

UNIVERSIDADE FEDERAL DE OURO PRETO – UFOP ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA DE MINAS

André Luiz Rodrigues Pereira

ANÁLISE DA TRAJETÓRIA DE UM CORPO DURANTE UMA QUEDA DE BLOCOS: UM ESTUDO DE AVALIAÇÃO

Ouro Preto 2023 André Luiz Rodrigues Pereira

ANÁLISE DA TRAJETÓRIA DE UM CORPO DURANTE UMA QUEDA DE BLOCOS: UM ESTUDO DE AVALIAÇÃO

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Engenharia de Minas da Universidade Federal de Ouro Preto, como requisito parcial para a obtenção do grau de Engenheiro de Minas.

Orientadora: Dra. Tatiana Barreto dos Santos

Ouro Preto 2023

SISBIN - SISTEMA DE BIBLIOTECAS E INFORMAÇÃO

Bibliotecário(a) Responsável: Sione Galvão Rodrigues - CRB6 / 2526

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE OURO PRETO REITORIA ESCOLA DE MINAS DEPARTAMENTO DE ENGENHARIA DE MINAS

FOLHA DE APROVAÇÃO

André Luiz Rodrigues Pereira

Análise da trajetória de um corpo durante uma queda de blocos: um estudo de avaliação

Monografia apresentada ao Curso de Engenharia de Minas da Universidade Federal de Ouro Preto como requisito parcial para obtenção do título de bacharel em Engenharia de Minas

Aprovada em 25 de agosto de 2023

Membros da banca

Drª. Tatiana Barreto dos Santos - Orientadora - Universidade Federal de Ouro Preto Dr. Allan Erlikhman Medeiros Santos - Universidade Federal de Ouro Preto Dr. Hernani Mota de Limas - Universidade Federal de Ouro Preto

Tatiana Barreto dos Santos, orientadora do trabalho, aprovou a versão final e autorizou seu depósito na Biblioteca Digital de Trabalhos de Conclusão de Curso da UFOP em 28/08/2023

Documento assinado eletronicamente por **Tatiana Barreto dos Santos**, **PROFESSOR DE MAGISTERIO SUPERIOR**, em 28/08/2023, às 14:02, conforme horário oficial de Brasília, com fundamento no art. 6º, § 1º, do <u>Decreto nº 8.539, de 8 de</u> <u>outubro de 2015</u>.

A autenticidade deste documento pode ser conferida no site <u>http://sei.ufop.br/sei/controlador_externo.php?</u> <u>acao=documento_conferir&id_orgao_acesso_externo=0</u>, informando o código verificador **0581924** e o código CRC **2B9E3343**.

Referência: Caso responda este documento, indicar expressamente o Processo nº 23109.011403/2023-76

AGRADECIMENTOS

Agradeço primeiramente a Deus por iluminar minha vida;

Aos meus pais e meu irmão que sempre apoiaram minhas escolhas durante toda a minha trajetória;

A Laura por todo apoio e atenção durante os momentos difíceis;

A minha orientadora Tatiana Barreto dos Santos pela atenção, paciência e ensinamentos transmitidos;

A UFOP por proporcionar um ensino gratuito e de qualidade.

RESUMO

Este trabalho de conclusão de curso (TCC), intitulado "Análise da Trajetória de um Corpo durante uma Queda de Blocos: Um Estudo de Avaliação", aborda o comportamento de um corpo em queda no contexto de queda de blocos. O objetivo principal deste TCC é investigar as características da trajetória percorrida por um bloco rochoso em queda livre quando submetido a diferentes cenários envolvendo blocos. A pesquisa abrange uma análise das variáveis como a massa dos blocos, a altura de queda, a aceleração devido à gravidade, os ângulos de inclinação e os coeficientes de restituição. O estudo busca, também compreender como a interação entre o corpo em queda e os blocos circundantes influencia a trajetória resultante. Por meio de simulações computacionais, experimentos e análises teóricas, este estudo visa contribuir para um melhor entendimento das dinâmicas envolvidas em quedas de blocos, com implicações diretas na avaliação de situações de risco e na aplicação de medidas preventivas em áreas sujeitas a deslizamentos e movimentos de terra. Os resultados deste trabalho apontaram uma diferença da trajetória dos blocos em cada tipo de simulação, sendo a simulação do corpo rígido a que obteve maior alcance dos blocos, que possivelmente atingiriam a estrutura do outro lado da via, assim como veículos e pedestres se presentes na região na hora da ruptura.

Palavras-chave: Trajetória; queda de blocos; análise; risco; simulações.

