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Resumo

O cubo de dados é um operador relacional fundamental para sistemas de suporte a tomada
de decisdo, dessa forma 1util para a anélise de Big Data. O problema apresentando nesse
trabalho é: como reduzir os tempos de resposta de consultas multidimensionais complexas?
Tal problema se torna ainda mais agravado se atualizagoes recorrentes nos dados de entrada
acontecem e se existe um grande volume de dados de alta dimensionalidade a ser analisado.
A hipétese deste trabalho é que uso de clusters de dispositivos CPU-GPU acelerara consultas
em cubos de dados holisticos de alta dimensao que s&o constantemente atualizados. A solugao
alternativa proposta neste trabalho, chamada de JCL-GPU-Cubing, particiona a base de dados
em miltiplas representacoes de cubos parciais sem introduzir redundéancia de dados. Tais
cubos parciais sao usados para executar consultas em CPU ou CPU-GPU de maneira eficiente.
As avaliagoes experimentais preliminares demonstraram que a versao baseada em clusters de
CPU escala bem quando ambos os dados de entrada e o tamanho do cluster aumentam.

Palavras-chave: GPU, OLAP, data cube, distributed computing, parallel computing, big
data



Abstract

The data cube is a fundamental relational operator for decision support systems, thus very
important for analytics. Unfortunately, a full data cube with all of its tuples has exponential
complexity in terms of runtime and memory consumption as the dimensions increase linearly,
so algorithms to reduce query response times continue under development. The problem
stated in this work is: how can we reduce complex multidimensional queries response times
from high dimensional data cubes? The problem is aggravated if recurrent updates occur
and if there is a huge volume of high dimensional data to be managed. The hypothesis of
this work is that clusters of CPU-GPU devices can speedup queries from high dimensional
holistic data cubes that are updated constantly. The alternative solution presented in this
work, named JCL-GPU-Cubing, partitions the base relation into multiple independent sub-
cubes. These multiple sub-cubes represent a partial data cube to reduce the exponentiality and
they are used to perform queries in CPU or in CPU-GPU computer architectures efficiently.
The experimental evaluations using complex multidimensional queries demonstrated that the
CPU cluster version scaled well when the base relation increased and the CPU-GPU version
outperformed the CPU only version in certain scenarios.

keywords: GPU, OLAP, data cube, distributed computing, parallel computing, big data
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Chapter 1
Introduction

In this chapter we introduce and detail the the data cube operator. We present the goals
we aim to achieve and the hypothesis of the work. The results are briefly presented, since
discussions are detailed in Chapter 3.

Recent investigations in Big Data and Internet of Things (IoT) pointed out that the data
cube operator and the OLAP technology are being redesigned for new challenges (Cuzzocrea
et al. (2013); Cuzzocrea (2015a); Cuzzocrea et al. (2016)), so volume, data type variety and
update speed continue to be hard problems and if they appeared together in a business domain
we are faced with an open problem in data cube algorithms literature. In this work, we do
not address an alternative computational solution for big data cubes, since data type variety
and volume are not investigated, but the utilization of clusters of GPUs to perform complex
multidimensional queries can be considered the research frontier in database.

Since the seminal paper of Gray et al. (1997), efficient data cube algorithms are reducing
storage and runtime impacts to compute full or partial data cubes. There are cube solutions for
different data types, including traditional or alphanumeric data cubes like this work (Sismanis
et al. (2002); Xin et al. (2007); Lima and Hirata (2011)), spatial data cubes (Bimonte et al.
(2006); Moreno et al. (2009); Bimonte et al. (2011)) , text data cubes (Lin et al. (2008); Zhang
et al. (2009); Souza et al. (2017)), graph or network data cubes (Zhao et al. (2011); Wang et al.
(2014); Benatallah et al. (2016)), RFID or stream data cubes (Gonzalez et al. (2006); Liu et al.
(2011)) and image data cubes (Jin et al. (2010)). Besides many approaches for different data
types, promising High Performance Computer (HPC) architectures that take the advantage
of Graphic Processing Units (GPU), CPU clusters or cloud environments, demonstrated that
the data cube problem is also hard to be efficiently partitioned and distributed (Wang et al.
(2010); Kaczmarski (2011); Moreira and Lima (2012); Zhang et al. (2014); Cuzzocrea (2015b)).

The main goal of a data cube operator is to organize data into multiple hierarchies of
dimensions and measures. Dimensions are composed of attributes, so they can have multiples
attribute hierarchies. The time dimension can be composed of year, month and day attributes,

for instance. These attributes can build the hierarchies h;={year, day}, ho={month, day},
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hs={year, month, day}, and many more. Besides alphanumeric dimensions, there are text
dimensions with topic hierarchies, spatial dimensions with resolution hierarchies and many
other hierarchy types in a data cube operator.

Hierarchization is a decision making active, where the information is classified into hierar-
chy levels, varying from detailed information to high abstraction levels of a decision making
process. Drilling down an hierarchy level indicates that the analyst wants more detailed infor-
mation. Roll-up is the opposite direction. There are other data cube operations, such as slice,
dice and drill-through (Han et al. (2011)). In summary, this relational operator enables dif-
ferent alternatives to navigate through multiple hierarchy levels, simplifying business domain
decisions.

Measures are how a data cube evaluate the attribute combinations. We can suppose
a combination of attribute values in a tuple ¢t = (year=2016; month=December; student-
Name=Robert; grade=6.9; coefficient=C). The attributes grade and coefficient are measures.
Grade, for example, can represent an average of all grades in all courses of a school. The coef-
ficient ’C’ can also represent a collection of courses evaluations. Measures can be a numerical
value with a statistical function SUM, AVG or an inverted index to text data cubes or the
distance using roadways from a location L to a river or a dam in a spatial data cube.

A data cube has base tuples and aggregate tuples. Suppose an input relation R with
three dimensions (A, B, and C) and the tuple, t; = (a1, b1,c1,m), where ay, by, and ¢; are
the attribute values for each dimensional attribute and m is a numerical value representing a
measure value of ¢1. In this example, each dimension has a unique attribute, so there is only
one possible hierarchy. Given R, a full data cube has eight tuples representing all possible
aggregations: t1, to = (a1, b1, *,m), ts3 = (a1, *,c1,m), t4 = (x,b1,c1,m), t5 = (a1, *,*x,m),
te = (x,b1,%x,m), t;y = (x,%,¢1,m), and tg = (*,x,*,m), where the asterisk (*) denotes a
wildcard representing any value that a dimensional attribute can assume on the data cube.
Generally speaking, a data cube computed from the relation R with three dimensions (4, B,
and (), three attribute values (a1, b1, c1) and cardinality C4y = Cp = C¢ = 1, can have 8 or
(Ca+1)x(Cp+1) x (Cc+1) tuples. Cardinality indicates the number of unique values that
each dimension attribute (Ex. A, B, or C) can assume. In this example, ¢ is a base tuple
and to, t3, ty, t5, tg, t7, tg are aggregate tuples. The cardinalities C'4, Cp, Co are from the three
attributes of dimensions A, B and C, respectively.

If we consider relation ABCD instead of relation ABC, and Cy = Cg = Co = Cp = 2,
there can be 16 ABCD base tuples and 81 aggregate tuples that must be calculated in a
full data cube. As we can see, the data cube operator has exponential complexity in terms
of runtime and memory consumption as the dimensions increase linearly. High cardinality
and huge volume of tuples in R turn the problem harder, so the Big Data requirements are

demanding redesigns of data cube algorithms for indexing, querying, and updating.
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The HPC literature in data cube is starting to adopt GPU cards to speedup query re-
sponses with low cost, since most recent cards bypassed 1k cores at 1GHz each, the memory
capacity is increasing rapidly and current off-the-shelf PC motherboards can handle up to
four cards. Unfortunately, some improvements achieved are restricted to data cubes with low
dimensionality and some of them completely stored in GPU memory (Lauer et al. (2010);
Wittmer et al. (2011); Wang and Zhou (2012)), which is not suitable for high number of
tuples.

