
Universidade Federal de Ouro Preto
Instituto de Ciências Exatas e Aplicadas
Departamento de Computação e Sistemas

WEB solution for the management of
data related to the School Bus

Routing Problem

Matheus Teixeira Lemos

TRABALHO DE
CONCLUSÃO DE CURSO

ORIENTAÇÃO:
Rafael Frederico Alexandre

Julho, 2019
João Monlevade–MG

Matheus Teixeira Lemos

WEB solution for the management of data
related to the School Bus Routing Problem

Supervisor: Rafael Frederico Alexandre

Monografia apresentada ao curso de Sistemas de In-
formação do Instituto de Ciências Exatas e Aplicadas,
da Universidade Federal de Ouro Preto, como requi-
sito parcial para aprovação na Disciplina “Trabalho de
Conclusão de Curso II”.

Universidade Federal de Ouro Preto
João Monlevade
Julho de 2019

Catalogação: ficha.sisbin@ufop.edu.br

L557w Lemos, Matheus Teixeira.
 WEB solution for the management of data related to the School Bus Routing
Problem [manuscrito] / Matheus Teixeira Lemos. - 2019.

 50f.:

 Orientador: Prof. Dr. Rafael frederico Alexandre.

 Monografia (Graduação). Universidade Federal de Ouro Preto. Instituto de
Ciências Exatas e Aplicadas. Departamento de Computação e Sistemas de
Informação.

 1. Aplicações web. 2. Levantamentos de rotas. 3. Transporte escolar - ônibus .
4. Sistemas de recuperação da informação - Transportes. I. Alexandre, Rafael
frederico. II. Universidade Federal de Ouro Preto. III. Titulo.

 CDU: 004.9

Dedicated to my family, that supported me from behind, to my friends, who stood at my
side, and to my teachers, who guided me from ahead.

Acknowledgements

Thank you to all the people who helped me get to this point. And specially to
my parents, who provided me with the foundation I needed to start, to the friends and
colleagues who were always supporting, and to my supervisor Rafael Frederico Alexandre,
who went above and beyond the duties of any teacher. Without all of you I would not
have made it halfway here.

"True wisdom comes to each of us when we realize how little we understand about life,
ourselves, and the world around us" - Socrates

Abstract
The School Bus Routing Problem has been extensively studied in the recent years, due
mainly to its real world applications. It is concerned with the pick-up and delivery of
students to and from school subject to a set of constraints. Real-world applications of the
School Bus Routing Problem need a considerable amount of data that changes with every
year, such as which school each student is enrolled in. Such information could prove difficult
to manage without the help of tools for the management of data. This work presents the
development of one such WEB application to manage this data using React, AdminLTE,
Java, and PostgreSQL. The final result is an application that allows for the management
of students, schools, vehicles, and constraints related to the School Bus Routing Problem.

Key-words: School Bus Routing Problem. WEB development.

Resumo
O Problema de Roteamento de Ônibus Escolares tem sido extensivamente estudado nos
anos recentes devido, principalmente, às suas aplicações no mundo real. O problema foca
o transporte de estudantes para a escola e de volta, sujeito a um conjunto de restrições.
Aplicações reais do Problema de Roteamento de Ônibus Escolares necessitam de uma
quantidade considerável de informação que muda todos os anos, como, por exemplo,
em qual escola cada estudante esta matriculado. Manter estes dados pode se mostrar
impossível sem o auxilio de ferramentas para a gestão de dados. Este trabalho apresenta
o desenvolvimento de uma aplicação WEB para gerir tal informação utilizando React,
AdminLTE, Java e PostgreSQL. O resultado final é uma aplicação que permite a gestão
de estudantes escolas, veículos, e restrições relacionadas ao Problema de Roteamento de
Veículos Escolares.

Palavras chave: Problema de Roteamento de Ônibus Escolares. Desenvolvimento WEB.

List of figures

Figure 1 – Diagram depicting the modules of the project 14
Figure 2 – Example of a React component . 21
Figure 3 – The popularity scale of the 6 most well-known Javascript frameworks. . 22
Figure 4 – Demonstration page for AdminLTE Dashboard V2. 24
Figure 5 – Diagram showing the popularity of programing languages. 25
Figure 6 – Representations of the same resource in JSON and in XML 26
Figure 7 – Diagram of the partial lifecycle of a JWT, not including expiration. . . 27
Figure 8 – Entity Relationship Diagram of the database. 32
Figure 9 – UML class diagram describing the structure of the back-end. 32
Figure 10 – JSON returned after a request to the API. 33
Figure 11 – Generic structure of the components of the front-end. 34
Figure 12 – List of students on the town of Piúma. 35
Figure 13 – List of students on the town of Piúma with results filtered by name. . . 36
Figure 14 – Registration form for students. 36
Figure 15 – Component for the selection of addresses. 37
Figure 16 – Popup used for the selection of schools. 39
Figure 17 – Detailed structure of the components of the front-end. 50

List of abbreviations and acronyms

AJAX Asynchronous Javascript and XML

API Application Programming Interface

CRUD Create, Read, Update, and Delete

CSS Cascading Style Sheets

DAO Data Access Object

DOM Document Object Model

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HVRP Heterogeneous Fleet Vehicle Routing Problem

INEP Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira

JSON JavaScript Object Notation

JSX JavaScript XML

JVM Java Virtual Machine

JWT JSON Web Token

REST Representational State Transfer

SBRP School Bus Routing Problem

SOAP Simple Object Access Protocol

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

VGI Volunteered Geographic Information

VRP Vehicle Routing Problem

XML Extensible Markup Language

YAML YAML Ain’t Markup Language (sic)

Contents

1 INTRODUCTION . 12
1.1 Objectives . 13
1.2 Structure of this work . 14

2 LITERATURE REVIEW . 15
2.1 The Vehicle Routing Problem . 15
2.2 The School Bus Routing Problem . 15
2.2.1 Characteristics of the problem . 16
2.3 Technologies for the creation of web Apps 20
2.3.1 React . 21
2.3.2 AdminLTE . 23
2.3.3 Java . 23
2.3.4 REST . 24
2.3.5 PostgreSQL . 26
2.3.6 JSON Web Tokens . 26
2.3.7 Open Street Map and Nominatim . 27

3 DEVELOPMENT . 29
3.1 Back-end . 31
3.2 Front-end . 34
3.2.1 Main structure . 34
3.2.2 Simulations . 38
3.2.3 Students . 38
3.2.4 Schools . 39
3.2.5 Vehicles . 40
3.2.6 Users . 40
3.2.7 Parameters . 40

4 FINAL CONSIDERATIONS . 42
4.1 Future works . 42

REFERENCES . 44

APPENDIX 48

APPENDIX A – MATERIALS ELABORATED BY THE AUTHOR 49

12

1 Introduction

The vehicle routing problem (VRP) is a well-known combinatorial optimization
problem, and is concerned with finding optimal routes for allowing a fleet of vehicles
to service a number of clients, subject to side constraints (GOLDEN; RAGHAVAN;
WASIL, 2008). This is a NP-hard problem, which means that finding an optimal solution
is computationally unviable leading most research on the topic to focus on heuristic
approaches (PRINS, 2004).

Golden, Raghavan e Wasil (2008) describe a category of vehicle routing problems
known as “rich” VRPs, which are closer to real-world problems. These VRPs are char-
acterized by the presence of many constraints not present on the original problem, like
multiple depots, multiple trips, a heterogenous fleet of vehicles, and time constraints. The
school bus routing problem is one of those rich VRPs.

On the school bus routing problem, a fleet of vehicles has to visit a set of bus
stops, collect students and then deliver them at their respective schools. The reverse
process, picking the students at their schools and then delivering them at their bus stops
is usually analogous with only a few differences (LI; FU, 2002). Lack of proper planning
when utilizing school buses may lead not only to a waste of resources but also to great
discomfort to the students, who may spend hours on the buses (KANG et al., 2015).

There are many variants of the school bus routing problem, which can be roughly
categorized based on the characteristics of the problem. Such characteristics include the
number of schools (one or many), the surroundings (urban, rural, or both), the fleet (all
vehicles share the same characteristics or not), etc. The SBRP can also be categorized
based on its constraints, like the schedule of the schools (earliest and latest time for the
bus to arrive), the maximum time a student may spend on the vehicle, etc., and by its
objectives, for instance reducing the number of vehicles needed or the distance traveled
(PARK; KIM, 2010). For this work the following characteristics are considered: multiple
schools, rural surroundings, heterogeneous fleet, trips during the morning, afternoon and
night, students of different schools may be carried by the same bus, and special education
students are considered. The constraints include the vehicle capacity, maximum time
spent on the vehicle, maximum walking distance from the student’s house to the bus stop,
and the school schedule. Finally, the objective is the minimization of total costs, both by
reducing the number of buses and by reducing the total travel distance.

