SibSp - Number of siblings and spouses aboard the Titanic and there are 7 unique
values.

• Parch - Number of parents and children aboard the Titanic. The training dataset
has 7 unique values and the test dataset has 8 unique values.

• Ticket - Ticket number, where the training dataset has 681 unique values and the
test dataset has 363 unique values.

• Fare - Passenger fare, where the training dataset has 248 unique values and the test
dataset has 170 unique values.

• Cabin - Cabin number, where the training dataset has 148 unique values and the test
dataset has 77 unique values.

• Embarked - Port of Embarkation, where C value represents Cherbourg, Q value
represents Queenstown and S value represents Southampton

The Titanic was splitted out into two datasets, the training and the test ones, where
the training has 891 tuples and the test has 418 tuples.

The Dataset, Builder, Projection and DataType Learning Orchestra services are used
to build the Titanic pipeline using the Python Client to simplify even more the REST API
access. The cluster IP is also required to provide an access (see Lines 1 to 6).

1 from learning_orchestra_client.dataset.csv import DatasetCsv

2 from learning_orchestra_client.transform.projection import TransformProjection

3 from learning_orchestra_client.transform.data_type import TransformDataType

4 from learning_orchestra_client.builder import BuilderSparkMl

6 CLUSTER_IP = "http://35.226.126.122"

After import all Python Client modules and define the cluster IP, we start to download
the datasets. For that, the Client method call insert_dataset_async is performed twice,
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one to download the train csv dataset and the other to download the test csv dataset. Most
of API services of Learning Orchestra are asynchronous, this way a wait synchronization
barrier is fundamental to guarantee a correct execution of any pipe step. Lines 19 and 20
illustrate the wait conditions for the datasets download step.

8 dataset_csv = DatasetCsv(CLUSTER_IP)

9

10 dataset_csv.insert_dataset_async(

11 url="https://filebin.net/r4b6z6sganz2opsh/train.csv?t=9d3lp7jm",

12 dataset_name="titanic_training",

13 )

14 dataset_csv.insert_dataset_async(

15 url="https://filebin.net/r0c41p538us5fcrz/test.csv?t=td68r02h",

16 dataset_name="titanic_testing"

17 )

18

19 dataset_csv.wait(dataset_name="titanic_training")

20 dataset_csv.wait(dataset_name="titanic_testing")

21

22 print(dataset_csv.search_dataset_content("titanic_training", limit=1,

23 pretty_response=True))

24 print(

25 dataset_csv.search_dataset_content("titanic_testing", limit=1,

26 pretty_response=True))

Next, we need to perform two projection activities, one to create a new dataset
from the original train dataset using only the attributes Passenger_Id, Pclass, Age,
SibSp, Parch, Fare, Name, Sex, Embarked and Survived (see Lines 24 to 40). The
remaining test dataset attributes are removed when we call the Python Client method
remove_dataset_attributes_async (see Lines 42 to 45). In sequence, we perform the
second projection activity, where the attribute Survived is removed from test dataset. For
that, same method call is performed, i.e., the same set of attributes defined on variable
required_columns is used to create a new test dataset, excluding the attribute Survived

(see Lines 49 to 52). The synchronization barriers are done using the wait method calls
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(Lines 54 and 55) and we print the pipeline step results (Lines 57 to 63).

28 transform_projection = TransformProjection(CLUSTER_IP)

29 required_columns = [

30 "PassengerId",

31 "Pclass",

32 "Age",

33 "SibSp",

34 "Parch",

35 "Fare",

36 "Name",

37 "Sex",

38 "Embarked",

39 "Survived"

40 ]

41

42 transform_projection.remove_dataset_attributes_async(

43 dataset_name="titanic_training",

44 projection_name="titanic_training_projection3",

45 fields=required_columns)

46

47 required_columns.remove("Survived")

48

49 transform_projection.remove_dataset_attributes_async(

50 dataset_name="titanic_testing",

51 projection_name="titanic_testing_projection",

52 fields=required_columns)

53

54 transform_projection.wait(projection_name="titanic_training_projection")

55 transform_projection.wait(projection_name="titanic_testing_projection")

56

57 print(transform_projection.search_projection_content(

58 projection_name="titanic_training_projection", limit=1,

59 pretty_response=True))

60



4. Development 41

61 print(transform_projection.search_projection_content(

62 projection_name="titanic_testing_projection", limit=1,

63 pretty_response=True))

Before the Builder service we need to change some attribute types, since some of them
must be numbers. The Client method update_dataset_type_async is called twice, one
for the test dataset (see Lines 75 to 77) and other for the train dataset (see Lines 81 to
83). The attributes Age, Fare, Parch, PassengerId, Pclass and SipSp are used for the
test dataset and we include the Survived attribute for the train dataset. Wait conditions
API calls are performed similar to other pipe steps (Lines 85 and 86).

65 transform_data_type = TransformDataType(CLUSTER_IP)

66 type_fields = {

67 "Age": "number",

68 "Fare": "number",

69 "Parch": "number",

70 "PassengerId": "number",

71 "Pclass": "number",

72 "SibSp": "number"

73 }

74

75 transform_data_type.update_dataset_type_async(

76 dataset_name="titanic_testing_projection",

77 types=type_fields)

78

79 type_fields.update({"Survived": "number"})

80

81 transform_data_type.update_dataset_type_async(

82 dataset_name="titanic_training_projection",

83 types=type_fields)

84

85 transform_data_type.wait(dataset_name="titanic_testing_projection")

86 transform_data_type.wait(dataset_name="titanic_training_projection")
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Finally, we call the Builder service to make predictions on test dataset and using the
training dataset. Such a service requires a modeling code, which is a Pyspark code inserted
in a JSON tag. The data scientist can opt to insert the code URL, this way the Learning
Orchestra download and run it. The code represents a Spark entire pipeline ready to be
deployed and executed.

The Builder service needs only the train dataset, the test dataset, the modeling code
(the user defined pre-processing code to prepare the input data for fed the classifiers) and
finally the classifiers to be used. In our example, five classifiers (lr, dt, gb, rf , and nb) run
in parallel over all available cluster containers and transparently (line 193).

188 builder = BuilderSparkMl(CLUSTER_IP)

189 result = builder.run_spark_ml_async(

190 train_dataset_name="titanic_training_projection",

191 test_dataset_name="titanic_testing_projection",

192 modeling_code=modeling_code,

193 model_classifiers=["LR", "DT", "GB", "RF", "NB"])

194

195 for prediction in result["result"]:

196 builder.wait(dataset_name=prediction)

197 print(builder.search_builder_register_predictions(

198 builder_name=prediction, limit=1, pretty_response=True))

The Pyspark code was inspired from a web page 4, but to avoid code duplication, it
was refactored. First, several libraries must be imported, precisely some SQL functions
and ML features (Lines 88 to 97).