Other approaches partially store data cubes in GPU Riha et al. (2011); Malik et al. (2012),
so CPU working-memory (RAM, for instance) is adopted in conjunction, but both CPU and
GPU data structures are not designed for constant updates and there is always the overhead
of multiple CPU-to-GPU data transfers. The approach of Wang et al. (2018) provides a GPU
cluster system, based on Hadoop and MapReduce to accelarete OLAP workloads, but presents
no hibryd solution for it’s algorithms to run in GPU and CPU. Another limitation in the GPU
data cube literature is that most of the solutions implement equality operators and few range
operators in their queries, like between, greater than, less than, some, similar and others. This
limitation occurred because range query operators increase the number of tuples substantially,
as detailed by Ho et al. (1997); Silva et al. (2013, 2015). Finally, no related work innovates
to support complex holistic measures, like MODE, RANK, and others, but they represent the
biggest computational challenge, since they impose computational costs to be both calculated

and, mainly, updated.

1.1 Goal

Given the limitations described above, this work presents the first data cube approach to
index and query multidimensional data over clusters of multicore-CPUs and multiple GPU
cards, named JCL-GPU-Cubing. It is designed for high dimensional data and it supports
recurrent updates. Holistic measures, like MODE, RANK, VARIANCE, TOP-K and many
more are also supported. The alternative solution JCL-GPU-Cubing is classified as RAM-
only, therefore no external memory is considered. Instead, several private main memories are
used to achieve high storage capacity.

The specific goals are:

1. The design and implementation of a CPU and a CPU-GPU version to index, update
and query data cubes in multicore-CPU clusters. The CPU version is used as a baseline
version and both versions adopted a third-party middleware for the distribution of tasks
and data, their scheduling, their communication using several network protocols and so
forth. We considered JCL (Almeida et al. (2018)) as the underling solution due to its

simplicity in terms of development and deployment. It scales well, has a distributed
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version of the Map Java Interface, which is very familiar to Java community, and finally

it runs over small platforms, including Android devices (de Resende et al. (2017));

2. The experiments and evaluations of the CPU and GPU versions using traditional al-
phanumeric databases. Large high dimensional datasets and update tests are consid-

ered;
3. The design and implementation of a CPU-GPU version;

4. The comparative tests with a benchmark to corroborate with the scalability results
obtained from CPU versus CPU-GPU comparisons.

1.2 Hypothesis

This work introduces a new HPC data cube approach with index, query and update
algorithms, where the query algorithm uses GPU devices as accelerators, therefore it must
be not only faster than its CPU version, but also faster than the benchmark. These results
are unique in the data cube topic, thus in database computer science area, proving that the
utilization of clusters of GPUs can scale OLAP technology. Big Data involves huge volume
of data, a variety of data types and recurrent updates in data, so this approach reduces a bit
more the gap of an OLAP tool to Big Data.

1.3 Work Organization

The rest of this work is organized as follows: Chapter 2 discusses the related work about
GPU as accelerators in data cube literature; Chapter 3 details the architecture and design
of JCL-GPU-Cubing solution; Chapter 4 presents the experimental results and evaluations;
Chapter 5 concludes the work.



Chapter 2

Related Work

In this chapter, we describe the literature about data cubes over a single device with one
or few GPUs. In all the works, the CPU memory system is unique and shared among the
cores, so there is what is called a private memory system. A cluster is a group of devices that
follows the private CPU memory system explained before, providing transparencies for users,
like a distributed and shared memory system abstraction.

The related work was evaluated according to the following requirements obtained from the
literature Cuzzocrea et al. (2016); Wittmer et al. (2011); Lauer et al. (2010); Wang and Zhou
(2012); Wittmer et al. (2011); Malik et al. (2012); Riha et al. (2011); Silva et al. (2015):

1. Single or multiple GPU support (SoMG): is important since even off-the-shelf PC moth-

erboards support up to four cards nowadays;

2. Multicore or cluster based deployment (MCD): is highlighted since distributed alterna-
tives are quite uncommon in the literature, but distributed computing becomes the last

resort when private memory systems reach their limit;

3. Large base relations support (LBR): is part of the Big Data concept, thus very important
today, but very often the existing approaches limit the relation size to the available GPU

memory, so only few gigabytes of data can be processed;

4. CPU-GPU hybrid support (CGHS): useful for large relations, enabling, for instance,
data cube indexing in CPU and query in both CPU-GPU;

5. Support holistic measures (HM): imposes update and indexing challenges in data cube

literature, so how to support this measure type is fundamental;

6. Support high dimensionality (HD): it is a hard problem since the data cube operator
grows exponentially in space and time when dimensions increase linearly. Today this
kind of high dimensional data is common in biological domains, but also in many social

network and entertainment scenarios like films, music, news and so forth;
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7. Update support (measures, dimensions and hierarchies) (US): is another key require-
ment of Big Data concept, but not implemented by most of existing OLAP products
and data cube prototypes. Recurrent updates are very common, for instance, in the

stock-market domain, for stream processing demands and many other niches;

8. Complex data types support (spatial, text, stream, graph and so forth) (CDT): repre-
sents a Big Data requirement, but unfortunately not attended until now by products or
research prototypes. There are only specific solutions for specific data types, thus no

integration is presented;

9. Range query operators support (between, some, greater, similar, contains, etc.) (RQO):
enables filters not only on measures, but also on dimensions, becoming primordial in

modern multidimensional analysis and Business Intelligence.

At the end of this section there is a comparative table, summarizing the benefits and
drawbacks of each work according to the previously defined requirements.

The work of Lauer et al. (2010) introduced a data structure for the data cube stored in
the GPU global memory, where the attributes from the tuples are allocated contiguously in
that memory, but separated by each dimension. An array of measures associated to each tuple
is also stored in GPU memory. A set of indexes can be calculated from the query in a way
that each thread from the GPU can operate over independent sets of tuples, avoiding memory
conflicts and thread serialization. To enable the use of multiple GPUs, the algorithm needs
an extra preprocessing step in which it must partition the query data equally among all cards.
On the CPU, each card has it’s own "host thread" that waits for the result, submitting it to
another thread that aggregates the final result in a parallel reduction operation. The authors
evaluated their approach using just the SUM measure during the aggregation, hence it’s not
clear the support to holistic measures. The experimental evaluation using multiple GPUs on
a single machine obtained linear query results. Compared to CPU only versions, the response
time for some queries achieved up to 42 times faster using the GPU version. The approach
adopts the number of tuples in a query result to indicate if the query should be processed in
CPU or in GPU, but they did not present any hybrid solution that switches from GPU to
CPU and vice-versa. The number of dimensions was constrained to seven and the number of
tuples to tens of millions.

The approaches presented in Riha et al. (2011) and Malik et al. (2012) implemented a
hybrid strategy for the query processing. A scheduler decides if a query will run only in CPU
mode or if any GPU processing will be necessary. The experiments pointed out that there is
a point where the cost of the query overwhelms the cost of data transfer between CPU and
GPU, thus queries that demand fewer aggregations or lower processing should be executed in
CPU to avoid the overhead, similar to the suggestions of Lauer et al. (2010). To perform the

scheduling it is used the hardware details and a complexity estimation for the query to create
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a performance model. For queries processed in GPU the relation should be completely stored
on its global memory and for such it is used a storage oriented by columns.

The work Kaczmarski (2011) presents a comparison between CPU and GPU data cube
algorithms. The GPU alternative transfers all the data from CPU to the GPU global mem-
ory and then performs the cube creation. Similar to other works, this data transfer is the
bottleneck of the whole solution, but even with a single data transfer the aggregation phase
outperformed the CPU version, being 50% faster than it. The experiments used a low di-
mensional base relation with 5 dimensions and multiple GPUs per machine are considered
to support large relations, but no cluster deployment is proposed. For multiple GPUs and
many CPU cores, the approach must scan the input data once to create a parallel execution
plan in which each GPU card accesses an independent intersection of the data cube. A paral-
lel reduction phase aggregates the final results of a multidimensional query, similar to many
hybrid CPU-GPU approaches, including the JCL-GPU-Cubing approach. The experimental
evaluations used just the SUM measure, thus no holistic measure was investigated.