In order to successfully generate viable solutions the school bus routing problem,
a considerable amount of information is required, such as the geographical position of
students and schools, the characteristics of the fleet of vehicles, the schedules of each

Chapter 1. Introduction 13

school, as well as constraints placed on the problem, like the maximum distance between
a student’s house and their assigned bus stop. Such large amounts of data can quickly
become unmanageable without the assistance of tools. This work sought to develop a web
application that helps with the management of all the information necessary to solve the
school bus routing problem in a real-world setting, focusing mainly on the students, the
fleet, and the schools. So far as the author’s knowledge, no similar application exists today
on the brazilian market.

It is worth noting that this work was not concerned with finding solutions for
the school bus routing problem, nor with helping decision making related to it, as such
modules are being developed in parallel as part of a larger project, as shown in Figure 1.
This work is concerned with the creation of the RESTful API1 and the web page, meaning
it focused on developing the part of the system that interacts directly eith the users. Other
modules shown are the Bus Stop Selection, concerned with assigning students to bus stops
in such a way as to minimize the total number of stops and the distance between them,
the optimization algorithm, or School Bus Routing, that is concerned with generating
routes for the colection of students on the bus stops and delivering them to school while
minimizing the total distance traveled and the number of vehicles needed, and the tracking
module, that allows for real time tracking of vehicles.

1.1 Objectives
This work aims to develop a tool for the management of information related to the

school bus routing problem. In order to achieve that, the following steps were proposed.
These steps were not sequential, and many were either revisited after completion or ongoing
for as long as the project was not finished.

• Step 1: to study and analyze current technology and tools for the development of
web applications;

• Step 2: to choose technologies and tools to be used during the development step of
this work;

• Step 3: analysis of functional requirements for the project;

• Step 4: development of a web application using the chosen tools;

• Step 5: to evaluate and propose improvements for the application during and after
development.

1 Application Programming Interface

Chapter 1. Introduction 14

Figure 1 – Diagram depicting the modules of the project and their relationship to one
another. This particular work is concerned with the creation of the RESTful
API and the web page.

Source: Created by the author.

1.2 Structure of this work
This work is structured as follows: Chapter 2 discourses over the literature sur-

rounding the school bus routing problem and the technologies currently in use for the
development of web applications. Chapter 3 presents the development of the web app. And
finally, Chapter 4 gives a summary of this entire paper as well as proposes some possible
future works.

15

2 Literature review

This chapter will present a revision of the literature related to the project. The
Vehicle Routing Problem will be presented in further detail in section 2.1, while the School
Bus Routing Problem will be revisited in section 2.2 and a review of the technologies used
in the project, as well as some that were considered but ultimately not used, in section 2.3.

2.1 The Vehicle Routing Problem
At its core, the Vehicle Routing Problem consists of finding optimal routes for a

fleet of vehicles to visit a set of points, in such a way as to minimize cost (TOTH; VIGO,
2002). The problem was initially proposed in 1959 when Dantzig and Ramser released
their paper entitled "The Truck Dispatching Problem", on which they describe and propose
a solution for the problem of finding optimal routes for gasoline delivery trucks to service
a set of gas stations (DANTZIG; RAMSER, 1959). The VRP is an NP-hard problem, and
as such, finding the optimal solution for the problem is not viable, except for diminutive
instances. Research on the VRP tends, therefore, to focus on heuristic and metaheuristic
approaches (KUMAR; PANNEERSELVAM, 2012).

Many variants of the VRP have been considered in the literature, each defined by
a different set of side constraints like fleet size and homogeneity, time constraints, and
the number of depots (GOLDEN; RAGHAVAN; WASIL, 2008). One such variation of the
VRP is the School Bus Routing Problem.

2.2 The School Bus Routing Problem
Initially presented in 1969 by Newton e Thomas (1969), the School Bus Routing

Problem (SBRP) consists of a subset of the VRPs concerned with the transportation of
students between a set of bus stops and their schools, and vice versa. While the school bus
routing problem consists of one large problem, it can be divided into five smaller problems
(PARK; KIM, 2010):

• Data preparation: the web of roads and relevant nodes (student homes, schools,
etc.) are prepared and converted to an origin-destination matrix, which contains the
lowest costs for travel between any two nodes;

• Bus stop selection: the bus stops are selected and students are assigned to them;

Chapter 2. Literature review 16

• Bus route generation: similar to the basic VRP, routes are created so that the fleet
of vehicles can service every bus stop and school;

• School bell time adjustment: necessary to make sure all students get to school on
time for their classes. While in most of the literature the school bell time adjustment
is considered a restriction, some works try to find the optimal times that would allow
for a smaller fleet to service all schools;

• Route scheduling, which is the scheduling of buses for multiple successive trips.

Ellegood et al. (2019) do not take the data preparation into consideration, instead
focusing on strategic transportation policy, the study of how a policy may help or hinder
the problem. For instance, Ellegood, Campbell e North (2015) discourse over how a mixed
load policy may lead to shorter total distances under certain conditions.

As the considerable complexity of the main problem makes tackling it as one single
entity considerably more difficult, the sub-problems of the SBRP are usually considered
separately, allowing for a divide and conquer strategy. This is despite the fact that all of the
parts of the problem are intrinsically related. Moreover, the literature on the subject tends
to forego one or more of the sub-problems, focusing more on the routing and scheduling of
the vehicles and assuming the remaining information will be provided by the interested
parties (PARK; KIM, 2010).

According to Ellegood et al. (2019), there has been a large increase in the number
of publications about the SBRP in recent years. According to the authors, there have
been more papers released in the last decade than in the thirty years prior. Not only that,
but recent research has been trending towards more emphasis on real-world issues and
meta-heuristic solutions.

2.2.1 Characteristics of the problem

Park e Kim (2010) manage to isolate eight characteristics of the SBRP that impact
heavily on possible solutions. Those are:

• The number of schools: the SBRP usually considers multiple schools, however, in
the literature about the subject, there is a large number of papers focused on solving
the single school variant. Should a single school be considered for the problem, then
the solution for the bus route generation sub-problem can be achieved in a similar
manner as with the Open VRP, presented in Li, Golden e Wasil (2007) and differing
from the traditional VRP by the vehicle not returning to the depot after servicing
the last customer on a route.

Chapter 2. Literature review 17

As for multiple school solutions Spada, Bierlaire e Liebling (2005) describe two
possible ways to tackle the problem, either by splitting it into multiple single school
variants and solving them individually or by allowing a single route to service multiple
schools. The second variant is more flexible, however, whenever a student from a
new school is assigned to a route, the school must be inserted into it at the best
insertion point, a process which is both costly and complicated.

• Urban versus rural surroundings: Chen et al. (1990) describe the characteristics
of rural environments as, amongst other things, lower population density and fewer
alternative routes.

On an urban environment, it is likely that there will be multiple students on any
given residential area, allowing for the definition of bus stops they can walk to. On
a rural environment, however, due to the low population density, there is a real
possibility that there will be no points to which two or more students can reasonably
be expected to walk. Furthermore, urban areas provide relatively safe walking paths,
with sidewalks and lower speed limits, that cannot always be expected of rural
surroundings (ELLEGOOD et al., 2019). As such, the bus stop selection is oftentimes
simpler on rural areas, with the stops being set as the residence of the students; Park
e Kim (2010) even goes as far as to claim the bus stop selection as "not necessary
for rural surroundings".

According to Bowerman, Hall e Calamai (1995), on an urban environment, due to
the greater population density, oftentimes the bus will reach full capacity before
the time students spend traveling becomes a problem. The paper even goes as far
as to drop the maximum travel time constraint entirely. The opposite is true for
rural areas, on which a bus may be unable to reach capacity without breaking time
constraints (ELLEGOOD et al., 2019).

Finally, Ripplinger (2005) discusses the relatively small size of the rural problem in
relation to the urban version. The author claims that in certain cases, the instance
of the problem may even be as small as to allow for a manual selection of an optimal
solution.