ABSTRACT

The present undergraduate thesis, entitled "Analysis of the Trajectory of a Body during a Fall of Blocks: An Evaluation Study" addresses a detailed study on the behaviour of a falling body in the context of falling blocks. The main objective of this study is to investigate the characteristics of the trajectory travelled by a free-falling object when exposed to different scenarios involving blocks. The research encompasses a thorough analysis, considering variables such as the mass of the blocks, the height of fall, the acceleration due to gravity, the inclination angles and the coefficients of restitution. The study also seeks to understand how the interaction between the falling body and the surrounding blocks influences the resulting trajectory. Through computational simulations, experiments and theoretical analyses, this work aims to contribute to a better understanding of the dynamics involved in falling blocks, with direct implications for the assessment of risk situations and the application of preventive measures in areas susceptible to landslides and ground movements. The results of this work showed a difference in the trajectory of the blocks in each type of simulation, with the rigid body simulation being the one that obtained the greatest reach of the blocks, which would possibly reach the structure on the other side of the road, as well as vehicles and pedestrians if present in the area region at the time of rupture.

Keywords: Trajectory; falling blocks; analysis; risk; simulations

6

LISTA DE FIGURAS

Figura 1- Configuração de um talude	15
Figura 2- Parâmetros para caracterização das descontinuidades	17
Figura 3-Grau de fraturamento de um maciço	19
Figura 4-Causas da queda de blocos	20
Figura 5- Diferentes tipos de movimento dos blocos em função da inclin	ação do talude.
	22
Figura 6- RocFall	25
Figura 7- Mapa litológico de Ouro Preto e mapa geológico do quadrilát	ero ferrífero 29
Figura 8- Área do talude	30
Figura 9- Vista frontal do talude	31
Figura 10 - Fluxograma do trabalho	32
Figura 11- Trena a laser	33
Figura 12-Bússola	34
Figura 13- Distância do pé do talude a via	36
Figura 14 - Picnômetro + amostra	37
Figura 15 - Modelo do talude no Rocfall	41
Figura 16-Bússola	42
Figura 17 - Definição das famílias de descontinuidades	43
Figura 18- Histograma	45
Figura 19- Lumped mass	47
Figura 20- Gráfico de ponto final de blocos (Lumped mass)	47
Figura 21- Formato dos blocos	48
Figura 22- <i>Rigid Body</i>	48
Figura 23-Gráfico de ponto final de blocos (<i>Rigid Body</i>)	49

LISTA DE TABELAS

Tabela 1- Medidas obtidas na picnometria	.42
Tabela 2 - Orientações médias das famílias	.43
Tabela 3- Parâmetros das descontinuidades	.44
Tabela 4- Média e desvio padrão	.45
Tabela 5- Coeficientes de restituição utilizados pelo software	.46
Tabela 6- Coeficientes de restituição	.56

Sumário

1	INTRODUÇÃO	10
2	OBJETIVOS	12
	2.1 Objetivos específicos	12
3	JUSTIFICATIVA e relevÂncia	13
4	REVISÃO BIBLIOGRÁFICA	14
	4.1 MACIÇO ROCHOSO	14
	4.2 TALUDES	15
	4.3 DESCONTINUIDADES	16
	4.4 MECANISMO DE RUPTURA POR QUEDA DE BLOCOS	19
	4.5 avaliação da trajetória	20
	4.5.1 COEFICIENTES DE REESTITUIÇÃO	22
	4.6 Rocfall	23
	4.6.1 Métodos de análise	25
5	ÁREA DE ESTUDO	
5 6	ÁREA DE ESTUDO	28
5 6	ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica	28
5 6	ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica 6.2 geometria	
5 6	ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica 6.2 geometria 6.3 determinação da densidade da rocha	
5	ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica 6.2 geometria 6.3 determinação da densidade da rocha 6.4 Determinação do volume	
5	 ÁREA DE ESTUDO METODOLOGIA. 6.1 RevisÃo bibliogrÁfica 6.2 geometria. 6.3 determinação da densidade da rocha 6.4 Determinação do volume 6.4.1 DIPS. 	
5	 ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica 6.2 geometria 6.3 determinação da densidade da rocha 6.4 Determinação do volume	
5	 ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica 6.2 geometria 6.3 determinação da densidade da rocha 6.4 Determinação do volume	
5	 ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica	
5 6 7	 ÁREA DE ESTUDO METODOLOGIA 6.1 RevisÃo bibliogrÁfica 6.2 geometria 6.3 determinação da densidade da rocha 6.4 Determinação do volume 6.4.1 DIPS 6.4.2 Minitab 6.5 análise da trajetória e alcance dos blocos RESULTADOS E DISCUSSÕES 7.1 Geometria 	
5 6 7	 ÁREA DE ESTUDO METODOLOGIA. 6.1 RevisÃo bibliogrÁfica 6.2 geometria 6.3 determinação da densidade da rocha 6.4 Determinação do volume 6.4.1 DIPS 6.4.2 Minitab 6.5 análise da trajetória e alcance dos blocos RESULTADOS E DISCUSSÕES 7.1 Geometria 7.2 DENSIDADE da rocha 	