The approach Kaczmarski and Rudny (2011) presented a compact representation of a
data cube and an algorithm based on the primitives of parallel scan and parallel reduction
to perform queries on the GPU. The base relation is entirely stored in GPU memory and
when the data cube is sparse the approach introduces data compression. The representation
in GPU of the data cube is not very prone for updates, so the update of dimensions, measures,
hierarchy levels or a simple new attribute value would imply the re-indexing of the data cube
from scratch, which is impracticable in many online or real time domains, like financial trading,
stream processing, social networks, logistic and so forth.

The work of Wang and Zhou (2012) used a linearization function responsible to map each
tuple of the data cube to a position P of the GPU memory, where such function has the
property of being reversible, that is, with P it is possible to retrieve the attribute values of
each dimension. This work considers that the data is transferred to the GPU global memory
when the system receives a query. Precisely, the query is interpreted in the CPU and then
transferred to the GPU, which performs the filtering, data cube creation and aggregations.
The design for storing tuples was not suitable for a dimensional or tuple increase since it
demands even larger vectors to store the GPU memory positions. This work investigated
range multidimensional queries, precisely the query operators “greater than” and “less than”
applied into dimensional attributes.

The authors in Sitaridi and Ross (2012) reinforced memory accesses conflicts and thus
synchronization issues in OLAP over GPU literature. To avoid memory conflicts, it is pre-
sented an algorithm that allocates specific regions of GPU memory for each thread and then
reorder the query results according to those regions. If it is detected that a conflict may oc-
cur, regions are duplicated among the threads, enabling private operations without conflicts,

but introducing consistency problems. The implemented operators (JOIN and GROUP BY,
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specifically) achieved a speedup of only 1.2 times when compared with a baseline version.
When the memory conflicts are not significant, the memory footprint and processing overhead
degraded the performance. The base relation must fit entirely in the GPU global memory, an
important constraint. Besides that, the data type supported is limited to 4-byte integers.

The works Zhang et al. (2012) and Zhang et al. (2014) investigated spatial-temporal ag-
gregations using GPU processors, presenting a case study about taxi rides. The generated
data cube had 10 dimensions, including pick-up latitude and longitude (spatial) and pick-up
time (temporal) . The authors presented algorithms and data structures to store those data
types efficiently on both GPU and CPU memories, using, for example, a 4-byte representation
instead of 66-byte for date-time dimensions. The parallel implementation for GPU achieved
a speedup of up to 13x if compared to the CPU version.

In Riha et al. (2013), there is a query optimization solver for hybrid memory systems that
adopts information beyond the query cost estimation and data availability, i.e., it uses the cur-
rent workload of each processor and the memory architecture. Experiments demonstrated an
accurate performance model to estimate both the processing time and the minimum response
time of a query. The GPU data cube structure stores all the data in a one-dimensional array
in the global memory, performing the filtering and aggregations over this array. The GPU
approach can process multiple queries in parallel since its threads manipulate private memory
blocks, thus avoiding thread serialization. The best hybrid CPU-GPU solution achieved a
speedup of only 1.7 times while dealing with several queries in parallel if compared with the
CPU only version. The base relation must fit in GPU memory and the approach runs in a
single GPU card, so large relations are not suitable.

Another CPU-GPU query scheduler is proposed by Bref et al. (2013). The authors identi-
fied a limitation in query solvers based on query response times since a scenario where one of
the processors outperforms the other for all queries in terms of processing time will saturate
the best processor when the others end up unused. Such scenario could degrade the over-
all performance, but these solutions still report that the processors allocation is optimal. In
order to attenuate the previously described limitations it was implemented several heuristics
focused on optimizing the processor scheduling in terms of workload distribution to maximize
the throughput across all processors. The first phase for the heuristic is determine the best
device for each query operator accounting for response time only, then it must calculate a
threshold where the chosen device can be sub-optimal, but improving the current throughput.
Performance evaluations achieved a speedup of 1.6 times if compared against GPU versions
without such query optimization heuristics.

In Brefs (2014), it is presented a detailed cost estimation procedure to evaluate a multidi-
mensional query cost, enabling CPU or GPU query allocations dynamically. The processing
cost for each query and it’s estimated performance in each type of processor (GPU and CPU,

respectively) are calculated and used to schedule a query to the most suitable processor type.
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The cost estimation procedure uses hardware details, such as thread organization and mem-
ory architecture to infer accurate results. Performance results against MontetDB Nes and
Kersten (2012) demonstrated that the presented approach could be 1.8 times faster when its
CPU-GPU designs are adopted in conjunction. The work reinforced the bottleneck caused
by multiple CPU-GPU data transfers, but no alternatives using multiple GPUs in a single
machine or in a cluster were detailed.

The work of Wang et al. (2018) was the only one found to present a system that integrates
distributed computing and GPU-based acceleration to the OLAP context. The authors present
a solution based on Hadoop HDFS and Map Reduce to perform the data distribution and
aggregation calculation. A GPU-based Reducer algorithm is presented. To mitigate the
elevated number of 1/O operations imposed by Hadoop when mapping the data, there is a
compression stage that preventively aggregates the base relation and creates an inverted index.
The main idea of the algorithm is to create the complete data cube and in query time, filter
the cuboids that match the predicates along with the aggregation function. All the operations
are performed using the Divide and Conquer algorithm model through a series Map Reduce
operations and the GPU is used to provide the speed up on the cube construction, query
filtering and cuboid selection and aggregation computation. On the experiments conducted
by the authors, they don’t consider varying the node count on the cluster, experimenting
only with different base sizes. When experimenting with the GPU-based distributed cube
algorithm, the authors vary the base relation size and the time cost increases along linearly.
On the overall process, the GPU algorithm is 2x faster than the CPU equivalent.

Nowadays the interest in implementing efficient alternatives to build multidimensional
query results has been reduced significantly. Instead, efficient scheduling strategies to allocate
queries in hybrid multi-core-CPU and GPU systems became the common OLAP research in-
terest (Riha et al. (2013); Bref et al. (2013); Brefs (2014)). The queries workload partition,
how to avoid multiple CPU-GPU transfers, how updates work and so forth are user respon-
sibilities, using the literature improvements, for instance. The recent works of Karnagel and
Habich (2017); Appuswamy et al. (2017) reinforced this assumption. The JCL-GPU-Cubing
approach innovates in different direction, i.e., we are interested in efficient algorithms to build
multidimensional queries from huge data cubes over a cluster of CPUs-GPUs devices, there-
fore the decision to work cooperatively CPUs-GPUs or separately is not our focus because the
queries investigated manipulate huge results and consume vast amount of processor’s cycles,
therefore CPUs and GPUs are always used together.

Table 2.1 presents a comparison of the related work described above, summarizing the
implemented requirements by each paper and the requirements our work implements and will
implement upon future work. Each requirement can be fulfilled in three levels (v', v'v' and
v'v'V'), where v indicates basic implementations, v'v" indicates fundamental ones and v'v'v/

’_ )

indicates advanced designs. The =" wildcard indicates that no information was found about
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the ability of the approach in attending the requirement.

Table 2.1: Comparison of the related work using the previously defined requirements.
Related Work SoMG MCD LBR CGHS HM HD US CDT RQO
JCL-GPU-Cubing VY VY v AR A e = 4
Lauer et al. (2010) vV v vV - - - - - -
Riha et al. (2011) v v vV Vv = = = = =
Kaczmarski (2011) vV v v - - - - - -
Kaczmarski and Rudny (2011) v v vV = = = = v =
Wang and Zhou (2012) v v v - - - - - v
Sitaridi and Ross (2012) v v Vv = = = = = =
Zhang et al. (2012) v v vV - - v - vV -
Malik et al. (2012) v v vV 4 = = = = =
Riha et al. (2013) v VARV -
Brefs et al. (2013) v v = VY = = = = =
Zhang et al. (2014) v v v 84
Bref (2014) v v vV = = v = vV =
Karnagel and Habich (2017) v - - VY - - - - -
Sato and Usami (2017) v v vV = = = = v =
Appuswamy et al. (2017) v vV - VY - - - - -
Wang et al. (2018) vV vV 24 = = = = = =

According to Table 2.1, the most attended requirements are: i) single GPU support
(SoMG@G), ii) multicore deployment (MCD) and iii) medium size base relations (LBR). The most

rare requirements in the literature are: v) holistic measures support (HM), vi) high dimension-

ality support (HD) and vii) update support (US). The remaining requirements (CGHS, CDT

and RQO), although partially attended, are equally important. The big data requirements

(volume, velocity and variety, for instance) are not addressed by the GPU OLAP literature,

precisely single devices deployments are not sufficient when volume increases, the recurrent

updates of a data cube crash its internal representation and algorithms in all related work,

and finally no work creates a unified data cube representation with dimensions, measures and

hierarchies for text, spatial, stream and other data types. In the next section, we present an

alternative solution to attend some of requirements stated in the beginning of this section.