• Morning problem versus afternoon problem: in some countries, students are
taken to school during the morning and return home during the afternoon. In such
countries, solutions for the SBRP can take into consideration the difference between
the two time periods, however, since the afternoon problem is usually just a more
lax version of the morning problem done backward, most of the literature focuses
on the morning problem and simply assumes that any solution found for it can be
applied to the afternoon problem as well (PARK; KIM, 2010).

Chapter 2. Literature review 18

There are, however, some like Bodin e Berman (1979) who research the afternoon
problem. Amongst other things, the authors discuss the difference between reversing
the route for the morning problem, a more intuitive approach, or replicating it, a
"fair" approach, which would ensure a more even distribution of travel time between
students.

• Allowance of mixed loading: as discussed by Braca et al. (1997), allowing students
from different schools to ride on the same vehicle can lead to a more flexible and
efficient solution, however Spada, Bierlaire e Liebling (2005) talks about how it is
significantly more complicated to deal with the routing of vehicles if multiple schools
are taken into consideration. Chen, Kallsen e Snider (1988) mentions how forbidding
mixed loading is overly restrictive and can lead to a waste of resources.

According to Ellegood et al. (2019) both allowing and forbidding mixed loading show
advantages and disadvantages. Mixed solutions allowing for every bus stop to only be
visited once at the cost of buses traveling under capacity after visiting a school, and
possibly higher wait times. Meanwhile, non-mixed approaches allow for the buses to
travel at full capacity for a relatively longer time, at the cost of the possibility of
multiple buses needing to visit the same bus stop. As such different instances will
get better results with different approaches. Ellegood, Campbell e North (2015), for
instance, claim that mixed loading provides the best results in larger districts where
students of different schools are more likely to be allocated to the same bus stop,
and in districts where the schools are closer together.

Miranda et al. (2018) extend the definition of mixed loading to allow for a bus to
simultaneously deliver and collect students, regardless of turn or whether they are
going or returning from school, a process the authors named multi-loading. The hope
is that multi-loading will allow for more versatile solutions and a possible reduction
of costs.

• Routing special-education students: special-education students differ from
general-education students on a fundamental level. Firstly, while general-education
students may be expected to walk to a bus stop, special-education students are
usually picked up at their own homes, meaning that, for each special ed. student
added to the problem, a new and impossible to relocate point is added to the set of
bus stops. Secondly, special ed. students oftentimes have to travel long distances to
reach specialized schools with the proper infrastructure. Meanwhile, most general
ed. students will be enrolled at a nearby school. Finally, some special ed. students
(such as those who need wheelchairs), will necessitate special vehicles, making these
Site-Dependent VRPs (BRACA et al., 1997). Site-Dependent VRPs are those on
which there are compatibility issues between clients and vehicles, meaning only
specific vehicles can supply the clients demand (GOLDEN; RAGHAVAN; WASIL,

Chapter 2. Literature review 19

2008). Caceres, Batta e He (2019) also mention the fact that special ed. students
have a need for constant supervision by someone other than the driver.

Interestingly, both the first and second problems outlined above are somewhat
mitigated on rural environments, since both long travel distances and the collection
of students at their homes are considered a given on that scenario.

• Homogeneous or heterogeneous fleet: the Heterogeneous Fleet Vehicle Routing
Problem (HVRP) is a variation of the VRP on which the difference in capacity and
cost of different vehicles is taken into consideration (GENDREAU et al., 1999). A
similar restriction can be considered for the SBRP (PARK; KIM, 2010). Moreover,
Newton e Thomas (1974) considers that the same vehicle can have different capacities
for different schools, since some schools will be more restrictive with how crowded a
vehicle can be during transportation.

According to Miranda et al. (2018), most publications consider a homogeneous fleet,
and many of the ones that do not, still fail to consider the costs of having different
vehicles. Exceptions include Ripplinger (2005), Li e Fu (2002), and Miranda et al.
(2018) themselves.

• Objectives: according to Savas (1978) public services can be evaluated using one of
three measures: effectiveness, efficiency, and equity. Effectiveness being the capacity
of a service to satisfy a demand, efficiency being the cost-effectiveness of said service,
and equity being its fairness. Of those three, most of the literature on the SBRP
focuses on efficiency and effectiveness, with only ever so few papers focusing on
equity (PARK; KIM, 2010). The majority of publications on the subject tends to
try and minimize costs by either reducing fixed costs, via reducing the total number
of vehicles needed, or by reducing variable costs, via minimizing the total distance
traveled (ELLEGOOD et al., 2019). Of course, there is no reason for only one
objective to be pursued, Corberán et al. (2002) for instance seek to both reduce the
number of buses and the total travel time of the students.

• Constraints: various different sets of constraints can be applied to the SBRP, many
of which only make sense on a specific iteration of the problem. Braca et al. (1997)
and Spada, Bierlaire e Liebling (2005) list the following as "general" constraints:

– Vehicle capacity; how many students a vehicle can transport at once;

– Maximum riding time: how long a student may spend traveling;

– Maximum walking distance: maximum distance between a student’s home and
bus-stop;

– School time window: the time window during which a vehicle may arrive at the
school;

Chapter 2. Literature review 20

– Upper bounds on the number of students at stops;

– Earliest pickup time for children;

– The minimum number of children to create a route.

Besides the characteristics outlined above, that are present in most, if not all
publications about the subject, there are also specific characteristics that are tackled only
by a few papers. Some examples of such esoteric papers are Bögl, Doerner e Parragh
(2015), that consider the transfer of students between multiple buses, a process that may
lead to better routing but also to a perceived loss of quality of the service, Caceres, Batta
e He (2017) that deal with overbooking of buses, claiming that the chance of a student
riding the bus varies between 22% to 77%, allowing for buses to have a number of pupils
allocated to them larger than their maximum capacity, and Miranda et al. (2018) that
take into consideration the necessity of the presence of a monitor in some buses, such as
when the students are too young. In such cases, one seat will be occupied by the monitor,
and the fixed costs of the solution will be impacted by their pay.

2.3 Technologies for the creation of web Apps
This section aims to present the technologies and tools used in this work, as well

as the reasoning that led to these specific choices. For the sake of comparison, it will also
briefly mention some technologies that were considered but not used, either because of
technical issues, licensing costs, or simply user preference.

The first step in selecting the technologies to build the application was the user
interface (UI), also known as the front-end. Special care has to be put on the user interface.
As it is the part of the system that directly interacts with the client, the UI must not
only look pleasing, but also contain all of the information necessary for the user to deduce
which functions are available and how to access them, concepts known as discoverability
and understanding (NORMAN, 2013). On that front, two technologies were necessary,
React to control behavior, and AdminLTE to control appearance.

After the technologies for the front-end were defined it was time to look at the
available tools for the back-end, the part of the software responsible for the control and
processing of requests and data. The back-end can be further divided into two parts, the
Application Programming Interface (API) and the database. The API receives requests
from the front-end, validates them, and, either fetches or inserts information into the
database. The database is responsible for the storage of data on a semi-permanent state,
a term that here means information can never be erased but may be overwritten. Since
the back-end does not interact directly with users, function was sought over form leading
to the decision of displaying a simple report of oncoming requests on a command line

Chapter 2. Literature review 21

interface instead of a full-blown UI for the API. Java was used for the construction of the
API and PostgreSQL for the database.

2.3.1 React

In order to control the behavior of the front-end of the application React was
utilized. React is a JavaScript library for the development of front-end applications. Its
main selling point is the concept of components (Figure 2), which work similarly to
JavaScript functions receiving a “prop” value and returning a piece of code describing
what should appear onscreen (REACT, 2018a). Like functions, components are reusable,
allowing for better manutenibility and less reworking. React components are written in
a mix between plain JavaScript and JSX (JavaScript XML1). JSX is a syntax extension
to JavaScript, that intends to allow the developer to use the power of JavaScript with a
simpler syntax, resembling that of HTML (REACT, 2018b). While the usage of JSX is by
no means mandatory, it greatly simplifies the process of component creation.

Figure 2 – Example of a React component that receives the name of an icon and a title as
props and renders the icon followed by the title in bold letters.

Source: Created by the author.