88 modeling_code = '''

89 from pyspark.ml import Pipeline

90 from pyspark.sql.functions import (

91 mean, col, split,

92 regexp_extract, when, lit)

4https://databricks-prod-cloudfront.cloud.databricks.com/public/
4027ec902e239c93eaaa8714f173bcfc/5722190290795989/3865595167034368/8175309257345795/
latest.html

https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/5722190290795989/3865595167034368/8175309257345795/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/5722190290795989/3865595167034368/8175309257345795/latest.html
https://databricks-prod-cloudfront.cloud.databricks.com/public/4027ec902e239c93eaaa8714f173bcfc/5722190290795989/3865595167034368/8175309257345795/latest.html
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93

94 from pyspark.ml.feature import (

95 VectorAssembler,

96 StringIndexer

97 )

Next, we need to rename the "Survived" column in both datasets for the default name
"label", used by Pyspark for the predictions (Lines 102 and 103). A list to handle both
datasets was created to facilitate the remaining operations in the code (Line 104).

99 TRAINING_DF_INDEX = 0

100 TESTING_DF_INDEX = 1

101

102 training_df = training_df.withColumnRenamed('Survived', 'label')

103 testing_df = testing_df.withColumn('label', lit(0))

104 datasets_list = [training_df, testing_df]

In Titanic datasets, there are misspelled initials in "Name" field, so we created a new
field named "Initial" and extracted the initial names from the "Name" field using a regex
(Lines 105 to 110). Next, we use two catalogs of initials, one miss spelled (Lines 112 to
117) and one correct (Lines 118 to 123). They are used to replace incorrect occurrences in
both datasets (Lines 124 to 126).

106 for index, dataset in enumerate(datasets_list):

107 dataset = dataset.withColumn(

108 "Initial",

109 regexp_extract(col("Name"), "([A-Za-z]+)\.", 1))

110 datasets_list[index] = dataset

111

112 misspelled_initials = [

113 'Mlle', 'Mme', 'Ms', 'Dr',

114 'Major', 'Lady', 'Countess',

115 'Jonkheer', 'Col', 'Rev',

116 'Capt', 'Sir', 'Don'
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117 ]

118 correct_initials = [

119 'Miss', 'Miss', 'Miss', 'Mr',

120 'Mr', 'Mrs', 'Mrs',

121 'Other', 'Other', 'Other',

122 'Mr', 'Mr', 'Mr'

123 ]

124 for index, dataset in enumerate(datasets_list):

125 dataset = dataset.replace(misspelled_initials, correct_initials)

126 datasets_list[index] = dataset

The "Age" field has several null values, so instead of using null values we decided to
approximate the ages. If the "Initials" field contains Miss, the age will be 22, Mr will be
replaced by 33 years and so forth (Lines 129 to 133). Only the null values are replaced
(Lines 134 to 141).

129 initials_age = {"Miss": 22,

130 "Other": 46,

131 "Master": 5,

132 "Mr": 33,

133 "Mrs": 36}

134 for index, dataset in enumerate(datasets_list):

135 for initial, initial_age in initials_age.items():

136 dataset = dataset.withColumn(

137 "Age",

138 when((dataset["Initial"] == initial) &

139 (dataset["Age"].isNull()), initial_age).otherwise(

140 dataset["Age"]))

141 datasets_list[index] = dataset

The "Embarked" field also has null values, but as the histogram highlighted, the most
frequent value is S, so we decided to replace the null values with S value.
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144 for index, dataset in enumerate(datasets_list):

145 dataset = dataset.na.fill({"Embarked": 'S'})

146 datasets_list[index] = dataset

To analyze the survived rate and compare it with the family size of a passenger, we
created the fields "Family_Size" and "Alone", where the "Family_Size" is the sum of
"SibSp" and "Parch" fields, and the "Alone" has the value 1 when "Family_Size" has no
member.

149 for index, dataset in enumerate(datasets_list):

150 dataset = dataset.withColumn("Family_Size", col('SibSp')+col('Parch'))

151 dataset = dataset.withColumn('Alone', lit(0))

152 dataset = dataset.withColumn(

153 "Alone",

154 when(dataset["Family_Size"] == 0, 1).otherwise(dataset["Alone"]))

155 datasets_list[index] = dataset

The string columns "Sex", "Embarked" and "Initial" must be converted to numbers
and for that we use Pyspark StringIndexer. The Learning Orchestra Data Type service
converts numbers typed as strings into numbers, so it is quite different from Pyspark
StringIndexer.

158 text_fields = ["Sex", "Embarked", "Initial"]

159 for column in text_fields:

160 for index, dataset in enumerate(datasets_list):

161 dataset = StringIndexer(

162 inputCol=column, outputCol=column+"_index").\

163 fit(dataset).\

164 transform(dataset)

165 datasets_list[index] = dataset

To avoid fit a model with string fields, it will be removed the string columns used by
StringIndexer in the previous step.
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168 non_required_columns = ["Name", "Embarked", "Sex", "Initial"]

169 for index, dataset in enumerate(datasets_list):

170 dataset = dataset.drop(*non_required_columns)

171 datasets_list[index] = dataset

Now, we need use the Pyspark VectorAssembler to join the training dataset fields in
one field named "features".

177 assembler = VectorAssembler(

178 inputCols=training_df.columns[:],

179 outputCol="features")

We also need to configure the VectorAssembler to avoid null values and for that the
skip wildcard is used.

180 assembler.setHandleInvalid('skip')

The last part of the modeling_code has two variables: "features_training" and "fea-
tures_testing". They are used in the training step and the test step, respectively. We
applied the Pyspark randomSplit method to split the tuples of the training dataset in
80% of tuples for "features_training" and 20% of tuples for "features_evaluation", used
to calculate some prediction performance metrics. The seed is used for the reproducibility
of the split process.

182 features_training = assembler.transform(training_df)

183 (features_training, features_evaluation) =\

184 features_training.randomSplit([0.8, 0.2], seed=33)

185 features_testing = assembler.transform(testing_df)

186 '''
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4.2.2 A Text Classification Pipeline Example

In this example, we adapt a sentiment analysis code available on Kaggle 5 to provide a
text classification example using the IMDb dataset. We have adapted the Python code that
uses the Scikit-learn library using the Learning Orchestra API to illustrate its integration
with this ML solution.