	7.4 minitab	44
	7.5 simulação da trajetória e alcance	46
8	CONCLUSÃO	.51

1 INTRODUÇÃO

4

A presença de taludes rochosos é comum em áreas urbanas, especialmente em regiões montanhosas. Entretanto, taludes rochosos em condições instáveis, representam riscos significativos para a localidade em questão e sua população, sendo um dos modos de ruptura mais comuns a queda de blocos. De acordo com Giani (1992), o início do fenômeno de queda de blocos em taludes rochosos está relacionado a condições iniciais de instabilidade que desencadeiam o movimento de uma massa, induzido pela ruptura do talude. O deslocamento desses blocos rochosos está diretamente associado à resistência ao cisalhamento das descontinuidades que os delimitam, e pode resultar em danos irreparáveis ao colidirem com estruturas, pessoas e objetos. Portanto, é imprescindível compreender, prever e monitorar a trajetória de blocos possíveis de se deslocarem até que parem, como medida de precaução para evitar potenciais danos.

A queda de blocos, de acordo com Piteau & Martín (1982), ocorre quando colunas de rocha são separadas por juntas (descontinuidades) ortogonais amplamente espaçadas, que os individualiza os blocos. Quando essa ruptura acontece e os blocos se desprendem do maciço, eles entram em queda livre, podendo alcançar grandes velocidades e distâncias. Essa situação pode representar um perigo significativo, com potencial para causar danos a pessoas, estruturas e objetos, até que sua trajetória seja interrompida por colisão ou pela ação da gravidade. Logo, o estudo detalhado dessa trajetória é de suma importância para compreender os riscos envolvidos e, quando necessário, identificar as melhores estratégias de estabilização para o maciço rochoso.

Para evitar potenciais problemas e garantir a segurança de taludes suscetíveis a queda de blocos e das áreas circundantes, torna-se imprescindível realizar estudos e utilizar softwares especializados capazes de estimar a trajetória de blocos em queda, visando prevenir acidentes. Nesse contexto, destaca-se o programa computacional *RocFall Inc. (Rocscience, 2020)*, um *software* de análise e simulação de trajetória de blocos em casos de ruptura de taludes.

Por meio da inserção de dados coletados no campo, como a geometria do talude, propriedades do maciço rochoso, condições ambientais e parâmetros geotécnicos, o RocFall Inc. permite realizar simulações da trajetória, do alcance e da energia dos blocos em queda. Essa abordagem possibilita a adoção de medidas preventivas adequadas, reduzindo significativamente os riscos associados a quedas de blocos e contribuindo para a proteção de vidas e bens materiais.

Neste estudo, foi investigado um talude rochoso localizado na Rua Pandiá Calógeras, no bairro Bauxita em Ouro Preto-MG, onde foram realizadas simulações das trajetórias de quedas de blocos utilizando o software mencionado anteriormente.

Sua composição é predominantemente de xisto, e sua principal estrutura é a foliação, presente em toda a extensão do maciço rochoso. Utilizando o programa Rocfall, foi conduzida a avaliação da trajetória de blocos em uma ruptura, onde foram realizadas simulações bidimensionais para obter resultados relevantes para a segurança e gestão da área em estudo.

2 OBJETIVOS

"

O objetivo principal deste trabalho consistiu em conduzir um estudo, análise e avaliação da trajetória de blocos rochosos durante uma ruptura por queda, com enfoque em um estudo de caso específico

2.1 OBJETIVOS ESPECÍFICOS

- a) Realizar levantamento em campo dos parâmetros geotécnicos do maciço rochoso para compreender seu comportamento e características relevantes.
- b) Investigar as causas e os mecanismos envolvidos no processo de ruptura por queda de blocos, buscando uma compreensão abrangente do fenômeno.
- c) Realizar simulações para determinar a trajetória dos blocos durante a queda, assim como avaliar seu alcance e energia cinética.
- d) Obter por meio de picnometria a densidade da rocha que compõe o talude;
- e) Obter por meio da fórmula de Palmström o volume médio dos blocos.