React is also known for the use the virtual DOM (Document Object Model), a
technique which replicates the DOM, operates upon the copy and then compares the
virtual and real DOMs in order to only update the parts which are different. This technique
updates what is shown in the browser in a very fast and efficient way, since there is no need
to reload the entire page every time something changes (KALUŽA; TROSKOT; VUKELIĆ,
2018). This, in turn, allows for the creation of single-page applications, web applications
that do not reload the entire page whenever the need for a different functionality arrises.
Single-page applications allow for a more fluid, interactive, and overall more user-friendly
experience when compared to classical multi-page applications (MESBAH; DEURSEN,
2007).
1 Extensible Markup Language

Chapter 2. Literature review 22

Figure 3 – The popularity scale of the 6 most well-known Javascript frameworks. React is
shown in blue.

Source: Kaluža, Troskot e Vukelić (2018).

React was released in 2013 by Facebook (FEDOSEJEV, 2015), and it is still
mantained and updated regularly, with a major update, the introduction of Hooks, being
released mere months before this work was written.

React was chosen for this project due to the attractiveness of its component based
structure, as well as its active community; it is amongst the most popular JavaScript
libraries currently, with over 131.000 stars on GitHub at the time of writing. Figure 3
shows the popularity of six different front-end JavaScript frameworks for the development
of web applications. It is worth noting that both of the described reasons for choosing to
use react are shared by Vue and in the end the choice between the two tools was mostly
due to preference. Angular was a close third choice, however, due to a steeper learning
curve it was not quite as desirable as the other two.

Since this work aimed to create a single-page-application, the page is never reloaded,
however updates are still triggered via changes in the URL2. This is possible via the use of a
Router, that renders different components depending on the current URL (React Training,
2019). Multiple routers are used throughout the application, dealing with different parts
of the URL. For example, if the current URL is http://hostname/users/new, the main
Router will read the /users part of the address and render the Users Router that will, in
turn, read the /new part of the address and render the component used to create new
2 Uniform Resource Locator

Chapter 2. Literature review 23

users.

2.3.2 AdminLTE

The choice between creating a new template or modifying an existing one to suit
the project’s needs was the main driving force behind the choice of AdminLTE. Although
it would be simple enough to build a new template from scratch via the use of CSS
(Cascading Style Sheet), it would be a time-consuming task, and the end result would
most likely be inferior to the templates freely available on the web, so one such template,
AdminLTE, was used.

AdminLTE is an open source web template, developed by Abdullah Almsaeed and
based on Bootstrap 3 (ALMSAEED, 2014), a framework for the styling of web pages, which
is in turn based upon CSS. AdminLTE was chosen not only for its beautiful, responsive
design, which means that applications still looks attractive on different and even mobile
devices (OLIVEIRA-CIABATI et al., 2017), but also as a natural consequence of choosing
to use React, since its modular design goes well together with React’s component based
style of presenting user interfaces.

Due to the nature of the project as a data management tool focused on rural areas,
there was a concern that some of the users may have little experience with computers
and especially with web tools, and as such, an intuitive design that draws the eye to the
important parts of the system was considered essential. As shown in Figure 4 AdminLTE
presents a large lateral menu in a dark color which contrasts with the white background of
the main page, as well as several smaller components in bright colors, that could be used
to draw attention to important info, guiding the user without the need of heavy tutorials
or training.

2.3.3 Java

Java is an object-oriented programing language. It is rather well-known and has a
huge community surrounding it. It is known mainly for its Java Virtual Machine (JVM)
which was intended to allow developers to “write once, run anywhere”. What that means
is that, in theory at least, developers are able to make code that could run in any platform
as long as it has a JVM installed. In practice, differences between architectures and the
JVMs themselves mean some degree of adaptation is still required. Java also automated
the task of memory management via the use of the Garbage Collector (ALOMARI et al.,
2015).

Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank,
and Mike Sheridan in 1991. Initially called Oak, the original impetus behind Java was to
create a platform-independent language that could be used not only by computers but

Chapter 2. Literature review 24

Figure 4 – Demonstration page for AdminLTE Dashboard V2.

Source: http://adminlte.io/.

also by consumer electronic devices. During Java’s development, it became clear that the
portable programs java sought to enable would prove even more useful on the World Wide
Web, and as such the focus changed to the creation of a programming language for the
internet (SCHILDT, 2003).

Nanz e Furia (2015) compare eight programming languages, ranking them accord-
ing to average lines of code on a solution, size of generated executables, running time
performance, memory usage, and runtime failure proneness, and while Java does not top
any of the lists, it is also rarely amongst the worse. This jack of all trades, master of
none approach seem to be popular with the community; Java has consistently been near
the top in rankings of programming languages for years (O’GRADY, 2017; O’GRADY,
2018; O’GRADY, 2019). Figure 5 shows a diagram created by Stephen O’Grady about
the popularity of Java in comparisson to other programing languages on Stack Overflow
and GitHub at the start of 2019.

Overall Java is powerful, simple to use, and has an active community, which, added
to the familiarity the authors have with it, made it the natural choice as the API language.
It is also worth noticing that other modules of the project, like the module responsible for
the estimation of costs, are also being developed in Java, which impacted on the decision.

2.3.4 REST

While it is an architecture and not a technology in and of itself, the Representational
State Transfer (REST) architecture is interesting enough to warrant it’s own subsection.

Before explaining REST, first we need to explain web services. Halili e Ramadani
(2018) define web services as a way to expose business logic as a service over the Internet.

Chapter 2. Literature review 25

Figure 5 – Diagram showing the popularity of programing languages at the start of 2019
on GitHub and Stack Overflow. Java can be found on the top right, bellow
only JavaScript.

Source: O’Grady (2019).

Most web services are created following on of two architectures: REST or SOAP (Simple
Object Access Protocol).

When deciding between SOAP and REST for this work, the defining factor was
simplicity. While SOAP is more secure and less error prone, as well as having plenty of other
advantages over REST (MUEHLEN; NICKERSON; SWENSON, 2005; TIHOMIROVS;
GRABIS, 2016), it is significantly more complicated to learn and implement, has worse
performance, is harder to scale, and is restricted to using XML in its requests while REST
allows for the use of JSON3 and YAML4, both much more human-friendly alternatives
(HALILI; RAMADANI, 2018). A comparison between the JSON and XML formats can be
seen in figure 6.

A web service is called RESTful if it follows the REST architecture (HALILI;
RAMADANI, 2018). According to Rodriguez (2008), RESTful services follow four basic
principles:

• the explicit use of HTTP5 methods, which are used as a way to communicate the
3 JavaScript Object Notation
4 YAML Ain’t Markup Language (sic)
5 Hypertext Transfer Protocol

Chapter 2. Literature review 26

Figure 6 – Representations of the same resource in JSON (left) and in XML (right).

Source: Created by the author.

intent of the request (GET to recover data, POST to save data, PUT to update, and
DELETE to delete);

• the lack of server-side state, meaning that all data required to fulfill the request is
present within its headers and body;

• intuitive URIs, so that the address necessary to perform an action can be easily
inferred;

• simple and readable resource representations, for this project the JSON format was
chosen, but XML and YAML are also viable options.

2.3.5 PostgreSQL

Once the front and back-end technologies were decided, all that was left was to
choose the tool for data storage. There are more than a few database management systems
available for free, each with their own advantages, however, in the end, PostgreSQL was
chosen.

With over 30 years of development, PostgreSQL is an open source object-relational
database system. It runs on all major operating systems and has a reputation for reliability,
robust features, and extensibility (POSTGRESQL, 2018). Perhaps more important to
this project, it has a well-documented set of geometric data types, which can be used to
represent geographical coordinates (POSTGRESQL, 1999).

2.3.6 JSON Web Tokens

In order to protect sensitive information, it was necessary to limit user access
based on their system permissions. The solution was to use JSON Web Tokens (JWT),
encrypted with the SHA-256, to validate requests. The workings of the SHA-256 algorithm
are complicated and not really relevant to this work, suffice to explain that the SHA-2
family of algorithms are resistant to many different types of attacks, providing better
security than it’s predecessors (GILBERT; HANDSCHUH, 2003).

JWTs themselves are defined in RFC-7519 and are formed by a header that includes
information about the token and the encryption algorithm, the payload containing infor-

Chapter 2. Literature review 27

mation about the entity (normally the user), and the signature which is the concatenation
of the hashes created using the header and payload, used to validate the integrity of the
token and whether it was modified (JONES; BRADLEY; SAKIMURA, 2015).

As shown in figure 7, the application requests a token by sending the username
and password of the user to the server. Afterward, any requests to the API must include
the valid token in their header, otherwise, they will be ignored. JWTs also include an
expiration date, after which they become unusable. The JWT can, therefore, be compared
to a temporary key needed to access the API.