Chapter 3
Development

In this chapter, we present the main components of the JCL-GPU-Cubing approach. For
the next sections, the indexing and query pipelines are detailed with basic examples to il-
lustrate the main ideas, discussions about the design decisions and pseudo-codes of the im-
plemented algorithms. The examples presented in this chapter consider the base relation of
Figure 3.1 as the input for the algorithms. Columns A, B and C represent three dimensions
and columns M1 and M2 the two measures. There is one primary-key or tuple identification

per tuple, called “TID”. The examples used in this chapter consider a cluster with four devices.

Base relation

TID | A B C M1 M2
al b2 c2 | 95 | 6.0
a2 | b1 cl 8.1 1.0
al b2 c3 | 92 | 0.0
a3 | b5 ¢l |10.2| 0.0
a2 | b1 c6 | 80 | 2.0
a1l b6 c3 1.0 | 6.0
al b2 c2 | 21 5.0
a2 | b1 cl 1.2 1.2
al b2 c3 | 0.0 | 0.0

© 0O N O g b ODN -

Figure 3.1: The input base relation for the example.

3.1 Indexing

Given the base relation from Figure 3.1, it must be partitioned across the multiple devices
in the cluster. The current strategy simply partitions the base relation into chunks with
identical size in terms of tuples. These chunks are stored across the cluster devices, as seen in
Figure 3.2.

11
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Device 1 Device 2
TD | A B Cc M1 | M2 TD | A B C M1 | M2
1 al | b2 c2 | 95 | 6.0 4 a3 | b5 | ¢1 [10.2 | 0.0
2 a2 | b1 cl | 81|10 5 a2 | b1 c6 | 80 |20
3 al | b2 c3 |92 | 0.0 6 al b6 | c3 | 1.0 | 6.0
Device 3

TD | A B Cc M1 | M2
7 al b2 c2 |21 | 50
8 a2 | b1 c1 12 | 12
9 al b2 c3 | 00 | 0.0

Figure 3.2: The input base relation partitioned over a cluster.

After the base relation is partitioned, the indexes are created. Those index compose what
we named a “partial cube”. Figure 3.3 illustrates the indexes created for the partition of the
base relation stored in Device 1, but it is important to note that all devices of the cluster
create multiple indexes in this step simultaneously. The Inverted Index of each tuple and

consequently the Inverted Index of the complete base relation can be defined from an ordinary

tuple t1= {idy, a1, b1, ...m1, ma, ...}, so it can be defined as it;={ a1 : idy, by : idy, ¢ : idy,
...}, where id; represents the tuple identification or primary-key, (a1, b1, ¢1, ...) represents
the tuple dimensional values and (my, mag, ...) its measure values. The second data source

of a partial cube is named “measures” and it is responsible for storing the measure values and
from which tuple they come from. Finally, the third data source named “tuples” represents the
tuple storage without its measures. Both “measures” and “tuples” data sources represent the
base relation partitioned horizontally over a cluster, i.e., it implements a tuple partition and
not a column partition. These three data sources are sufficient for answering queries efficiently
in parallel. After the “index” method call, several partial cube representations are created in

the cluster, as Figure 3.3 illustrates.

Inverted Index Measure Index Tuples

Dim. Value TIDs TID |Measure Values TD | A B C
al [1,3] 1 [9.5,6.0] 1 al b2 c2
a2 2] 2 [8.1,1.0] 2 a2 | b1 c1
b1 2] 3 [9.2,0.0] 3 al b2 c3
b2 [1,3]
cl 2
c2 1
c3 [3]

Figure 3.3: The Inverted Index, Measure Index and Tuples Index of Device 1.

The Index Construction is a multi-thread algorithm, thus concurrency is introduced inside
each device to create the three indexes. The Inverted Index and Measure Indexes are used
to speedup the values lookup during the query processing and the Tuples Index is used to
maintain the structure of dimensions of each tuple in main memory to improve dimensional
and measure filtering during the query processing. Those three structures are called “partial
cubes”, as Figure 3.4 illustrates. Basically, the partition and split operations run indefinitely,

i.e., while there is a tuple to be consumed from a base relation. A sequential process reads
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Figure 3.4: The indexing phase.

the input data repeatedly and sends chunks of tuples at a time to each device of the cluster.
This is done once and can take hours or even days for the first load of a huge amount of data.
This process is illustrated in Figure 3.4. It is important to understand that there is no order
in the base relation to guarantee the data partition, consequently data redundancies (in terms
of dimensional values, but tuples with different TIDs) may occur in the cluster, but they are
eliminated during the query execution. Another important aspect of the indexing algorithm
is that there is no synchronization barriers, so even a cluster composed of multi-core CPUs

can be adopted without synchronization drawbacks during the partial data cube indexing.

Algorithm 1: The Indexing algorithm that runs in each device or in each device core

of a cluster
Input: R with a set of tuples ¢, where ¢t = (TID, D1, Ds, ..., Dy, My, Ms, ..., My,),

where n is the number of dimensions and m is the number of measures of R;

Output: DI with the dimensions Inverted Index of entries e, where

e = (D;_vj, TIDs), i =1..n and j = 1..|D;| and TIDs is a list of TIDs for all
occurrences of value v; at the dimension Dj;
M with the Measure Index of entries e, where e = (TID, My, Ma, ..., My,);
T with the Tuple Index of entries e, where e = (TID, Dy, Ds, ..., Dy);

1 receive R from the cluster;

2 initialize DI and MI as empty mappings;

3 for each t in R do

4 id = t[TID];

5 for each dimension D; in t do

6 DI[D;_v;] = DI|D;_v;] U id;

7 end

8 for each measure My, in t do

9 MI[id] = MI|id] U M;

10 end

11 TI|id] = all dimension values from ¢;
12 end

The algorithm 1 reads tuple per tuple in the loop - line 3 - splitting them into dimensions
and measures, those partitions being stored in two data structures, the inverted indexes of

dimensions and measures. The first loop creates the Inverted Index - line 5 - and the second
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loop creates the Measure Index - line 8. At end the end of each iteration of the main loop,

the Tuple Index receives a new entry of dimension values from each tuple - line 11.

3.2 Query

The following subsections describe the multiple pipelines from the JCL-GPU-Cubing query.
First the base relation is filtered according to a query, then multiple sub-cubes are constructed

over the cluster and finally the measure calculus is performed to answer the query.

3.2.1 Filtering

After the Indexing, the next step is to perform successive queries. For that, each query
has its filtering step to select some dimensional and sometimes measure values according to
user needs and before it generates the sub-cube that answer the query, composed of several
aggregated measure values organized hierarchically. Using the same example presented in
the last chapter, Figure 3.5 shows the query @) with one predicate per dimension, where the
predicate C' =7 represents the INQUIRE operator on dimension C' and it means all dimension
values individually and the aggregated value **” - ALL.

After the partition of the base relation (Figure 3.2), Device 1 and Device 3 had identical
dimensional values in their partitions, which can occur in real scenarios. This situation high-
lights the need of the reduce phase of the query algorithm at the end of the query pipeline,
but for now all devices filtered their tuples independently and generate a result-set of tuples

that are locally unique and satisfy all query predicates.