The IMDb dataset has basically two important columns for this pipeline, one with
the text containing the fan/critical reviews and the other with a label indicating positive
or negative reviews. Figure 4.5 illustrates a sample of the dataset content. The label 1
indicates a positive post and the label 0 indicates a negative post.

Figure 4.5: IMDb sample

The Dataset, Function, Model, Train e Prediction Learning Orchestra services was
imported by the Python Client to execute the IMDb pipeline. Besides that, a cluster IP
was defined (see Lines 1 to 7).

1 from learning_orchestra_client.dataset.csv import DatasetCsv

2 from learning_orchestra_client.function.python import FunctionPython

3 from learning_orchestra_client.model.scikitlearn import ModelScikitLearn

4 from learning_orchestra_client.train.scikitlearn import TrainScikitLearn

5 from learning_orchestra_client.predict.scikitlearn import PredictScikitLearn

6

7 CLUSTER_IP = "http://34.68.100.96"

5https://www.kaggle.com/avnika22/imdb-perform-sentiment-analysis-with-scikit-learn

https://www.kaggle.com/avnika22/imdb-perform-sentiment-analysis-with-scikit-learn
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The first activity is the dataset download and for that the Dataset service is used,
precisely the Client insert_dataset_syncmethod (see Lines 10 to 16). The original dataset
was reduced due to the cluster VMs size used on our experiments, so instead of 40k text
reviews, we have used 1k text reviews. We have maintained the original percentage of
positive and negative posts to guarantee a similar result with the literature using this
dataset.

10 dataset_csv = DatasetCsv(CLUSTER_IP)

11

12 dataset_csv.insert_dataset_sync(

13 dataset_name="sentiment_analysis",

14 url="https://drive.google.com/u/0/uc?"

15 "id=1PSLWHbKR_cuKvGKeOSl913kCfs-DJE2n&export=download",

16 )

After download the dataset, we have analyzed the percentage of positive and negative
reviews on the dataset. A Function service is called (see Lines 32 to 35) using the Client
run_function_sync method. The Function Learning Orchestra service receives a Python
code and executes it. An important observation is the utilization of the wildcard $ on the
value of the parameters function tag. It indicates that the Learning Orchestra kernel must
access a collection named sentiment_analysis on MongoDB and execute the Python code
using it. The result of the percentage of positive and negative reviews is printed on Lines
18 and 41.

18 function_python = FunctionPython(CLUSTER_IP)

19

20 explore_dataset = '''

21 pos=data[data["label"]=="1"]

22 neg=data[data["label"]=="0"]

23

24 total_rows = len(pos) + len(neg)

25

26 print("Positive = " + str(len(pos) / total_rows))

27 print("Negative = " + str(len(neg) / total_rows))

28
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29 response = None

30 '''

31

32 function_python.run_function_sync(

33 name="sentiment_analysis_exploring",

34 parameters={"data": "$sentiment_analysis"},

35 code=explore_dataset)

36

37 print(function_python.search_execution_content(

38 name="sentiment_analysis_exploring",

39 limit=1,

40 skip=1,

41 pretty_response=True))

In sequence, another Python function is executed by the Function service using the
run_function_sync Client (see Lines 96 to 102). As mentioned before, the Learning
Orchestra API services are most asynchronous, but the Client offered synchronous and
asynchronous method calls to facilitate the data scientist ML pipeline development. On
this IMDb pipeline example we have choose the synchronous option to illustrate both
options.

The pre-processing activity executed by the Function service is a Python code named
dataset_preprocessing and it is responsible, in the beginning, for removing the HTML
tags and the emoticons (Lines 47 to 56). Next, the nltk.stem.porter module is used, so
all words are converted to their base meaning (Ex. running is converted into run). This
is for simplifying the data and removing unnecessary complexities in the text data (Lines
58 to 65). The TfidV ectorizer is imported on Line 70 and it is responsible to convert the
collection of raw texts into a matrix of TF-IDF features (Lines 70 to 79). The train and
test subsets are created from the matrix data to prepare the input for the classifiers (Lines
81 to 93). Finally, the Learning Orchestra Function service is called by the Client using
the run_function_sync, so the previous pre-processing steps are executed on a specific
VM container.
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43 dataset_preprocessing = '''

44 import re

45

46

47 def preprocessor(text):

48 global re

49 text = re.sub("<[^>]*>", "", text)

50 emojis = re.findall("(?::|;|=)(?:-)?(?:\)|\(|D|P)", text)

51 text = re.sub("[\W]+", " ", text.lower()) + \

52 " ".join(emojis).replace("-", "")

53 return text

54

55

56 data["text"] = data["text"].apply(preprocessor)

57

58 from nltk.stem.porter import PorterStemmer

59

60 porter = PorterStemmer()

61

62

63 def tokenizer_porter(text):

64 global porter

65 return [porter.stem(word) for word in text.split()]

66

67

68 from sklearn.feature_extraction.text import TfidfVectorizer

69

70 tfidf = TfidfVectorizer(strip_accents=None,

71 lowercase=False,

72 preprocessor=None,

73 tokenizer=tokenizer_porter,

74 use_idf=True,

75 norm="l2",

76 smooth_idf=True)
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77

78 y = data.label.values

79 x = tfidf.fit_transform(data.text)

80

81 from sklearn.model_selection import train_test_split

82

83 X_train, X_test, y_train, y_test = train_test_split(x, y,

84 random_state=1,

85 test_size=0.5,

86 shuffle=False)

87

88 response = {

89 "X_train": X_train,

90 "X_test": X_test,

91 "y_train": y_train,

92 "y_test": y_test

93 }

94 '''

95

96 function_python.run_function_sync(

97 name="sentiment_analysis_preprocessed",

98 parameters={

99 "data": "$sentiment_analysis"

100 },

101 code=dataset_preprocessing

102 )

After run the pre-processing steps, we need to build a model and for that we can use
the Learning Orchestra Model service. The Client method create_model_sync is used for
such a responsibility. In this pipeline, the Logistic Regression classifier is used to build the
model, so all of its parameters must be set during the model construction.

104 model_scikitlearn = ModelScikitLearn(CLUSTER_IP)

105
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106 model_scikitlearn.create_model_sync(

107 name="sentiment_analysis_logistic_regression_cv",

108 module_path="sklearn.linear_model",

109 class_name="LogisticRegressionCV",

110 class_parameters={

111 "cv": 6,

112 "scoring": "accuracy",

113 "random_state": 0,

114 "n_jobs": -1,

115 "verbose": 3,

116 "max_iter": 500

117 }

118

119 )

Once the model has being created, the train step can be executed. The Learning Orches-
tra has integration with Scikit-learn and TensorFlow, so in this pipeline the Scikit-learn is
used and for that the Client method create_train_sync is executed (Lines 122 to 130). As
mentioned before, the wildcard $ indicates that the parameters X and Y are downloaded
from MongoDB using the respective values sentiment_analysis_preprocessed.X.train

and sentiment_analysis_preprocessed.Y.train. These values are generated on previous
steps of the pipeline and stored on MongoDB transparently.