Figure 7 – Diagram of the partial lifecycle of a JWT, not including expiration.

Source: Created by the author using Lucidchart.

2.3.7 Open Street Map and Nominatim

While the technologies described above cover the entire structure of the project,
one problem arose from the school bus routing problem that could not be solved by any
of them. That was the need to have geographical coordinates for the relevant points,
such as schools and student’s houses. Most people do not have this kind of information
on hand, so leaving it to the user was also not possible, therefore one more tool was
procured, a database with a search tool that would allow users to input an address and
then convert said address into coordinates to be shown on a map onscreen. The user could
then manually adjust the location. Google Maps was originally considered but in the end,
OpenStreetMap and its search tool, Nominatim, were chosen.

OpenStreetMap is an open database of maps. It is free to use and works via the use
of Volunteered Geographic Information (VGI), also described as “crowdsourcing geospatial
data”, which means that the users themselves gather and upload data to the central
database. OpenStreetMap surged in popularity in 2012, when changes to the licensing of
Google Maps increased potential costs (NEIS; ZIPF, 2012).

Chapter 2. Literature review 28

Nominatim is a search engine for OpenStreetMap’s data which allows both inputting
an address in order to find out its geographical coordinates and inputting coordinates in
order to discover an address. OpenStreetMap and Nominatim were chosen mostly for their
free to use nature, though their quality compared to both paid and free options is worthy
of note.

29

3 Development

This section will present the development of the web tool, from its initial proposal
to the ultimate result. The development of the application followed a framework derived
from Scrum and adapted for the university environment. The first and largest change was
in relation to the roles of the team. Scrum defines three roles members of the team can
assume: the Product Owner, responsible for maintaining the backlog of the product, the
Scrum Master, responsible for making sure the team follows Scrum directives, and the
Development team. Due to the nature of the environment, only two people were available
for these roles with the Supervisor assuming the role of Product Owner and Scrum Master,
while the author assumed the role of the development team. The second change was
related to the meetings. The SCRUM guide calls or daily meetings, however, due to time
restrictions and incompatible schedules, those were replaced by weekly meetings instead
(SCHWABER; SUTHERLAND, 2011).

The functional requirements of the application were managed by the Product
Owner, who would pass them on to the developer. One of the principles outlined in the
Agile Manifesto is "Working software over comprehensive documentation" (BECK et al.,
2001), so no effort was put into maintaining a comprehensive list of the implemented
requirements. In fact until late into the development when Trello, a tool for the management
of projects was introduced, no list was kept at all. Finally, the product owner was also
in charge of testing and validating the work of the developer. No part of the project was
considered done until such validation was made.

Before starting to define a proposal for the system, it is necessary to define the
restrictions placed on the problem. Section 2.2 discourses about the set of characteristics
that most influence the solution for the SBRP, and in this project the following were
considered: multiple schools, morning problem, mixed loads are allowed, special-education
students are considered, the fleets are heterogeneous, the objective is to minimize total
cost, and the focus is on rural surroundings. That last one is of particular importance as
it was the central factor in many of the design decisions related to the solution.

The first proposal for the system, created by analysing the functional requirements
raised, was fairly simple. A tool that would allow the users to input data related to the
school bus routing problem and then, after a certain amount of time passed, present the
results. The application’s intended users are public workers, be they from the schools or
the city were the solution is being implemented. This initial proposal was then refined
with time, as with each new functionality developed, new problems and opportunities
presented themselves.

Chapter 3. Development 30

With the initial idea in mind, the next step was to choose the technologies and
tools that would be used in the project. After gathering information on the available tools,
the decision was made to use PostgreSQL for the database, Java for the back-end of the
application, and Angular for the front-end. The latter was quickly substituted by React
when it became clear the learning curve for it was far more steep. When designing the
looks of the webpage became an issue, AdminLTE was included in this list. All of these
tools were described in more detail in section 2.3.

The data related to the SBRP was divided into five main tables on the database:
vehicles, schools, students, parameters used for the calculation of costs, and simulations,
that contains all of the requests for solutions. There were also two more tables related less
to the problem and more to the users: cities and the users themselves. The idea was to have
the CRUD (create, read, update, and delete) operations for all of the main tables available
for all of the users, while the users table was to be restricted to access by administrators,
and the cities table was static and therefore would not be subject to any of the CRUD
operations. The website itself would be organized in much the same way, with sections
for each of the main data tables, as well as a section for the users table that would only
appear if the user logged into the system had administrator privileges.

Three levels of user access were defined, pertaining to restrictions on the data they
could access. First came the administrators, who had access to all of the information
available on the database including all of the data relating to other users. Of special notes
is the fact that administrators were the only ones with permission to perform CRUD
operations on the users table, therefore being responsible for allowing and revoking access
to the system. Then came state-level users, who could access information on every student,
school and vehicle on their state, and city level users who were limited to data on their
own municipality. While both administrators and state-level users have permission to
access information pertaining to multiple cities, there was a concern that the amount of
available data could prove overwhelming. The state of Minas Gerais alone has 853 cities,
and according to a survey by INEP, had over three million students enrolled in 2018 (INEP,
2019). Assuming even 1% of said students were registered on the system, there would be
an overwhelming 30.000 registers on the students table for that year alone. As such, a
deliberate choice was made to not allow information on multiple cities to be requisitioned
at once, with the user needing to change context whenever data from a different location
was needed. The problem would most likely still persist for large cities, and especially
capitals, however, we must remember the focus of the application is on rural environments,
and it is therefore optimized for performing in such areas.

Another fairly troublesome difficulty encountered during the development was the
need to have the geographic position of students and schools. While most users would be
able to provide the address of such places, this information by itself is of no use to the

Chapter 3. Development 31

solution of the SBRP. What was needed were the coordinates of points, that could be
used to calculate distances, however, it was unlikely that the average user would have such
information on hand. therefore the need for a "translator" was felt. Nominatim (described in
subsection 2.3.7) could fulfill this role to a certain extent, however, while it was somewhat
accurate on large cities, it was significantly less effective on more rural regions, which just
so happen to be the main target of this project. Thus it was decided to use a mix of both
strategies, using Nominatim to transform an address into a set of approximate coordinates,
then presenting said coordinates to the user on a map. The user could then click on the
map to fine-tune the position to an acceptable degree of error.

After the basic CRUD1 operations for the input data were complete, it came time
to focus on allowing the user to request solutions. For this step, two main concerns were
identified: the user must be able to request customized solutions and the cost of said
solutions had to be calculated based on a set of variable parameters. As such, two more
sections were to be added to the system: simulations and parameters. The simulations
section would allow for the creation of requests for solutions based on a set of parameters
related to the students and the fleet, while the parameters section would allow for the
input of data related to the variable costs of the problem, such as gas prices and taxes.

When it came to the development of the application itself, it was structured as such:
first, the tables were created in the database, then the back-end, and finally, the front-end
was built. Keeping in mind that a significant portion of the system was added after the
initial version was up and running, those later additions followed the same structure.

The creation and structure of the back-end will be described in Subsection 3.1, and
the front-end in Subsection 3.2. Seeing as the creation of the database is rather simple,
if extremely important, it will not be given a subsection. Suffice to say, the necessary
data was modeled following the same structure described above, resulting in the Entity
Relationship Diagram shown in Figure 8.

3.1 Back-end
The back-end was built with Java following the Representational State Transfer

(REST) architecture. It is structured as follows, the service package exposes a set of HTTP
routes which listen for user requests, the jaxbean package provides resource representations
for the user requests, the model package provides resource representations for the server
responses, and the dao package provides an interface for the database. Each package
contains one class for each of the following: simulations, cities, users, students, schools,
vehicles, and parameters. There are also classes on the service and dao packages to handle
login attempts. This structure is shown in figure 9.
1 Create, Read, Update, and Delete

Chapter 3. Development 32

Figure 8 – Entity Relationship Diagram of the database.

Source: Created by the author using Creately.

Figure 9 – UML class diagram describing the structure of the back-end. One instance of
each of the shown classes was created for simulations, cities, users, students,
schools, vehicles, and parameters.

Source: Created by the author using Creately.