3 JUSTIFICATIVA E RELEVÂNCIA

Segundo Sjöberg (2000), mecanismos de ruptura em taludes altos, especialmente em rochas duras e em rochas fraturadas, são geralmente pouco entendidos e/ou conhecidos. O estudo sobre o alcance e trajetória de blocos raramente é feito de forma mais aprofundada e, na maioria dos casos os estudos são voltados para outros tipos de ruptura.

Há uma certa escassez na literatura de metodologias para simulações da trajetória de blocos. Isto é um fato preocupante visto que esse movimento pode conter um alto poder destrutivo e a predição do desencadeamento do processo pode ser bastante difícil (ESTEVES, 2018)

Beck (1998) diz que uma "Sociedade de riscos" é criada a partir de um crescimento urbano desordenado aliado à falta de planejamento de médio e longo prazo, falta de infraestrutura e as fracas políticas públicas voltadas para prevenção de riscos. Nesse contexto, estudos sobre taludes urbanos envolvendo queda de blocos são muito importantes para trazer à tona possíveis problemas que são pouco comentados e com certa carência na literatura.

Além disso, outros dois pontos a serem citados, são os casos históricos de rupturas na cidade de Ouro Preto que causaram grandes danos a cidade e seus moradores e a falta de uma estrutura de contenção presente na rua Pandiá Calógeras.

Diante disso, esse estudo visa estudar a trajetória de blocos de um talude que pode sofrer ruptura por queda de blocos, auxiliando na tomada de decisão com relação ao gerenciamento urbano-social do local em que esse talude se encontra. Faz-se necessário trabalhos e estudos sobre esse tema, principalmente em áreas urbanas, visando melhorias e se preciso uma obra para que seja feita a contenção dos maciços rochosos, visto que uma ruptura desse tipo pode causar danos irreparáveis.

4 REVISÃO BIBLIOGRÁFICA

Este capítulo apresenta uma revisão da literatura dos temas relevantes para este trabalho.

4.1 MACIÇO ROCHOSO

Azevedo e Marques (2006) afirmam que um maciço rochoso é composto pela matriz rochosa e suas descontinuidades. Essas descontinuidades podem ser observadas tanto em nível local, no afloramento, quanto em nível regional.

De acordo com a ISRM (1981) as descontinuidades possuem características que impactam no comportamento dos maciços, como a orientação, persistência, rugosidade, espaçamento, abertura e preenchimento.

Além disso, conforme Jacques (2014), o conceito de descontinuidade é utilizado para descrever os diversos tipos de planos presentes em várias escalas, como fissuras, juntas, planos de acamamento e até mesmo falhas regionais, os quais resultam na redução da resistência da rocha à tração e ao cisalhamento.

Os maciços rochosos podem ser classificados como competentes ou brandos, com base na resistência mecânica da rocha (SANTOS, 2015). Segundo a ISRM (1981), as rochas brandas têm uma resistência entre 0,5 e 25 MPa, enquanto aquelas com valores entre 50 e 100 MPa são consideradas duras e acima desse limite são classificadas como muito duras. A classificação de maciços competentes é mais simples em comparação com as rochas brandas, pois facilita o levantamento das propriedades geomecânicas. A resistência dos maciços brandos pode resultar em comportamento semelhante a solos, o que dificulta a verificação de suas propriedades.

O conceito de rocha é fundamental para este estudo, pois permite uma clara definição do contexto anteriormente abordado. A rocha, como parte integrante do maciço rochoso, pode se apresentar em grande massa ou na forma de fragmentos, sendo constituída por minerais. Comumente, o termo "matriz rochosa" é utilizado para se referir a esse material, de acordo com Azevedo e Marques (2006).

4.2 TALUDES

Conforme Fiori e Carmignani (2009), os taludes são superfícies inclinadas, podendo ser compostos por solo, rocha ou uma combinação de ambos.

Segundo Gersovich (2012), os taludes podem ser classificados em dois tipos: naturais, também conhecidos como encostas, e artificiais, que são construídos pela intervenção humana, como cortes e aterros. O termo "talude" é usado para se referir às superfícies resultantes de ações humanas, associadas a obras de terraplenagem (corte ou aterro), enquanto as encostas são consideradas superfícies de origem natural, resultado de processos de formação geológica. A Figura 1 a seguir ilustra a configuração de um talude e seus componentes.

Fonte: LONDE E BITAR (2011)

4.3 DESCONTINUIDADES

4

De acordo com a ISRM (1981), qualquer estrutura que interrompa a continuidade física de uma rocha é classificada como descontinuidade.