121 train_scikitlearn = TrainScikitLearn(CLUSTER_IP)

122 train_scikitlearn.create_training_sync(

123 parent_name="sentiment_analysis_logistic_regression_cv",

124 name="sentiment_analysis_logistic_regression_cv_trained",

125 method_name="fit",

126 parameters={

127 "X": "$sentiment_analysis_preprocessed.X_train",

128 "y": "$sentiment_analysis_preprocessed.y_train",

129 }

130 )
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After a train step, we could call a predict step, so the Client method
create_predict_sync is performed using the X.test as parameter (Lines 133 to 141).

132 predict_scikitlearn = PredictScikitLearn(CLUSTER_IP)

133 predict_scikitlearn.create_prediction_sync(

134 parent_name="sentiment_analysis_logistic_regression_cv_trained",

135 name="sentiment_analysis_logistic_regression_cv_predicted",

136 method_name="predict",

137 parameters={

138 "X": "$sentiment_analysis_preprocessed.X_test",

139 }

140

141 )

Finally, we evaluate the accuracy of the trained and tested model using the X.test and
Y.test outputs. For that, a Function Learning Orchestra API call is done using the Client
run_function_sync method (Lines 150 to 157). A print final step is done to see the
accuracy results (Lines 159 and 161).

143 logistic_regression_cv_accuracy = '''

144 from sklearn import metrics

145

146 print("Accuracy: ",metrics.accuracy_score(y_test, y_pred))

147

148 response = None

149 '''

150 function_python.run_function_sync(

151 name="sentiment_analysis_logistic_regression_cv_accuracy",

152 parameters={

153 "y_test": "$sentiment_analysis_preprocessed.y_test",

154 "y_pred": "$sentiment_analysis_logistic_regression_cv_predicted"

155 },

156 code=logistic_regression_cv_accuracy

157 )

158
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159 print(function_python.search_execution_content(

160 name="sentiment_analysis_logistic_regression_cv_accuracy",

161 pretty_response=True))

4.2.3 An Image Classification Pipeline Example

In this example, we adapted a code6 that uses the Keras framework to construct a
multiclass image classification model. We used the Learning Orchestra API to illustrate
an integration between our tool and the popular TensorFlow/Keras. Using the MNIST
dataset, we trained and evaluated a simple deep neural network.

In this work, not all the pipeline steps are present in an explicit manner because its
code length is extensive. To avoid showing all the code lines, we prefer to show only a few
most significant lines. For more detailed information, the entire code can be found at Git
repository7.

The obtained MNIST dataset is divided into four parts: train_images, test_images,
train_labels, and test_labels. Each part is compressed in an IDX file format, that is is a
format for vector and multidimensional matrices of numerical types.

In the first step of the pipeline, we download these four image dataset files (Lines 10
to 33). We need to extract these files’ information and store them into NumPy objects
to be processed by our Keras/TensorFlow model. For this task, we implemented the
”treat_dataset” function, which receives the file objects of an image file and a label file
and outputs a NumPy array for each of them (Lines 35 to 128).

A good practice to make a neural network’s convergence rate faster is normalizing the
input images’ pixels values. We convert the integer values of the interval [0, 255] of each
pixel to a new float interval of [0.0, 1.0] (Lines 130 to 155).

131 mnist_datasets_normalization = '''

132 import numpy as np

133 from tensorflow.keras.utils import to_categorical

134

135 test_images = test_images / 255.

6https://www.tensorflow.org/datasets/keras_example
7https://github.com/learningOrchestra/pythonClient/blob/main/examples/mnist.py

https://www.tensorflow.org/datasets/keras_example
https://github.com/learningOrchestra/pythonClient/blob/main/examples/mnist.py


4. Development 55

136 train_images = train_images / 255.

137

138

139 response = {

140 "test_images": test_images,

141 "test_labels": test_labels,

142 "train_images": train_images,

143 "train_labels": train_labels

144 }

145 '''

146

147 function_python.run_function_sync(

148 name="mnist_datasets_normalized",

149 parameters={

150 "train_images": "$mnist_datasets_treated.train_images",

151 "train_labels": "$mnist_datasets_treated.train_labels",

152 "test_images": "$mnist_datasets_treated.test_images",

153 "test_labels": "$mnist_datasets_treated.test_labels"

154 },

155 code=mnist_datasets_normalization)

After normalization, we defined simple neural network architecture with one hidden
layer. As we receive an input of shape 28 x 28, we defined a Flatten layer as the first layer
of our network to plain these values into 784 neurons. Next, a dense hidden layer with 128
neurons with ReLU activation function is set up. The hidden layer’s output is fed into our
output layer, a dense layer with ten neurons with softmax activation function, one neuron
for each target class, that is, on neuron for each possible digit (Lines 157 to 170).

158 model_tensorflow = ModelTensorflow(CLUSTER_IP)

159 model_tensorflow.create_model_sync(

160 name="mnist_model",

161 module_path="tensorflow.keras.models",

162 class_name="Sequential",

163 class_parameters={
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164 "layers":

165 [

166 "#tensorflow.keras.layers.Flatten(input_shape=(28, 28))",

167 "#tensorflow.keras.layers.Dense(128, activation='relu')",

168 "#tensorflow.keras.layers.Dense(10, activation='softmax')",

169 ]}

170 )

In the next pipeline step, we set up the compilation. Our model weights converge
guided by the Adam optimizer set up with an initial learning rate of 0.001. We compile our
model defining the loss function as the SparseCategoricalCrossentropy, used in multi-
class classification problems to compute the cross-entropy loss between the labels and
predictions. We defined this same function as the metric to be calculated during the
training phase. These functions are from the Keras framework.

174 model_compilation = '''

175 import tensorflow as tf

176 model.compile(

177 optimizer=tf.keras.optimizers.Adam(0.001),

178 loss=tf.keras.losses.SparseCategoricalCrossentropy(),

179 metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],

180 )

181

182 response = model

183 '''

184

185 function_python.run_function_sync(

186 name="mnist_model_compiled",

187 parameters={

188 "model": "$mnist_model"

189 },

190 code=model_compilation)
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Using the Keras models’ fit function, we split the training dataset in 10% for the
validation set and the remaining 90% for the training set and set up our model’s training
phase for six epochs long.