Q: A=a1 AND B=b2 AND C=7?; AVG M1

Device 1 Device 3
Tuples TIDs Tuples TIDs
al b2 c2 [1] al b2 c2 7
al b2 c3 [3] al b2 c3 [9]

Figure 3.5: The query filtering and the result as a set of tuples in Device 1 and 3.

3.2.2 Sub-cube Construction

The next step of the query pipeline is the sub-cube construction, the combinatorial algo-
rithm. Figure 3.6 illustrates the sub-cubes created from the valid tuples filtered in Section

3.2.1. The Sub Cube Construction algorithm runs on each device or each core of a cluster.
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Sub Cube Device 1 Sub Cube Device 3
Tuples TIDs Tuples TIDs
a1 b2 c2 [1] a1 b2 c2 [7]
* b2 c3 [1] * b2 c3 [7]
* b2 c2 [3] * b2 c2 [9]
al b2 c3 [3] al b2 c3 [9]
al * c2 [1] al * c2 [7]
al * c3 [3] al * c3 [9]
* * c2 [1] * * c2 [7]
* * c3 [3] * * c3 [9]
at b2 * [1,3] at b2 * [7.9]
* b2 * [1,3] * b2 * [7.9]
a1 * * [1,3] a1 * * [7.9]
* * * [, 3] " * * [7.9]

Figure 3.6: The sub cubes created for the filtered tuples from Devices 1 and 3.

After the filtering step, a set of valid tuples is obtained, i.e., a set of tuples that meet the
filters restrictions applying only the “AND” logical operator. The “OR” and nested “AND/OR”
combinations are planed for future implementations of the presented approach. With all valid
tuples, it is possible to transfer all tuples to GPU to perform the “sub-cube construction” or
leave them in CPU to perform the same operation. In summary, the CPU-GPU data transfers
must take less time than “sub-cube construction” to compensate the GPU usage, so there are
many research studies innovating in new query scheduling ideas to allocate them in CPU or
in GPU Riha et al. (2011); Malik et al. (2012); Riha et al. (2013); Brefs et al. (2013); Brefs
(2014); Karnagel and Habich (2017); Appuswamy et al. (2017). As mentioned before, this
work assumes that CPU-GPU data transfers always compensate the benefit of thousand of

cores.

3.2.2.1 CPU based sub-cube construction

The CPU version receives all valid tuples and insert the wildcard “ALL” or “*” in all non-
aggregated attribute value. To illustrate that, consider the tuple with TID = 1 from the
base relation illustrated in Figure 3.1, which has the following values: {ai, b2, c2, 9.5, 6.0}.
This tuple is a valid one and the “sub-cube construction” algorithm inserts “*” in all the three
dimensions A, B and C, creating the following new tuples t;={*, ba, c2, 9.5, 6.0}, ta={a1, *,
c2, 9.5, 6.0}, ts={a1, ba, *, 9.5, 6.0}, ta={*, *, ca, 9.5, 6.0}, t5={*, ba, *, 9.5, 6.0}, t¢={a1,
%95, 6.0}, tr={* * * 9.5, 6.0}. As we can see, it is a costly processing and storage
task, where a three dimensional query with just one tuple as a result after filtering creates
seven new tuples plus, summing up 23 tuples as the final multidimensional result. Figure 3.7

illustrates the CPU-based implementation of the query pipeline.



3. DEVELOPMENT 16

Per core Per core
Device 1 |:> Dimension Sub-cube
Filtering \_ Construction )
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i Per core Spfg_gﬁrbi Parallel
peviee® Dimension : Reduction
Filtering \_Construction

Measure
Calculus

Per core
Dimension
Filtering

Per core
Sub-cube
Construction

Device n

Figure 3.7: The Query pipeline using the CPU version.

3.2.2.2 GPU based sub-cube construction

Due to the particularities of the GPU architecture, some steps of the query pipelines
presented before had to be redesigned. The main difference, if compared with the CPU
version, is that after filtering, each device must produce a unique set of tuples, so multi-core
computer architectures must perform a synchronization barrier to produce a unique set of
“TIDs” per device. This step is called “Result-set Reduction”, shown in Figure 3.8 and it was
implemented because the CPU to GPU data transfer tends to be highly costly, as described
by many related works from Chapter 2, so instead of performing multiple data transfers with
possibly redundant data, only a single data transfer per GPU card is performed to store all

tuples in the GPU memory.

. - I:: > Per core GPU-based Intersection
Devicel I Dimension Result-§et Sub-cube —> Generation ——
Cubes Reduction

Filtering Construction (CPU-based)
- Per core GPU-based Intersection
Device 2 Partial |::> Dimension Szzﬂgisoer: Sub-cube —> Generation RZZT;{%n
Cubes Filtering Construction (CPU-based)

Measure
Calculus

D Per core Result-set GPU-based Intersection
Device n Partial |::> Dimension Sub-cube —> Generaton —
Cubes Filtering Construction (CPU-based)

Figure 3.8: The Query pipeline using the GPU version.

After the “Result-set Reduction” step finishes, the “sub-cube construction” step starts in
GPU and it is the same explained previously, but implemented over a particular memory
organization that we must detail a bit more. The “sub-cube construction” inserts “ALL” or ‘*”
value at different tuple dimension attribute, creating new aggregate tuples, this way in GPU

we must know how much memory space will be required to store all aggregate tuples from all
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base tuples filtered. Figure 3.9 illustrates the GPU memory arrangement used in this work,
where each tuple with n dimensions each produce exactly 2 — 1 new tuples with identical
size, so it can preemptively allocated. An important consideration for this algorithm is that
when the number of tuples surpass the number of threads available in GPU, the tuples are
queued in GPU memory or even in CPU memory until there are available GPU threads, so
sub-cubes can be constructed in batches with one or several batch transfers.

We are interested in high level of parallelism, so we decided to map each GPU thread
to a single tuple not yet aggregated, the thinnest grain of parallelism, thus it generates all
aggregate tuples from such a tuple, as Figure 3.9 illustrates. Identical aggregate tuples are
generated during this GPU parallel operation, for instance the more aggregated tuple where

“¥7 5o future parallel reductions are required to produce the

all dimension attributes are equal
final aggregated tuple, similar to previously explained CPU version of “sub-cube construction”
algorithm. There are several other ways to map GPU threads to set of filtered tuples, so any
coarse grained map strategy can be done and future investigations could indicate the best

coarsity level in terms of tuples per GPU thread each multidimensional query should allocate.

Filtering Result-set Resource

(GPU Memory)
Thread 1 Tuple 1
Thread 2
Tuple 2
Tuple 3 Thread 3
Tuple x Thread x
\ 4 4 L \4
2"-1 Aggregations | 2M-1 Aggregations | 2"-1 Aggregations | - | 2"-1 Aggregations

GPU Global Memory

Figure 3.9: The GPU memory arrangement.

Before starts “Parallel Reduction” in CPU, the JCL-GPU-Cubing must associate the ag-
gregate tuples to their “TIDs”. This pipeline step is also performed in CPU and done by
“Intersection Generation” step in Figure 3.8. In the CPU resource there are several base tu-
ples with their “TIDs”, this way it is possible to insert such “TIDs” on each aggregate tuple,
that will come from the GPU, associated with the specific base tuple. This step is done se-
quentially, but it can be easily implemented in parallel. After the “Intersection Generation”
step all tuples are ready to be reduced. The great advantage of this idea is that it avoids
storing “TIDs” from aggregate tuples in GPU global memory and they represent most tuples
in a data cube. Besides saving space, this decision allows the GPU algorithm to be simple

and similar to the CPU version. Besides that, the final “Parallel Reduction” will operate over
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less data redundancies, since “Result-set Reduction” eliminated base tuple redundancies at
a Device level, the Intersection Generation also eliminated redundancies of aggregate tuples
and each device produces only a single resource, whereas the CPU version produces multiple

sub-cubes per device.