Classes on the services package provide an interface for the front-end to send user
requests to via HTTP. This interface is presented in the form of routes, which are exposed
URIs that when called will validate the request and then call the appropriate method.
HTTP methods are used to identify the type of operation to be performed, so a GET
operation, for example, will return data from the server, while a PUT operation will insert
new data. The URIs follow a specific pattern: the name of the resource, followed by the

Chapter 3. Development 33

operation to be performed, followed by optional parameters, so as an example, the route
for the exclusion of a user would be called by sending a DELETE HTTP request to the
URL http://hostname/users/delete/{id}, with the section between curly braces being the
parameter that lets the service know which user to exclude. It is important to note that a
traditional REST implementation would not contain the operation on the URI, instead
letting it be inferred from the HTTP method used for the call, however, in an effort to
make the service more intuitive to people not accustomed to REST, a deliberate choice
was made to include them.

Should a valid request be made to a route exposed by a class on the services package,
the appropriate jaxbean will be prepared. Jaxbean classes are simple representations of
the resources in XML terms, that map the fields on the request’s body to a Java object
that can be easily interpreted by the service.

Jaxbean objects are then passed to the appropriate method on the dao package.
Data Access Objects (DAO) classes provide the appropriate interfaces for performing
CRUD opperations on the database. Based on the type of request, the DAO object will
either insert the received data or, if it was a read operation, create an object containing
the requested information and return it to the service class, that sends it back to the user
as a JSON (figure 10), completing the cycle.

Figure 10 – JSON returned after a request to the API.

Source: Created by the author.

There are also classes responsible for generating and validating JWTs, however due
to the sensitive and complicated nature of the subject, all those classes do is delegate the job

Chapter 3. Development 34

to a trustworthy library, Prime JWT, which can be found in https://github.com/bigdata06/prime-
jwt.

3.2 Front-end
The development of the front-end of the system was composed of two stages.

First, the AdminLTE template had to be adapted to work with React. This was made
considerably easier due to the fact that AdminLTE is already somewhat modular, with
its source code being divided into well-defined "parts". Some of these parts became React
components, while others were deemed unnecessary and removed completely. The sidebar
menu, the header, and the footer of the dashboard were kept, with minimal alterations
made to adapt them to the system’s needs. Other components, like form fields, some icons,
and buttons were simple enough that no changes were deemed necessary.

After the conversion of the template, came the development of the components
related to the CRUD operations. Each of these components renders a variety of other
smaller ones, that may, in turn, render even more. The front-end followed a similar structure
as the back-end, with a section dedicated for each of the following: simulations, users,
students, schools, vehicles, and parameters. Each of these section is composed of a Router,
a component that allows searching for resources, a component that allows for the creation
of resources, and a component that allows the user to update a resource. This structure is
shown in figure 11.

Figure 11 – Generic structure of the components of the front-end. A more detailed view is
presented in figure 17.

Source: Created by the author using Creately.

3.2.1 Main structure

When a user connects to the application they are presented with a simple login
form. This form requests a JWT from the back-end that is stored on the session storage
of the browser and is used on all of the following requests. The login form also presents a

Chapter 3. Development 35

"Forgot my password" option. Should this option be checked, the form will change to one
requesting the email of the user. if a valid email address is inserted in this section, the
back-end sends a link via email to the provided address that can be used to change the
password. All of the requests from the front-end are performed via AJAX (Asynchronous
Javascript and XML).

Should the user logged into the system have sufficient clearance, a button on the
header opens a dropdown menu that can be used to change the municipality, allowing the
user to view info about different contexts.

Links that lead to the sections described above are shown in a lateral menu that
can be collapsed to provide extra space. When a user clicks on any of said links, the "List"
component (figure 12) is loaded.

Figure 12 – List of students, displaying the students on the town of Piúma. The form
component may be used to narrow down search results.

The List component is comprised of a table on which data referring to the SBRP
is presented and a form with fields that can be used to narrow the search (figure 13).

Buttons on the list lead to the "Update" component, while a larger button on the
form loads the "New" component (figure 14). Both components look and behave similarly,
presenting a form that can be filled with information about the entity being inserted. The
main difference between the two is that the "Update" version will come pre-filled with the
data of the entity being updated. Once the form is filled the "save" button will trigger a
local validation of the data, and, provided all of the information is valid, a request will be
made to the back-end and the appropriate response message will be presented to the user
based on whether or not the requisition was successful.

Whenever geographical data of a location is necessary, a button will be provided
that, when clicked, will open a map with a search form (figure 15). Addresses may be
searched on Nominatim and the results are presented on a side menu. When a result is
clicked, coordinates that approximate that address will be presented on the map, and the

Chapter 3. Development 36

Figure 13 – List of students on the town of Piúma with results filtered by name.

Source: Created by the author.

Figure 14 – Registration form for students.

user may then adjust the location by clicking on the map.

Finally, a logout option on the side menu will delete the JWT from the session
storage and return the user to the login screen.

Chapter 3. Development 37

Figure 15 – Component for the selection of addresses. Users can search for an address on
the sidebar or click on the map to set a location.

Chapter 3. Development 38

3.2.2 Simulations

The simulation section is one of the simplest ones. It allows the requests to be
filtered by ID, stage of completion, the user responsible, and types of students considered.

When requesting a simulation, the user is requested to provide a set of parameters.
The requested parameters are:

• The maximum walking distance allowed for each class of students;

• The maximum distance a student may travel on the vehicle;

• The maximum amount of time the student is allowed to stay in the vehicle;

• The maximum distance allowed between schools serviced by the same bus;

• The types of students to be included;

• The average speed the vehicles are expected to run at;

• The maximum allowed age for the vehicles;

• The maximum capacity of vehicles.

The age and maximum capacity of vehicles are needed in case the provided fleet is
too small to cover the totality of the demand and new vehicles have to be requisitioned.
These are parameters that may impact the solution and that usually vary due to the
decisions of local authorities. They are inserted at the time of the request instead of in
the parameters section to facilitate the creation of multiple simulations with tweaked
parameters that can be compared to find the best solution.

3.2.3 Students

The students may be filtered by ID, name, school, turn (morning, afternoon, integral
education, or night), direction (whether they take the bus to go to school, to return from
school, or both), whether they have a need for special vehicles, whether they have reduced
mobility, and whether they are outliers. A student is considered an outlier if they either
live so far from the school that the restrictions for maximum distance or time traveling
are broken regardless of which route they are assigned to, or in the opposite case, where
students live so close to the school that it is more reasonable to walk than to take the
bus. Besides showing the expected textual data, the table used to present the results of
a search also presents a looking glass shaped icon that, when pressed, will open a map
showing the location of the student’s home.

Chapter 3. Development 39

Figure 16 – Popup used for the selection of schools.

When registering students, their name, the school they are enrolled in, their date
of birth, the turn of their classes, the direction, whether or not they have reduced mobility
and/or need special vehicles, their category, and their address. Two of these deserve special
attention. First, when choosing a school, initially a dropdown containing all schools in the
municipality was presented, however, it was often a long list that needed to be scrolled
through and therefore not very user-friendly. The solution was to add a button that opens
a popup containing a simplified version of the search tool for schools that could be used
to find the appropriate one (figure 16). Second, the input of the address is one of the two
cases that required geographical information that users could not be expected to have on
hand, as such the popup described in 3.2.1 and shown in figure (figure 16) was included in
this section.

Students can also be "deactivated" either during creation or by the update form.
Deactivated students will not be taken into account by any simulations created after
they were deactivated. Deactivated students can be reactivated in the update form to be
included in future simulations.

3.2.4 Schools

When searching for a specific school, a user may filter by ID, name, or administration
(municipal, state, or federal). Like with the students, a looking glass shaped icon is presented
together with the results of the search, that opens a map showing the position of the
school.

When registering schools, users are asked to fill in the name, the administration
responsible for the school, the courses offered (fundamental school, middle school, special

Chapter 3. Development 40

education, etc.), the schedule of arrivals and departures, including the time the gates are
opened and closed as well as how early or late the bus may arrive, and the address. Once
again similar to the students, the map for the selection of addresses (figure 15) is present.

3.2.5 Vehicles

Vehicles can be searched by plate number and number of seats. When inserting
a vehicle, the plate number, the number of seats, the year of manufacture, the average
consumption of fuel, the type of fuel consumed, the average consumption of lubricant, the
average wear of the tires, the number of tires, the market value of the vehicle, the total
value of taxes, the average cost of maintenance, and whether the vehicle is adapted for the
transport of special education students must be provided. Most of these values are used
for the calculation of the total cost of the solution.

Like the students, a vehicle can be "deactivated" if there is a need to exclude it
from a simulation, and later reactivated.