194 train_tensorflow = TrainTensorflow(CLUSTER_IP)

195 train_tensorflow.create_training_sync(

196 name="mnist_model_trained",

197 model_name="mnist_model",

198 parent_name="mnist_model_compiled",

199 method_name="fit",

200 parameters={

201 "x": "$mnist_datasets_normalized.train_images",

202 "y": "$mnist_datasets_normalized.train_labels",

203 "validation_split": 0.1,

204 "epochs": 6,

205 }

206 )

After training, we predicted the labels for the test images dataset, and for that, a
create_prediction Client method call is performed (Lines 208 to 218). The prediction uses
our trained model to infer each sample’s probabilities to belong to each digit class using the
Keras framework’s predict function. So, the output will return an array of ten probabilities
for each sample image. It is most likely an image belong to the class with the most higher
inferred probability value.

209 predict_tensorflow = PredictTensorflow(CLUSTER_IP)

210 predict_tensorflow.create_prediction_sync(

211 name="mnist_model_predicted",

212 model_name="mnist_model",

213 parent_name="mnist_model_trained",

214 method_name="predict",

215 parameters={

216 "x": "$mnist_datasets_normalized.test_images"

217 }

218 )
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The last step of our implemented pipeline is the evaluation of the model. So, we
calculated the metrics of loss and cross-entropy accuracy using the Keras framework. To
do that, we used our trained model, the test images dataset, and the correct test labels as
input (Lines 220 to 231).

221 evaluate_tensorflow = EvaluateTensorflow(CLUSTER_IP)

222 evaluate_tensorflow.create_evaluate_sync(

223 name="mnist_model_evaluated",

224 model_name="mnist_model",

225 parent_name="mnist_model_predicted",

226 method_name="evaluate",

227 parameters={

228 "x": "$mnist_model_predicted",

229 "y": "$$mnist_datasets_normalized.test_labels"

230 }

231 )
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Experiments

This chapter presents the cluster setup where we executed the Learning Orchestra
system and the performed experiments. All the pipelines described in Section 4.2 were
evaluated using the same cluster setup and one pipeline at the time.

5.1 Setup

The Learning Orchestra system was configured in a small cluster deployed in the GCP.
It is composed of three VMs running in the same network, and each VM has its own
external Internet Protocol (IP). The cluster configuration is presented in Table 5.1.

Table 5.1: VMs configuration

VM OS CPU Model CPU Cores System RAM System Storage
1 Debian 10 On Demand 2 vCPUs not shared 8GB 100GB
2 Debian 10 On Demand 2 vCPUs not shared 8GB 100GB
3 Debian 10 On Demand 2 vCPUs not shared 8GB 100GB

5.1.1 Container setup for Titanic pipeline

On such a cluster, we have deployed two different container configurations for different
Titanic pipeline experiments. One configuration with three Spark workers (Spark W)
- Figure 5.1 and a second configuration with just one Spark worker- Figure 5.2. We
adopt one Docker Swarm master and two Worker nodes on both configurations, i.e., one
Docker instance per VM. The other Spark containers named Spark C and Spark M are
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mandatory, and they represent the Spark client and master, respectively. These container
configurations are used to analyze the runtime when the number of containers increases.
LR, DT, GB, NB and RF represent the five classifiers executed transparently over the
containers and they are: Logistic Regression, Decision Tree, Gradient-Boosted Tree, Naive
Bayes and Random Forest. On both configurations, we deployed the MongoDB container
in the Docker Swarm master to avoid storage interference on the experiments.

Figure 5.1: First container configuration

Figure 5.2: Second container configuration
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5.1.2 Container setup for IMDb and MNIST pipelines

The remaining two pipelines described in Section 4.2 adopt the container configuration
illustrated by Figure 5.3. Basically, Scikit-learn and TensorFlow images are deployed, and
pipelines can use them accordingly. MongoDB is used to store metadata and datasets
produced by several steps. One container is deployed per each pipe of the pipeline; this
way, IMDb and MNIST have their own container setups using Model container or a Dataset
container, for instance.

The applications can operate concurrently and over several containers and VMs, but
this issue is the data scientist responsibility. We demonstrate some ways to achieve this
container operation setup during IMDb and MNIST explanations. If no intelligent pipeline
execution strategy is developed, the Learning Orchestra just distribute the containers over
the VMs, but the pipes run sequentially.

Figure 5.3: Third container configuration

5.2 Metrics

We calculate some metrics in our experiments: runtime, memory consumption, accu-
racy, loss, and F1 score. Each experiment used some of these metrics but not all of them.

• Runtime: represents the period during which a computer program is executing. In
our experiments, the runtimes are obtained from a single run in a single container
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running a single classifier or from the entire cluster, i.e., from all containers and all
classifiers concurrent runs.

• Memory Consumption: also called memory footprint, represents the main memory
that a program uses or references while running. In our experiments, the memory
consumption is obtained when the container is idle and running any program. The OS
memory usage and the Docker and any other infrastructure tool were not considered
in the results.

• Cross-entropy (Loss): commonly used in deep neural networks. It is the dif-
ference between the predicted value and the true value. Can be defined as
−
∑n

i=1

∑m
j=1 yi,jlog(pi,j), where yi,j equals 1 if sample i belongs to class j, other-

wise, it is equals 0. pi,j is model’s predicted probability of sample i belongs to class
j (Janocha and Czarnecki, 2017).

• Accuracy: Accuracy is also used as a statistical measure of how well a classification
test correctly identifies or excludes a condition. That is, the accuracy is the propor-
tion of correct predictions (both true positives and true negatives) among the total
number of cases examined (Metz, 1978). The formula for quantifying accuracy is:
(TP + TN)/(TP + TN + FP + FN), where TP is True positive; FP is False positive;
TN is True negative; FN is False negative. We want to predict if a passenger will
survive or not, thus a binary classification in the Titanic dataset.

• F1 score: The F1 score is the harmonic mean of precision and recall, is defined as
F1 = (2 × (P × R))/(P + R). P is the fraction of all positives predictions, which
are true positives, defined as P = TP/(TP + FP). The recall R is the fraction of all
actual positives that are predicted positive, and it is defined as R = TP/(TP + FN),
(Lipton et al., 2014).

5.3 Classifiers

It was used the following classifiers, but not on all pipelines: Logistic Regression, De-
cision Tree, Random Forest, Gradient Boosted Tree and Naive Bayes.