Algorithm 2: The sub-cube construction algorithm for CPU or GPU devices
Input: RS with the result-set of tuples ¢ that satisfy all query predicates, where ¢ has

only the dimensions present in the query g;

‘7 is the wildcard to

Output: C with the aggregation of the tuples from RS, where
represent the ALL aggregation level on a given dimension D; of ¢;
1 receive RS from the cluster;

2 if current device has an available GPU then

copy C, n and O to GPU memory;

3 Aggregate all RS from the current device to RS*, removing all duplicated tuples;
4 C = RS™,

5 n = number of dimensions;

6 O =2"

7

8

allocate the list agg in the GPU memory to store the aggregations of all tuples;
9 for each t in C, in the GPU and in parallel do

10 gID = GPUThreadlID;

11 generate all aggregations of ¢ for all dimensions;

12 store the aggregations in agg w.r.t. the offset O + gID;
13 end

14 copy agg back to CPU memory;
15 for each t in C do

16 originalTIDs = ¢[TIDs];

17 for each aggregation a of t in agg do
18 a|TIDs| = original TIDs;

19 if a has the same aggregations of any t already in C then
20 #|TIDs| = ¢ [TIDs| N a[TTDs|;
21 end

22 add ¢’ to C;

23 end

24 end

25 end

26 else

27 C =RS;

28 for each dimension D; in RS do

29 for each t in C do

30 create a new tuple t/;

31 tt = t;

32 t*|D;] = *;

33 if t* has the same aggregations of any t'" in C then
34 t'|TIDs| =  [TIDs| N #*|TIDs];
35 end

36 add ¢ to C;

37 end

38 end

39 end
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The sub-cube construction algorithm is detailed in the algorithm 2. Similar to the previous
algorithms, this solution is executed distributed and in parallel over the cluster. The input
is the result-set of tuples that were filtered on the previous step of the query pipeline. Those
tuples from the result-set only have the dimensions that were considered by the query. Line 2
determines if the execution will occur on GPU or CPU.

If the device can run GPU code, the first step is to reduce all result-sets from the current
device into a single resource, named RS™*, which is transferred to the GPU memory (line 3).
When performing this reduction, the aforementioned data redundancies of base tuples are
eliminated. As the number of new tuples that will be generated by each base tuple can by
calculated, we can allocate the exact amount of GPU memory beforehand, as shown in line 8.
The same calculation can be done to create an offset to be used to store the aggregations of
each tuple in the GPU memory, as seen in the line 6. The loop in line 9 is actually executed
using the GPU threads and it runs in parallel for each base tuple, so all aggregations are
generated and stored in the GPU global memory, using the previously calculated offset. After
creating the newly aggregate tuples, they are transferred back to the CPU main memory (line
14 and in CPU the intersections must be done to associate the base tuples’ TIDs to these
newly aggregate tuples. This is done on the loop 15, which uses the TIDs of the base tuples
do produce the TIDs of the aggregate tuples.

If the device is not capable of running GPU code, the sub-cube is constructed using only
the CPU and for that, the main loop, at line 26, applies the aggregation level “ALL” in each
dimension of the result-set and generates the intersections (32). In contrast to the GPU
procedure, the TIDs intersections can be generated as the aggregations are created, because
the CPU version generates the aggregations sequentially, so at each iteration it can check if
the aggregation already exists and merge the TIDs list of the aggregated tuple with the one

that is already on the sub-cube.

3.2.3 Parallel reduction and Measure calculus

The next step of the query pipeline is responsible to produce a unique query response,
this way multiple sub-cubes must be reduced to a single sub-cube, which is the final query
response. Figure 3.10 illustrates the final sub-cube that contains all tuples from the two sub-
cubes Devices 1 and 3. This final sub-cube is created and stored in a single device of the

cluster.
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Sub-Cube Device 1 Sub-Cube Device 3 Reduced Sub-Cube
Tuples TIDs Tuples TIDs Tuples TIDs
al b2 | c2 [1] al b2 c2 71 al b2 | c2 [1,7]

* b2 | c3 [1] * b2 c3 71 * b2 | c3 [1,7]

* b2 | c2 [3] * b2 c2 [9] * b2 | c2 [3,9]
al b2 | c3 [3] al b2 c3 [9] al b2 | c3 [3,9]
al * c2 [1] al * c2 7] al * c2 [1,7]
al * c3 [3] a1l * c3 [9] al * c3 [3,9]

* * c2 [1] * * c2 71 * * c2 [1,7]

* * c3 [3] * * c3 [9] * * c3 [3,9]
al b2 * [1,3] al b2 * [7,9] ail b2 * [1,3,7,9]

* b2 * [1,3] * b2 * [7,9] * b2 * [1,3,7,9]
al * * [1,3] al * * [7,9] al * * [1,3,7,9]

" N * [, 3] B " B 17.9] * N B [1,3,7,9]

Figure 3.10: The sub-cubes from devices 1 and 3 are reduced to a single sub-cube with all
tuples from both devices and it’s respective intersections.

The final step to answer the query illustrated in Figure 3.11 is to translate the TIDs to the
respective measure values and apply the measure function (AVG, for instance) on all measure
values. This can be done by consulting the Measure Indexes from the devices where the
tuples of the Final Reduced Sub-cube came from. Figure 3.11 illustrates the final sub-cube
representation with the measure calculus executed for each base and aggregate tuple, thus the

query response is ready to be presented to the user.

Measure Index Device 1 Reduced Sub-Cube Final Sub-Cube
TID |Measure Values Tuples TIDs Tuples TIDs
1 [9.5, 6.0] al b2 c2 [1,7] al b2 c2 5.8
2 [8.1,1.0] * b2 c3 [1,7] * b2 c3 5.8
[9.2,0.0] * b2 c2 [3, 9] * b2 c2 4.6
a1l b2 c3 [3, 9] al b2 c3 4.6
Measure Index Device 3 al * c2 [1,7] al * c2 5.8
TID |Measure Values al * c3 [3, 9] al * c3 4.6
[9.5, 6.0] * * c2 [1,7] * * c2 5.8
8 [8.1,1.0] * * c3 [3,9] * * c3 4.6
9 [9.2,0.0] al b2 * [1,3,7,9] al b2 * 5.2
* b2 * [1,3,7,9] * b2 * 52
al * * [1,3,7,9] al * * 5.2
* * * [1,3,7,9] * * * 5.2

Figure 3.11: The measure calculus from the query is applied over the measure values of the
final reduced sub-cube’s tuples.

In the worst case, each device of a cluster receives identical tuples, producing identical
sub-cubes and consequently identical results after the algorithm “sub-cube construction”, so a
reduction must be executed to eliminate redundancies from all devices and perform the final
aggregations of the measure values. This is done sequentially by a device of the cluster, so
any device can perform the “parallel reduction” step of the pipeline, illustrated in Figure 3.7.
Basically, this device receives all tuples and their corresponding set of TIDs from each device,
so the redundancy is eliminated by uniting TIDs. This pipeline step can be implemented

in distribute way, similar to Hive, Kylin and other Hadoop based middlewares Dean and
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Ghemawat (2008); Ranawade et al. (2016); Thusoo et al. (2009) and it is part of JCL-GPU-
Cubing future plans.

This query pipeline step is illustrated in Algorithm 3 and is called parallel reduction, but
the current implementation does not consider any parallel strategy for the sub-cube reductions
and its measure calculus. This algorithm simply reduces all sub-cubes redundancies from the
cluster, whether it was a CPU or GPU execution, as seen in line 2. The loop in line 2 translates
the TIDs from each tuple generated in the sub-cube into several measure values obtained
from the Measure Index 4. After recovering all the measure values, the specified measure
FUNCTION is applied to the list of measure values, as seen in line 5. In our example, the
AVG measure function is applied, but any other measure function works, such as the spatial

distance of two geo-objects, the ranking of several documents and so forth.

Algorithm 3: The measure calculus algorithm

Input: The multiple sub-cubes C' that were generated at each device of the cluster;
The Measure Index generated at each device of the cluster;
The measure function portion of the query @ of the form: M FUNCTION;
Output: The cube C* that has all intersections from all sub-cubes and each tuple has
its measure values aggregated w.r.t. the query Q;
1 On a single device of the cluster, receive all sub-cubes C;
2 Aggregate all received C' in C* for each tuple ¢ in C* do
3 ids = ¢|TIDs|;
4 recover all measure values of M in ¢ associated with id, using the Measure Index;
5 apply the FUNCTION over the measure values of ¢ and store the result in C*;
end

return the resultant sub-cube C*.