3.2.6 Users

Users who possess administrator privileges are the only ones capable of accessing
the "Users" section of the application. The link will not even be present to those who do not
have permission and should they try to access it via the URL, the system automatically
redirects to the main page.

When searching for users, the results can be filtered by name, email and access
level. When registering a user, an email address must be provided to serve as a username
to the new user. A name, password at least eight characters long, a access level and a city
must be provided. Before it is possible to select a city, a state must be selected in order
to filter the results. Although Administrators and state level users are not restricted to a
single city, one can still be provided to serve as a "default" value when logging into the
system.

3.2.7 Parameters

The parameters section is unique in that it does not have a "New" component.
That is because only one set of parameters may be active at a time, therefore, any new
set must necessarily overwrite the old one where the user is concerned. On the database,
however, the opposite is true. Since the calculation of costs is always based on the set of
parameters at the time of the request, historical values must be kept. Therefore, from the
database’s viewpoint, sets of parameters cannot ever be updated, with new ones being
created every time a change is deemed necessary.

Chapter 3. Development 41

When accessing the parameters section, the user is presented with the current set
of parameters, including but not limited to, the average prices of fuel, lubricant, and tires,
the average wages of drivers and monitors, the number of school days on the year, taxes,
the depreciation rate of vehicles.

At the bottom of the page, there are two buttons, one leading to a table showing
past values, and one that leads to the form for the update of current parameters.

42

4 Final considerations

This paper described the development of a web tool for the management of data
related to the School Bus Routing Problem. In order to do so, three steps were followed: a
revision of the literature surrounding the problem itself, a revision of tools and technologies
available to tackle the problem, and the development itself.

The first step was necessary to ensure the proper execution of the final objective.
The idea of trying to create a solution without first understanding the problem is, at best,
dubious, so an analysis of the SBRP and of it’s predecessor, the VRP, was essential. In
order to ensure such a strong foundation to work on, books and papers related to the
problem were used.

The second step, though not as fundamental as the first one, was every bit as
important. Many tools were considered, with the pros and cons of each being weighted
until the set of React, AdminLTE, Java, and PostgreSQL was decided on. The tools
selected can make or break an application, and the final result of this project could have
been significantly different if even a single one of the final set had been changed.

Finally, the development of the web tool itself was the main focus of this work.
The final result was an application with all of the necessary functions to be put into
production. The back-end API followed a REST architecture, and the front-end based on
React’s component architecture. While excellency is a state, and not a form, and therefore
something that must be constantly sought even after being achieved, else it is lost, the
author is satisfied with the end result of the development.

Overall, the author considers the project a success, both from the viewpoint of
being an application for the management of data related to the SBRP, as well as from the
viewpoint of being a learning experience.

4.1 Future works
Future works to be done on the project could be related to a few points not

addressed by this particular work, or to the evolution of it. On the first front, many
modules are being developed in parallel with this one to tackle the SBRP as a whole,
including but not limited to a module for the definition of bus stops and one for the
real-time tracking of vehicles. As such, the suggestions made in this section will focus on
the second front presented, the improvement upon this work.

This work is focused on a tool intended to be used by workers at the school or towns
where the system would be inplemented, and this singular focus has its drawbacks. Mainly,

Chapter 4. Final considerations 43

the need for accurate geographical data could be easily sated with a sister application
meant to be used on mobile devices by the students or their parents. Such a system could
take advantage of the location services already provided by mobile devices to acquire more
accurate data, with less effort from the users.

Yet another point that may prove troublesome is the lack of an option to insert
students into the system in bulk. Manually inserting students one by one may prove a
tedious and error prone process, so a modification that could allow many students to be
inputed at once may be desirable.

One point of great importance that was not developed for this application was that
of automated testing. Manual testing of software is a labor intensive and human error
prone activity, so the addition of automated testing would significantly increase the level
of confidence to the project. It is important to note, however, that automated testing
is meant to be applied in conjunction with manual testing, not replace it (BERNER;
WEBER; KELLER, 2005). User experience tests are also recomended.

Another point that could be focused on is the recent (at the time of writing)
addition of React Hooks. Hooks are designed to increase performance and reusability, as
well as decrease the size of components on React applications. Hooks were added to React
fairly late in the development of this application, and major refactoring to include them
was simply impossible. A future project might be able to refactor the application to use
the new technique.

Future projects may also want to develop internationalization for the webpage.
Currently, the system is only available in brazilian portuguese, so should a future oportunity
appear to launch the application on an international scale, translations need to be provided.

44

References

ALMSAEED, A. AdminLTE Control Panel Template. 2014. Disponível em:
<https://adminlte.io/>. Citation on page 23.

ALOMARI, Z. et al. Comparative studies of six programming languages. arXiv preprint
arXiv:1504.00693, 2015. Citation on page 23.

BECK, K. et al. Manifesto for agile software development. 2001. Citation on page 29.

BERNER, S.; WEBER, R.; KELLER, R. K. Observations and lessons learned from
automated testing. In: ACM. Proceedings of the 27th international conference on Software
engineering. [S.l.], 2005. p. 571–579. Citation on page 43.

BODIN, L. D.; BERMAN, L. Routing and scheduling of school buses by computer.
Transportation Science, INFORMS, v. 13, n. 2, p. 113–129, 1979. Citation on page 18.

BÖGL, M.; DOERNER, K. F.; PARRAGH, S. N. The school bus routing and scheduling
problem with transfers. Networks, Wiley Online Library, v. 65, n. 2, p. 180–203, 2015.
Citation on page 20.

BOWERMAN, R.; HALL, B.; CALAMAI, P. A multi-objective optimization approach to
urban school bus routing: Formulation and solution method. Transportation Research
Part A: Policy and Practice, Elsevier, v. 29, n. 2, p. 107–123, 1995. Citation on page 17.

BRACA, J. et al. A computerized approach to the new york cityschool bus routing
problem. IIE transactions, Springer, v. 29, n. 8, p. 693–702, 1997. Cited 2 times on
page(s) 18 and 19.

CACERES, H.; BATTA, R.; HE, Q. School bus routing with stochastic demand and
duration constraints. Transportation science, INFORMS, v. 51, n. 4, p. 1349–1364, 2017.
Citation on page 20.

CACERES, H.; BATTA, R.; HE, Q. Special need students school bus routing:
Consideration for mixed load and heterogeneous fleet. Socio-Economic Planning Sciences,
Elsevier, v. 65, p. 10–19, 2019. Citation on page 19.

CHEN, D.-S. et al. A bus routing system for rural school districts. Computers & Industrial
Engineering, Elsevier, v. 19, n. 1-4, p. 322–325, 1990. Citation on page 17.

CHEN, D.-S.; KALLSEN, H. A.; SNIDER, R. C. School bus routing and scheduling: an
expert system approach. Computers & Industrial Engineering, Elsevier, v. 15, n. 1-4, p.
179–183, 1988. Citation on page 18.

CORBERÁN, A. et al. Heuristic solutions to the problem of routing school buses with
multiple objectives. Journal of the operational research society, Springer, v. 53, n. 4, p.
427–435, 2002. Citation on page 19.

DANTZIG, G. B.; RAMSER, J. H. The truck dispatching problem. Management science,
Informs, v. 6, n. 1, p. 80–91, 1959. Citation on page 15.

https://adminlte.io/

References 45

ELLEGOOD, W. A.; CAMPBELL, J. F.; NORTH, J. Continuous approximation models
for mixed load school bus routing. Transportation research part B: Methodological,
Elsevier, v. 77, p. 182–198, 2015. Cited 2 times on page(s) 16 and 18.

ELLEGOOD, W. A. et al. School bus routing problem: Contemporary trends and research
directions. Omega, Elsevier, 2019. Cited 4 times on page(s) 16, 17, 18, and 19.

FEDOSEJEV, A. React. js Essentials. [S.l.]: Packt Publishing Ltd, 2015. Citation on
page 22.

GENDREAU, M. et al. A tabu search heuristic for the heterogeneous fleet vehicle routing
problem. Computers & Operations Research, Elsevier, v. 26, n. 12, p. 1153–1173, 1999.
Citation on page 19.

GILBERT, H.; HANDSCHUH, H. Security analysis of sha-256 and sisters. In: SPRINGER.
International workshop on selected areas in cryptography. [S.l.], 2003. p. 175–193. Citation
on page 26.

GOLDEN, B. L.; RAGHAVAN, S.; WASIL, E. A. The vehicle routing problem: latest
advances and new challenges. [S.l.]: Springer Science & Business Media, 2008. v. 43.
Cited 3 times on page(s) 12, 15, and 19.