• Logistic Regression (LR): The logistic regression as a general statistical model was
originally developed and popularized primarily by Joseph Berkson Cramer (2002). It
is used to model the probability of a certain class or event occur, such as pass/fail,
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win/lose, alive/dead or healthy/sick. The method can be extended to determine
whether an image contains a cat, dog, lion and so forth. Each object being detected
in the image would be assigned a probability between 0 and 1, with a sum of one.

• Decision Tree (DT): It uses a decision tree (as a predictive model) to go from ob-
servations about an item (represented in the branches) to conclusions about the
item’s target value (represented in the leaves). One common algorithm was pre-
sented in 1986 by Quinlan Quinlan (1986). It is a top-down induction of decision
trees (TDIDT), considered by far the most common strategy for learning decision
trees from data.

• Random Forest (RF): Random decision forests are an ensemble learning method for
classification, regression and other tasks that operate by constructing a multitude of
decision trees at training time and outputting the class that is the mode of the classes
(classification) or mean prediction (regression) of the individual trees Ho (1998). The
first algorithm for random decision forests was created by Tin Kam Ho Ho (1995).

• Gradient Boosted Tree (GB): It is a machine learning technique for regression and
classification problems, which produces a prediction model in the form of an ensemble
of weak prediction models, typically decision trees. The idea of gradient boosting
originated by Leo Breiman Breiman (1997).

• Naive Bayes (NB): In statistics, Naive Bayes classifiers are a family of simple "prob-
abilistic classifiers" based on applying Bayes’ theorem with strong (naïve) indepen-
dence assumptions between the features, i.e., the models that assign class labels to
problem instances, represented as vectors of feature values, assume that the value of
a particular feature is independent of the value of any other feature, given the class
variable. Unfortunately, in 2006 a study showed that Bayes classification is outper-
formed by other approaches, such as boosted trees or random forests Caruana and
Niculescu-Mizil (2006).

5.4 Titanic Experiment

5.4.1 Dataset

Kaggle offers the Titanic data as two datasets, the training, and the test ones, where
the training has 891 tuples, and the test has 418 tuples. We split the training dataset
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at a ratio of 90% for training, and 10% of it was used to validate the training step. The
test dataset does not have labels, and we used it to submit the predictions to the Kaggle
platform.

We do not use any k-folds cross-validation in our evaluation steps to explain a model’s
generalization power. Still, it is part of future work to develop such methodology in the
Learning Orchestra’s evaluation step. We evaluate models using a single test dataset to
calculate the experiment metrics.

To report the memory consumption and runtime results, each run was repeated five
times and an average was calculated.

5.4.2 Runtime Results

The service Builder, precisely the POST microservice, runs five classifiers (LR, GB, DT,
NB and RF) in two VMs with four vCPUs in total, since the master Docker Swarm node
is responsible for MongoDB container, as mentioned before. The pipeline is compounded
by training, including the validation step and the test steps, and is performed for each
classifier sequentially. Each pipeline is performed concurrently with the others in a single
container and over the three container instances previously explained. In summary, an easy
alternative to perform concurrent pipeline executions is when you use different classifiers
to build different models.

The five runs for the training step, not including its validation, are illustrated in Table
5.2. In general, when we deploy three Spark W containers - Figure 5.1 - the runtimes are
quite similar. The last run took less time than the others, since the GCP maintains some
cache and other optimizations, even when we stop and suspend the containers after each
run. The Naive Bayes classifier proves to be a bit faster than the others and the literature
reinforced this behavior - "Maximum-likelihood training can be done by evaluating a closed-
form expression, which takes linear time, rather than by expensive iterative approximation
as used for many other types of classifiers."Russell and Norvig (2002).

The runtimes of the training-validation step are illustrated in Table 5.3. Since only
10% of the dataset was used during the validation, the runtimes are very small, but quite
similar as observed previously during the training step. The container configuration was
the same, i.e., three Spark W instances.

Finally, in Table 5.4 there are the runtimes of the test step, where the predictions were
done. This step is extremely fast since the models are already trained.
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Table 5.2: Classifiers training runtime

Execution LR GB DT NB RF

1 69.96 s 69.95 s 59.3 s 56.6 s 59.3 s
2 57.06 s 56.33 s 50.5 s 48.47 s 51.85 s
3 58.59 s 58.48 s 49.53 s 45.55 43.46 s
4 50.75 s 50.95 s 41.08 s 36.38 s 44.71 s
5 46.21 s 46.79 s 39.96 s 34.35 s 43.12 s
Average 56.51 s 56.5 s 48.07 s 44.27 s 48.48 s

Table 5.3: Classifiers train-validation runtime

Execution LR GB DT NB RF

1 11.81 s 10.51 s 13.18 s 13.71 s 11.51 s
2 11.26 s 7.73 s 12.25 s 12.94 s 11.95 s
3 9.66 s 11.29 s 12.14 s 12.64 s 14.11 s
4 9.32 s 10.51 s 11.14 s 12.59 s 9.31 s
5 8.12 s 8.81 s 10.57 s 8.67 s 10.82 s
Average 10.03 s 9.77 s 11.85 s 12.11 s 11.54 s

Table 5.4: Classifiers test runtime

Execution LR GB DT NB RF

1 0.47 s 0.34 s 0.12 s 1.53 s 0.17 s
2 0.09 s 0.55 s 0.06 s 0.08 s 0.08 s
3 0.09 s 0.15 s 0.14 s 0.44 s 0.79 s
4 0.08 s 0.04 s 0.10 s 0.14 s 0.10 s
5 0.15 s 0.13 s 0.19 s 0.13 s 0.30 s
Average 0.17 s 0.24 s 0.12 s 0.46 s 0.28 s

The previous runtimes were collected per process, i.e., per classifier in the container it
executed. It is interesting to verify the total runtime, i.e., from the client perspective and
including all network overheads, as well as the containers, VMs and other infrastructure
overheads. Table 5.5 illustrates these runtimes. In general, training, validation and test
steps took near 1.13 minute, but the total time took near 1.5 minute, so the overhead is
not so drastic, but this result is not conclusive. Larger models will better demonstrate
if this overhead continues to be small. The total time is collected in Spark C container,
where the Titanic application starts its execution.
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Table 5.5: Titanic runtime

Execution Spark Application
1 2 m
2 1.5 m
3 1.5 m
4 1.3 m
5 1.3 m
Average 1.52 m

Table 5.6 illustrates the training runtimes using the container configuration with just
one Spark W instance. As we can observe, the cluster running one processing container can
have similar runtimes or even be faster when it is compared with a cluster with three times
more processing containers - Table 5.2. This is because the number of tuples in Titanic
dataset is small and the concurrence of five classifiers in a single container over a VM with
2 vCPUs did not degrade the runtimes of them. To reinforce this assumption, we created a
hypothetical Titanic dataset with ten times more tuples to train. In this new scenario, the
container configuration with three Spark W instances was near 30% faster. In summary,
not always the decentralized container configuration is the best choice for running your
ML model.