3.3 Discussions

In this chapter we presented the core ideas of the JCL-GPU-Cubing approach, developed
to achieve high speedups while answering complex multidimensional queries from data cubes
and over CPU-GPU clusters. We present two solutions, one for indexing and other for query
multidimensional data. The query was also designed to work in CPU and GPU. The update
algorithm follows mainly the indexing counterpart, so we omit its explanation now, postponing
it for the masters course. As future improvements for this work, the following points can be
addressed:

1. Improved filtering strategy: project and implement an improved version of the filtering
step to eliminate the need of the “Tuples Index” data structure, improving memory

consumption.

2. An alternative approach for when the sub-cube to be constructed in GPU doesn’t fit its
memory: project and implement an alternative solution to the tuple queuing in CPU to

be processed in the GPU, demanding multiple CPU to GPU memory transfers.
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3. Update support: we must detail the supported types of updates on the data cube and
how the indexing algorithm is changed or extended to handle the different those types
of update;

4. AND & OR logical operators: the query must be formally defined in this chapter and how

AND and OR logical operators are used in a query must be also defined and exemplified;

5. Distributed solutions for the “Parallel Reduction” and “Measure Calculus” steps: both

must be detailed;

6. Discussions: we must introduce deep discussions about JCL-GPU-Cubing strengths and
limitations, always comparing it against the state-of-art in OLAP, precisely against the

research frontier in GPU accelerators to speedup data cube queries.



Chapter 4
Experiments

In this chapter, we present various comparative scenarios to evaluate the CPU only and
the CPU-GPU hybrid version. We first present the cluster and devices’ configurations, the
base relations and the query used to execute the experiments. Then the experimental results
and discussions are presented for the indexing and query pipelines. The query pipeline is
evaluated in several cluster setups to compare the CPU version to the GPU version of the

sub-cube construction algorithm.

4.1 Setup

The experimental environment consists in an heterogeneous cluster with 6 devices of vari-
ous processing and memory capacities. The devices are interconnected via an standard gigabit
Ethernet switch. The configuration of each device is shown in Table 4.1 and organized in or-
der, from the best to the worst device in terms of memory and processing capacities. Table
4.2 shows the cluster setups used. Note that, although setups A and B use the same devices,
the query execution is done in CPU and GPU, respectively. The hybrid execution mode, in
setup E, denotes that all available devices are used in the cluster with devices 1, 2 and 3 run
in GPU mode. We tested the system under such setups with three base relations: BR1) with
1 million tuples, BR2) with 2 million tuples and BR3) with 4 million tuples. All base relations
have ten dimensions and two measures. The dimensional values have no skew and they are
integer numbers with carnality of 1000, so they can assume values ranging from 1 to 1000.

As we discussed on Chapter 3, we do not build the full data cube from the base relation;
instead, we only build a partial data cube with partial aggregations and when a query is sub-
mitted all necessary aggregations to produce the data cube to answer the query are calculated

on-the-fly. Therefore, the data cube built from query Q has 5 dimensions and 1 measure.

Q: MAX M1
WHERE A > ‘600’ AND B > ‘650’ AND C > ‘800’ AND INQUIRE D AND INQUIRE E;
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Table 4.1: The Devices used during the experiments and the respective configuration. Listed
from the best, to the worst device available.

. CPU System GPU GPU
Device 0.S. CPU Model GPU Model
Cores RAM Cores Memory
. Intel Core i5-2500 NVIDIA GeForce
1 Windows 7 4 32GB 5760 12GB
@ 3.30GHz GTX TITAN Z
) Intel Core i7-4790 NVIDIA GeForce
2 Windows 7 8 16GB 336 1GB
@ 3.60GHz GTX 460 v2
Intel Core 15-2400 NVIDIA GeForce
3 Windows 7 4 8GB 336 1GB
@ 3.10GHz GTX 460 v2
Intel Xeon E5405
4 Ubuntu 16.04 8 16GB NA NA NA
@ 2.0GHz
Intel Xeon
5 Ubuntu 16.04 4 16GB NA NA NA
@ 3.00GHz
Intel Core i7-3720M
6  Ubuntu16.04 00 8GB NA NA NA

@ 2,60GHz

Table 4.2: The multiple cluster setups used in the experiments.

Cluster Setup Devices Used Query Execution Mode

A 1,2,3
B 1,2,3
C 4,5, 6
D 1,2,3,4,5,6
E 1,2,3,4,5,6

CPU
GPU
CPU
CPU
Hybrid

We evaluated the index and the query pipelines in terms of total time, i.e., the time elapsed

to index or query are presented, so network, stack and other times are omitted. The query

was executed 3 times over a cluster with one of the configurations explained before. The final

values used on graphics of this chapter are the average of the 3 query response times obtained,

presenting also the standard deviation as the error bars in the plots.

All cluster devices

received the same number of tuples, so there is no partition strategy using, for instance, the

base relation properties versus the devices configurations. Actually, we just adopted a circular

list strategy to partition the base relation tuples among the cluster devices.
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4.2 Experimental Evaluations

We first evaluate the JCL-GPU-Cubing indexing algorithm scalability under the multiple
CPU cluster setups. Next, the scalability of queries was evaluated while running them in GPU

mode, CPU mode and in hybrid mode, so it is possible to measure the GPU improvements.

4.2.1 Indexing

As discussed in Chapter 3, the indexing algorithm runs entirely in CPU, so we evaluated
it with different CPU cluster setups A, C and D, respectively. Figure 4.1 illustrates such an
algorithm indexing the base relations BR1, BR2 and BR3. The cluster setup D has six devices
and it indexed all three base relations faster than the others, once it represents the union of
clusters A and C. As the base relations increased the difference between cluster D and the
others also increased and the reason is because there are more devices to run the indexing
algorithm. Moreover, the tuples of all the base relations BR1, BR2 and BR3 had to be send
to remote devices, so in a bigger cluster the queue time tends to be reduced during the tuples
transfer.

The worse runtime was obtained by cluster C, since it represents the worse devices in terms
of processing and storage. In general, the indexing runtimes increased linearly according to
the base relation increase, except for the biggest base relation BR3 and the worst cluster C.
For this scenario, the indexing algorithm degraded more than the number of new tuples, so we
understand that the cluster C started to become saturated while indexing the base relation

BR3 with 4 million tuples, requiring new devices to maintain the quality of the service.

Indexing times (CPU only setups)

180 A

160

140

120 4

100

time (s)

80

601 Cluster Setups

£ A
C
o

40 -

20

base size (millions of tuples)

Figure 4.1: Indexing runtimes with the best devices (cluster setup A), the worst devices
(cluster setup C) and with the complete cluster (setup D).
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4.2.2 Query

To evaluate JCL-CPU-Cubing query algorithm, we compared its performance over multiple
cluster setups, reinforcing the utilization of multiple GPUs to create the sub-cubes to answer
the queries. The query Q was executed multiple times and it returned 33.114 tuples for
BR1, 66.501 tuples for BR2 and 2.128.032 tuples in BR3. During a query of the BR3 base
relation, for instance, 132.385 tuples satisfied Q, but to produce the complete sub-cube the
algorithm generated approximately two million aggregated tuples where the wildcard ALL (*)

was present.

4.2.2.1 Best CPU Devices x GPU Devices

The Figure 4.2 illustrates the query response time using the cluster setups A and B and it
is possible to note a linear behaviour of query processing of cluster B using GPUs. The small
size of base relations BR1 and BR2 demonstrated that the data transfer between CPU and
GPU did not compensate the numerous cores present in each GPU, this way the cluster setup
with the best devices running in CPU outperformed the GPU cluster when the small base
relations are queried. In opposite direction, when the number of tuples to answer Q reached 4
million tuples using BR3, the GPU cluster outperformed its CPU counterpart, so it is possible
to see the benefits of GPU while answering big multidimensional queries. Another important
issue about the GPU implementation is that there is a reduction step of the base tuples in each
device and before the sub-cube construction, therefore, the GPU query could be improved.
However, when the parallel reduction is executed at the end of the query pipeline there are
fewer redundancies to be eliminated, since some of them were already eliminated during the

previous reduction step.