HALILI, F.; RAMADANI, E. Web services: a comparison of soap and rest services.
Modern Applied Science, v. 12, n. 3, p. 175, 2018. Cited 2 times on page(s) 24 and 25.

INEP. Sinopses Estatísticas da Educação Básica. 2019. Disponível em: <http:
//portal.inep.gov.br/sinopses-estatisticas-da-educacao-basica>. Citation on page 30.

JONES, M.; BRADLEY, J.; SAKIMURA, N. JSON Web Token (JWT). [S.l.], 2015.
Disponível em: <https://tools.ietf.org/html/rfc7519>. Citation on page 27.

KALUŽA, M.; TROSKOT, K.; VUKELIĆ, B. Comparison of front-end frameworks for
web applications development. Zbornik Veleučilišta u Rijeci, Veleučilište u Rijeci, v. 6,
n. 1, p. 261–282, 2018. Cited 2 times on page(s) 21 and 22.

KANG, M. et al. Development of a genetic algorithm for the school bus routing problem.
International Journal of Software Engineering and Its Applications, v. 9, n. 5, p. 107–126,
2015. Citation on page 12.

KUMAR, S. N.; PANNEERSELVAM, R. A survey on the vehicle routing problem and its
variants. Intelligent Information Management, Scientific Research Publishing, v. 4, n. 03,
p. 66, 2012. Citation on page 15.

LI, F.; GOLDEN, B.; WASIL, E. The open vehicle routing problem: Algorithms,
large-scale test problems, and computational results. Computers & operations research,
Elsevier, v. 34, n. 10, p. 2918–2930, 2007. Citation on page 16.

LI, L.; FU, Z. The school bus routing problem: a case study. Journal of the Operational
Research Society, Springer, v. 53, n. 5, p. 552–558, 2002. Cited 2 times on page(s) 12
and 19.

MESBAH, A.; DEURSEN, A. V. Migrating multi-page web applications to single-page
ajax interfaces. In: IEEE. 11th European Conference on Software Maintenance and
Reengineering (CSMR’07). [S.l.], 2007. p. 181–190. Citation on page 21.

http://portal.inep.gov.br/sinopses-estatisticas-da-educacao-basica
http://portal.inep.gov.br/sinopses-estatisticas-da-educacao-basica
https://tools.ietf.org/html/rfc7519

References 46

MIRANDA, D. M. et al. A multi-loading school bus routing problem. Expert Systems with
Applications, Elsevier, v. 101, p. 228–242, 2018. Cited 3 times on page(s) 18, 19, and 20.

MUEHLEN, M. Z.; NICKERSON, J. V.; SWENSON, K. D. Developing web services
choreography standards—the case of rest vs. soap. Decision Support Systems, Elsevier,
v. 40, n. 1, p. 9–29, 2005. Citation on page 25.

NANZ, S.; FURIA, C. A. A comparative study of programming languages in rosetta code.
In: IEEE. 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
[S.l.], 2015. v. 1, p. 778–788. Citation on page 24.

NEIS, P.; ZIPF, A. Analyzing the contributor activity of a volunteered geographic
information project—the case of openstreetmap. ISPRS International Journal of
Geo-Information, Molecular Diversity Preservation International, v. 1, n. 2, p. 146–165,
2012. Citation on page 27.

NEWTON, R. M.; THOMAS, W. H. Design of school bus routes by computer.
Socio-Economic Planning Sciences, Elsevier, v. 3, n. 1, p. 75–85, 1969. Citation on page
15.

NEWTON, R. M.; THOMAS, W. H. Bus routing in a multi-school system. Computers &
Operations Research, Elsevier, v. 1, n. 2, p. 213–222, 1974. Citation on page 19.

NORMAN, D. The design of everyday things: Revised and expanded edition. [S.l.]:
Constellation, 2013. Citation on page 20.

O’GRADY, S. The RedMonk Programming Language Rankings: January 2017. 2017.
Disponível em: <https://redmonk.com/sogrady/2017/03/17/language-rankings-1-17/>.
Citation on page 24.

O’GRADY, S. The RedMonk Programming Language Rankings: January 2018. 2018.
Disponível em: <https://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/>.
Citation on page 24.

O’GRADY, S. The RedMonk Programming Language Rankings: January 2019. 2019.
Disponível em: <https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/>.
Cited 2 times on page(s) 24 and 25.

OLIVEIRA-CIABATI, L. et al. Sisprenacel–mhealth tool to empower prenacel strategy.
Procedia Computer Science, Elsevier, v. 121, p. 748–755, 2017. Citation on page 23.

PARK, J.; KIM, B.-I. The school bus routing problem: A review. European Journal of
operational research, Elsevier, v. 202, n. 2, p. 311–319, 2010. Cited 5 times on page(s) 12,
15, 16, 17, and 19.

POSTGRESQL. PostgreSQL 9.4.20 Documentation. 1999. Disponível em: <https:
//www.postgresql.org/docs/9.4/datatype-geometric.html>. Citation on page 26.

POSTGRESQL. PostgreSQL homepage. 2018. Disponível em: <https://www.postgresql.
org/>. Citation on page 26.

PRINS, C. A simple and effective evolutionary algorithm for the vehicle routing problem.
Computers & Operations Research, Elsevier, v. 31, n. 12, p. 1985–2002, 2004. Citation on
page 12.

https://redmonk.com/sogrady/2017/03/17/language-rankings-1-17/
https://redmonk.com/sogrady/2018/03/07/language-rankings-1-18/
https://redmonk.com/sogrady/2019/03/20/language-rankings-1-19/
https://www.postgresql.org/docs/9.4/datatype-geometric.html
https://www.postgresql.org/docs/9.4/datatype-geometric.html
https://www.postgresql.org/
https://www.postgresql.org/

References 47

REACT. React Documentation. 2018. Disponível em: <https://reactjs.org/docs/
components-and-props.html>. Citation on page 21.

REACT. React Documentation. 2018. Disponível em: <https://reactjs.org/docs/
introducing-jsx.html>. Citation on page 21.

React Training. React Router. 2019. Disponível em: <https://reacttraining.com/
react-router/>. Citation on page 22.

RIPPLINGER, D. Rural school vehicle routing problem. Transportation Research Record,
SAGE Publications Sage CA: Los Angeles, CA, v. 1922, n. 1, p. 105–110, 2005. Cited 2
times on page(s) 17 and 19.

RODRIGUEZ, A. Restful web services: The basics. IBM developerWorks, v. 33, 2008.
Citation on page 25.

SAVAS, E. S. On equity in providing public services. Management Science, INFORMS,
v. 24, n. 8, p. 800–808, 1978. Citation on page 19.

SCHILDT, H. Java 2 a beginer’s guide. [S.l.]: The McGraw-Hill Companies, Inc, 2003.
Citation on page 24.

SCHWABER, K.; SUTHERLAND, J. The scrum guide. Scrum Alliance, v. 21, 2011.
Citation on page 29.

SPADA, M.; BIERLAIRE, M.; LIEBLING, T. M. Decision-aiding methodology for the
school bus routing and scheduling problem. Transportation Science, INFORMS, v. 39,
n. 4, p. 477–490, 2005. Cited 3 times on page(s) 17, 18, and 19.

TIHOMIROVS, J.; GRABIS, J. Comparison of soap and rest based web services using
software evaluation metrics. Information Technology and Management Science, De
Gruyter Open, v. 19, n. 1, p. 92–97, 2016. Citation on page 25.

TOTH, P.; VIGO, D. The vehicle routing problem. [S.l.]: SIAM, 2002. Citation on page
15.

https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/

Appendix

49

APPENDIX A – Materials elaborated by the
author

APPENDIX A. Materials elaborated by the author 50

Figure 17 – Detailed structure of the components of the front-end.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of figures
	List of abbreviations and acronyms
	Contents
	Introduction
	Objectives
	Structure of this work

	Literature review
	The Vehicle Routing Problem
	The School Bus Routing Problem
	Characteristics of the problem

	Technologies for the creation of web Apps
	React
	AdminLTE
	Java
	REST
	PostgreSQL
	JSON Web Tokens
	Open Street Map and Nominatim

	Development
	Back-end
	Front-end
	Main structure
	Simulations
	Students
	Schools
	Vehicles
	Users
	Parameters

	Final considerations
	Future works

	References
	Appendix
	Materials elaborated by the author