Table 5.6: Classifiers training runtime with one Spark W instance

Execution LR GB DT NB RF

1 79.29 s 79.76 s 57.29 s 50.67 s 59.64 s
2 49.59 s 56.94 s 39.81 s 28.39 s 42.25 s
3 49.24 s 53.34 s 36.14 s 27.38 s 38.65 s
4 47.93 s 53.25 s 34.54 s 27.60 s 36.52 s
5 40.55 s 50.28 s 33.73 s 30.37 s 35.97 s
Average 53.18 s 58.71 s 40.3 s 32.88 s 42.6 s

5.4.3 Memory Consumption Results

During the experiments with three SparkW containers we decided to collect the memory
consumption of them before the classifiers run and during an execution. The results are
presented in Table 5.7. RAM idle indicates when the cluster is not running and RUN
running when the classifiers are running. On average, the Spark W instances increased
three times their memory consumption, proving that the Titanic model is very small. The
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Spark C container increased ten times its memory consumption, since it is responsible for
the JSON responses of all classifiers. The Spark master (Spark M) container maintained
its memory stable, as expected.

Table 5.7: Memory consumption

Consumption Spark C Spark M Spark W 1 Spark W 2 Spark W 3
RAM idle 68.86 MB 204.3 MB 189.4 MB 184.1 MB 166 MB
RAM running 767.8 MB 234.8 MB 768 MB 700 MB 720 MB

5.4.4 ML Metrics Results

Table 5.8 illustrates the validation result of the entire dataset for the five classifiers in
terms of accuracy and F1 score. The goal was to predict if a passenger will survive or not.

We used 10% of the original training dataset as a validation dataset and the remaining
samples for training. The implemented solution to this problem achieved good results in
the validation tests. The Gradient Boosting (GB) model obtained the best metrics scores,
with 82.5% for the accuracy and 82.4% for the F1 score. The worse results are obtained
by the Naive Bayes (NB) model, with 63.3% for the accuracy and 62.5% for the F1 score.

Table 5.8: Prediction metrics comparison

Classifier accuracy rate F1 score
LR 0.808 0.807
DT 0.796 0.795
RF 0.819 0.816
GB 0.825 0.824
NB 0.633 0.625

5.4.5 Samples Prediction Results

Table 5.9 illustrates the probability of prediction on the first 10 tuples from the Titanic
test dataset. In this example, we collected the probabilities arrays from RF classifier
results. The "probability 0" column has the predicted probability of sample belongs to
class 0 (Not Survived), and the "probability 1" column has the predicted probability of
sample belongs to class 1 (Survived).
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Table 5.9: Tuples Prediction Results

PassengerId probability 0 probability 1 prediction
892 0.98808 0.01191 0.0
893 0.88695 0.11304 0.0
894 0.99681 0.00318 0.0
895 0.98299 0.01700 0.0
896 0.88695 0.11304 0.0
897 0.98299 0.01700 0.0
898 0.89960 0.10039 0.0
899 1.0 0.0 0.0
900 0.83837 0.16162 0.0
901 0.98968 0.01031 0.0

5.4.6 Ranking survived Titanic results

The Titanic results was submitted to a worldwide competition organized by Kaggle.
This competition group several predictions submissions on Kaggle platform, making a
ranking based on accuracy results. When this text was edited, the competition had 34193
teams, and the Learning Orchestra titanic prediction submission was on 10652 position,
on Table 5.10.

Table 5.10: Classifiers score on Kaggle Challenge

Classifier Score
LR 0.77751
DT 0.76555
RF 0.77511
GB 0.75358
NB 0.65550

5.5 IMDb Experiment

IMDb (an acronym for Internet Movie Database) is an online database of information
related to films, television programs, home videos, video games, and streaming content
online – including cast, production crew and personal biographies, plot summaries, trivia,
ratings, and fan and critical reviews. The original dataset has 40000 review samples. As
described in Chapter 4, we have used a Logistic Regression Classifier model to evaluate the
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IMDb and calculate only the accuracy metric, achieving a score of 0.8904. It is a reasonable
result to a simple benchmark model. The Scikit-learn was used as the ML tool.

To evaluate the Learning Orchestra system in terms of runtime and memory consump-
tion, one simple alternative for the data scientist is evaluate the same ML pipeline in
terms of classifiers, but adopting different hyper-parameters on each classifier. This strat-
egy can evaluate if different Logistic Regression configurations can achieve similar ML
results. These IMDb pipelines are executed concurrently and distributed over the cluster
of containers illustrated by Figure 5.3. We have evaluated IMDb pipeline with different
values for the solver hyper-parameter, precisely using solver = {newton-cg, lbfgs, liblin-
ear, sag and saga}. More details about the solver and other hyper-parameters of Logistic
Regression using Scikit-learn 1.

Table 5.11: IMDb solvers runtime and memory consumption

Solver Runtime Memory
newton-cg 68.12s 1.791 GB
lbfgs 68.76s 1.641 GB
liblinear 70.7s 2.175 GB
sag 68.54s 2.340 GB
saga 69s 2.405 GB
all 5min 29s 2.833 GB

The results presented on Table 5.11 illustrated all IMDb pipeline runs. First, we per-
formed five pipeline runs using each solver of the Logistic Regression classifier and the
results demonstrated a similar runtime (approximately 70 seconds). In terms of memory
consumption, each pipeline consumed around 2GB of RAM. In the second experimental
round, we executed all previous five pipelines concurrently and the result was, as expected,
better than successive sequential runs. In summary, all five pipelines took around six min-
utes sequentially and five minutes and half concurrently over only two VMs with two cores
each. The memory consumption benefit was considerable, being the concurrent version
only 30% worse, but it runs five pipelines and not only one.

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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5.6 MNIST Experiment

The MNIST database (Modified National Institute of Standards and Technology
database) Deng (2012) is an image database of handwritten digits. This database is widely
used as a benchmark dataset for testing ML models for image processing systems in the
literature. It is composed of 60,000 training images and 10,000 testing images. Each sam-
ple is a 28× 28 pixels image of grayscale levels, so each pixel is represented by an integer
value between 0 and 255. There are a total of ten classes, one for each possible digit from
0 to 9.