CPU cluster (best devices) x GPU cluster
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1000 A

800 4

time (s)

600 A

400 +

Cluster Setups

200 4 A
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T T T
1 2 4
base size (milliens of tuples)

Figure 4.2: Query response times with the best devices running in CPU (setup A) and the
best devices running in GPU (setup B).
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4.2.2.2 Worst CPU Devices x GPU Devices

The Figure 4.3 illustrates the query comparisons of cluster setups B and C, where the
setup C represents the worse devices. In this case, the GPU version outperformed the CPU
version in all scenarios. The justification was because setup B had better devices with GPUs
inside, so as the query becomes bigger the difference in terms of response time also increased,

as observed with base relation BR3.

CPU cluster (worst devices) x GPU cluster
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Figure 4.3: Query response times with the worst devices running in CPU (setup C) and the
best devices running in GPU (setup B).

4.2.2.3 GPU Devices x Complete Hybrid Cluster

In this experiment, the query is executed using setup B and setup E, the last representing
the deployment of the complete cluster with the best devices running in GPU and the worst
devices in CPU. The Figure 4.4 illustrates that for the small base relations, precisely BR1 and
BR2, setup E outperformed cluster setup B, since there are more tuples to transfer between
memories in setup B than there are in setup E, where the workload is distributed across more
devices in the cluster. When processing the base relation BR3 the setup B outperformed
setup E since the devices running in CPU, precisely the worst devices, demanded more time
to process the filtering and to create the sub-cube to answer the query. This experiment
instigates further investigation to determine if more GPUs on the cluster is better as the
base relation increases, since the GPU-only devices outperformed the hybrid cluster and this

particular setup presented a linear scalability.
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GPU cluster x Complete hybrid cluster
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Figure 4.4: Query response times with the best devices ruining in GPU (setup B) and the the
hybrid cluster (setup E).

4.2.2.4 Complete CPU Cluster x Complete Hybrid Cluster

The next experiment evaluated the performance of the GPU query execution using the
complete cluster in hybrid mode and using the complete cluster running in CPU only mode.
Figure 4.5 illustrates that setup E has a worst performance than setup D with BR1 and BR2.
This is due to the data transfer overhead not being compensated by the sub-cube construction
processing gains in GPU, as already discussed. Besides that, since setup D does not need to
execute the data transfer before the sub-cube construction, it performed better with those
base relations. The main difference with BR3 is that in the presence of more tuples to be
processed, the GPU devices in setup E had the data transfer overhead compensated by the
sub-cube construction. Besides that, the worst devices, precisely the devices 4, 5 and 6,
became the bottleneck of the cluster, this way, when using them in any cluster setup it is

expected to have some performance degradation, similarly to the previous experiment.
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Complete CPU cluster x Complete hybrid cluster
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Figure 4.5: Query response times with the complete cluster running in CPU (setup D) and
the the hybrid cluster (setup E).

4.2.2.5 Worst CPU Devices x Complete CPU Cluster

This experiment illustrates how the CPU version scales when the cluster increases. Figure
4.6 illustrates a cluster with first the worst devices deployed and then the best ones. When
ruining with more devices in the cluster the workload is more distributed across the devices,
causing a considerable performance gain with all base relations. More experiments with more
devices to understand the query saturation, i.e., when a specific base relation size does not
guarantee query scalability above a certain number of devices and the same can be done for
GPU devices.
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CPU cluster (worst devices) x Complete CPU cluster

1400 -

1200 1

1000 A

800

time (s)

600 1

400 +
Cluster Setups

200 - X c

D

1 2 4
base size (millions of tuples)

Figure 4.6: Query response times with the worst devices running in CPU (setup C) and the
complete cluster running in CPU (setup D).

4.2.2.6 Best CPU Devices x Complete CPU Cluster

The final experiment evaluated the complete CPU cluster against the bet CPU devices,
so a similar behaviour is obtained, i.e., Figure 4.7 illustrates that setup D outperformed the
cluster setup A, since setup A has half the number of devices. It is important to note that
the difference is less significant than the previous experiment, with closer query response
times, because this experiment used the best devices. Although the CPU only version did not
scale linearly as the number of tuples grow, this experiment reinforced the hypotheses that as
the number of devices and the hardware quality improve, the query runtimes would be also

improved.
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CPU cluster (best devices) x Complete CPU cluster
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Figure 4.7: Query response times with the best devices running in CPU (setup A) and the
complete cluster running in CPU (setup D).

4.3 Discussions

In this chapter we presented the experimental evaluations of JCL-GPU-Cubing approach.
The current implementation uses the CPU to create the indexes, filter and the reduce of the
input base relation, using sometimes the GPU to construct the sub-cube and answer the user
query. The evaluation of the results presented above showed that the indexing algorithm scales
when the base relation and cluster size grows, so when more devices are added to the cluster
it is expected to have performance gains. For the query processing, the presented approach
works only for big query results, since there are extra processing tasks in GPU implementation
and there is also data transfer from CPU to GPU and vice-versa.

Further experiments can be made in order to enable more accurate and deeper evaluations:

1. Execute JCL-GPU-Cubing in a cluster with more GPU devices to verify the linear
scalability;

2. Deploy a heterogeneous cluster and try to find a point of diminishing returns for the

query processing with both CPU and GPU devices;
3. Test base relations with different skews, cardinality and high dimensionality;
4. Test JCL-GPU-Cubing with holistic measures versus other measure types;

5. Evaluate JCL-GPU-Cubing against both the related work and the benchmarks.
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Conclusion

This work presented the initial ideas of a solution to solve a fundamental problem in OLAP
literature and consequently for the data cube relational operator: how to reduce complex mul-
tidimensional queries response times? The problem becomes even worse if recurrent updates
in the base relation is supported and if there is a huge volume of high dimensional data to be
analyzed.

This work presents an alternative solution to solve the problem stated before. We use
GPU cards to speedup queries. This idea has been done before, but using a single device
and two GPU cards at most. We are interested in cluster deployments of GPUs, so multiple
private memories must be considered. Many related work require the base relation totally
stored in GPU memory, which is unrealistic for large base relations. Sometimes they do not
support holistic measures or range queries or hybrid CPU-GPU benefits. This work innovates
in a solution designed for: i) high dimensionality; ii) holistic measures; iii) range queries;
iv) hybrid CPU-GPU solution; v) cluster version and not only multi-core version to speedup
queries.

Experimental results demonstrated that the GPU version scales when both the query
result and the number of devices increase. These results reinforced our hypothesis that GPU
clusters can speedup query response times. We plan future tests, including comparative ones
with GPU and CPU versions. More experiments with synthetic and real data are necessary.
The data cube proprieties, i.e., its number of dimensions, tuples, its cardinality and skew must
be varied for a better understanding about JCL-GPU-Cubing benefits and limitations.

To summarize the future work, we can enumerate the following acclivities to be done:

1. Implement, detail and test the improved filtering strategy to eliminate the need of the

“Tuples Index” data structure, improving memory consumption;

2. Implement, detail and test an alternative approach with multiple data transfers for a

single query in GPU that does not fit in its memorys;

32
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3. Implement, detail and test the update support;

4. Implement, detail and test AND & OR logical operators and how the are used in the

query processing;

5. Implement, detail and test the distributed solutions for the “Parallel Reduction” and

“Measure Calculus” steps;

6. Execute JCL-GPU-Cubing in a cluster with more GPU devices to verify the linear
scalability;

7. Use a heterogeneous cluster and try to find a point of diminishing returns for the query
processing with both CPU and GPU devices;

8. Use base relations with different skews, cardinality and high dimensionality;

9. Evaluate JCL-GPU-Cubing with holistic measures.
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