We constructed a simple deep neural network as showed in 4.2.3. The training step
was performed for six epochs long using the training dataset split into 10% for validation
and the remaining samples as a training dataset. To evaluate the trained example model,
we used the testing dataset. We calculated the cross-entropy loss and the accuracy and
obtained the results, presenting them on Table 5.12. The obtained results are good for
a simple example of a deep neural network model, showing that only with one hidden
layer and without a single convolutional layer to extract features, the model achieved a
reasonable generalization power.

Table 5.12: Metrics Scores for MNIST experiment

Metric Score
Cross-entropy loss 0.069
Accuracy 0.979



Chapter 6

Conclusion

In this work, we present the Learning Orchestra system for ML development and de-
ployment. The alternative solution incentives the heterogeneity, since it has a REST API
where only JSON objects are exchanged. Furthermore, it has transparent support for
Scikit-Learn, TensorFlow and Spark MLlib, which are three standards of ML products
worldwide. A set of eleven useful services enable the construction of complex ML flows
composed of several pipelines. A unique script to deploy the Learning Orchestra over a set
of VMs simplifies the data scientist low level activity.

To demonstrate the system services expressibility, we developed three pipelines: Ti-
tanic, IMDb and MNIST. The Learning Orchestra API is asynchronous, so we decided to
implement a Python client with extra facilities, including synchronous and asynchronous
interoperable ML services. Many other clients using many other programming languages
are feasible with a REST API.

We have evaluated three scalable and simple techniques during the pipeline experiments.
The first one test multiple classifiers to produce a more accurate ML model. The second
technique tests the hyper-parameter values to identify the best solver in terms of accuracy.
Finally, we demonstrate how simple is to download multiple datasets concurrently and over
many containers, thus over several VMs. Multiple files are very normal when you want
to build a deep learning model. These three scalable techniques are very useful for data
scientists, regardless their interests.

The experiments conducted to evaluate the Learning Orchestra system considered ML
metrics, as well as runtime and memory consumption metrics. In general, the system
scales well and the techniques mentioned before really accelerates the pipelines. The mem-
ory consumption of concurrent solutions very often consume more memory than sequential
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solutions, but they enable multiple pipeline runs faster. In terms of ML, the results pre-
sented in this work are also competitive. For instance, the Titanic results achieved the
position 10652 in a competition with 34193 teams.

The rest of this chapter discusses the good, the bad and the ugly aspects of Learning
Orchestra and the last part of Conclusion details the future directions.

6.1 Discussion

In this section, the Learning Orchestra system is discussed in terms of design, imple-
mentation, deploy and tests. The good, bad and ugly aspects of the system are highlighted.

6.1.1 The good

The presented open-source solution works with different ML marked-leaders alterna-
tives, enabling the development of different pipelines using these alternatives into a single
workflow. The data scientists can have different programming skills, varying from a shallow
Python understanding where a loaded model of a previously trained dataset can be used
to work with a test dataset, from an advanced Python skill, where the data scientist can
use the Learning Orchestra API to tune, transform, explore, observe and model complex
deep learning flows.

The container architectural design enables fault tolerance, workload among VMs, and
the concurrent job runs. This last feature opens interesting opportunities to accelerate the
system. JSON technology has its good and bad aspects. The good is its programming
language interoperability.

Achieving good results with ML models on Titanic, IMDb, and MNIST datasets were
not the goals of this work, as cited in 1 Chapter, but they achieved reasonable results. Thus
they reinforced that the Learning Orchestra system produces correct ML results. Besides,
develops and deploy ML workflows over multiple container executions.

6.1.2 The bad

The bad issues related to Learning Orchestra are: JSON is verbose, thus predict, tune,
transform, explore, model, dataset, and all eleven services require a huge amount of code
to be configured, precisely the calls for the methods of the Scikit-learn and the TensorFlow
libraries.
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As many layers of abstraction a system has, as slower the system becomes. Gateways,
containers, VMs, JSON, HTTP protocol and so forth make the Learning Orchestra a bit
slower, but the world understand that the benefits of hardware in terms of price and quality
compensate.

The deployment of Learning Orchestra works only with Docker technology, so we do
not used Kubernetes deployment tool, like Kubeflow does.

The algorithms of the Scikit-learn and the TensorFlow libraries run in a single thread
and are not distributed. There are GPU extensions for TensorFlow, precisely for NVidia
boards, but it still runs in a single VM. TensorFlow integrates with Spark, but for dis-
tributed storage purposes. Its extension TFX Baylor et al. (2017) and the Horovod library
Sergeev and Del Balso (2018) alternative are good examples for both distributed train step
and large-scale train-predict-evaluate production pipelines for ML.

The Experiments Evaluations considered a very small cluster, thus very small datasets.
Bigger VMs and larger clusters to run, for instance, the 40k images of MNIST are funda-
mental.

6.1.3 The ugly

In Learning Orchestra, sometimes the VM volume is used to store binary files containing
Scikit-learn or TensorFlow information. There are two ways to map a volume for the
eleven ML service types: (i) the manager Docker Swarm container becomes the unique
valid volume. Thus all jobs use it to store their files. (ii) Each container has its own local
volume. The second alternative has a severe limitation. The Docker Swarm capabilities to
rearrange the containers, depending on the workload of each VM, and the fault-tolerance
recovery aspect, where containers return to the cluster on a different VM, cannot be used
because the ML jobs waste their volume references. A Distributed File System (DFS) layer
will fix alternative (ii) limitations.

MongoDB deployment nowadays is fault-tolerant in Learning Orchestra, but the current
system version does not include a MongoDB deployment using sharding improvements, thus
with no efficient distributed collection storage.

6.2 Future Directions

The Learning Orchestra system can be improved on different directions:
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• Besides Scikit-learn, Spark MLlib and TensorFlow core, the Learning Orchestra ker-
nel should support TFX and Horovod benefits;

• MongoDB deployment must include sharding option;

• A DFS layer using several containers must represent a virtual distributed volume.
The Hadoop HDFS Borthakur et al. (2008), for instance, can be used;

• Kubeflow Bisong (2019) deployment support should be included;

• New clients for different programming languages, like Java and JavaScript, are very
useful;

• The Function API service can include R support and not only Python;

• A visual Web interface to build and deploy ML workflows are mandatory;

• The support for pipe, pipeline and workflow collaboration via shared-resources among
multiple data scientists is a useful issue;

• Auto-ML flows should be supported by Learning Orchestra, thus services, similar to
Katib Zhou et al. (2019), are interesting alternatives;

• Larger experiments and different pipelines will discover new system strengths and
weakness.
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