Conforme destacado por Jacques (2014), essa característica exerce uma influência direta na resistência e comportamento geomecânico dos maciços rochosos, tornando-a a mais importante entre as estruturas a serem consideradas, exigindo uma maior atenção no estudo desses elementos.

As descontinuidades são frequentemente responsáveis pela condição de estabilidade dos maciços, uma vez que exercem significativo impacto na deformabilidade, permeabilidade e resistência do maciço rochoso (LOPES, 2006).

Essas estruturas são comumente encontradas nos maciços de forma dispersa, próximas ou distantes umas das outras, podendo apresentar preenchimento ou não em seu interior, além de exibirem diferentes níveis de rugosidade em suas paredes. É raro encontrar um maciço sem qualquer descontinuidade (JACQUES, 2014).

A ISRM (1981) estabelece parâmetros e recomendações para descrever as características das descontinuidades, a fim de obter um conhecimento mais aprofundado sobre o maciço rochoso, conforme mostrado na Figura 2. Esses parâmetros incluem orientação, abertura, espaçamento, persistência, resistência das paredes, preenchimento, tamanho do bloco, percolação, número de famílias e rugosidade.

Figura 2- Parâmetros para caracterização das descontinuidades

Fonte: ISRM (1981)

De acordo com a ISRM (1981), conhecer a orientação das descontinuidades dos maciços é de extrema importância, pois essa informação indica a possibilidade de condições instáveis, especialmente quando combinada com outros fatores, como baixa resistência ao cisalhamento. A orientação de uma descontinuidade pode ser descrita pelo mergulho (ângulo de inclinação, medido a partir de uma reta horizontal), e pela direção de mergulho, medida no sentido horário a partir do norte verdadeiro.

A abertura é um parâmetro que se refere à distância perpendicular entre as paredes rochosas adjacentes de uma descontinuidade que está necessariamente aberta. Pode ser preenchida por água, ar ou argila em seu interior, e nesse caso recebe o nome de largura, conforme mencionado pelo ISRM (1981).

O espaçamento corresponde à distância perpendicular entre descontinuidades adjacentes da mesma família. Por meio dessa medida, é possível avaliar o tamanho dos blocos de rocha intacta presentes no maciço, como apontado pelo ISRM (1981).

A persistência refere-se a extensão de uma descontinuidade ao longo de um plano. Essa medida é obtida pelo comprimento dos traços visíveis na superfície, indicando a extensão da descontinuidade no maciço. A ISRM (1981) destaca que a persistência é um dos parâmetros mais relevantes e, ao mesmo tempo, mais desafiadores de quantificar.

Conforme a ISRM (1981), a resistência das paredes é um componente essencial da resistência ao cisalhamento, especialmente quando as paredes entram em contato direto entre as rochas. Essa resistência é caracterizada pela capacidade compressiva das paredes das rochas adjacentes à descontinuidade.

O preenchimento é o material que separa as paredes rochosas adjacentes e, geralmente, é mais fraco que o maciço rochoso. Pode ser constituído por materiais como areia, argila e silte, conforme mencionado pela ISRM (1981).

O tamanho do bloco, ou seja, suas dimensões, é medido com base no espaçamento entre as descontinuidades, no número de famílias e na persistência das descontinuidades que delimitam os possíveis blocos. O tamanho dos blocos é um indicador crucial para compreender o comportamento do maciço rochoso.

A percolação é um parâmetro que indica a infiltração de água nas descontinuidades ou no maciço rochoso como um todo. A percepção do nível de água é muito útil e pode indicar possíveis instabilidades no maciço rochoso, tornando a percolação um dos parâmetros que merece especial atenção, de acordo com a ISRM (1981).

O número de famílias de descontinuidades define o padrão de fraturamento do maciço rochoso, influenciando em sua aparência, que é caracterizada pela observação do número de conjuntos de descontinuidades que se cruzam. Esse sistema determina a aparência do maciço rochoso, visto que o número de famílias mostra o grau de fraturamento da rocha, conforme apontado pela ISRM (1981).

A rugosidade é observada nas paredes das descontinuidades e é um dos fatores mais importantes na caracterização dos parâmetros dos maciços. Isso se deve ao fato de que a rugosidade define a resistência ao cisalhamento, que pode causar instabilidade e possíveis rupturas, de acordo com o ISRM (1981).

4

4.4 MECANISMO DE RUPTURA POR QUEDA DE BLOCOS

Giani (1992) define a queda de blocos como a queda livre de blocos que se desprendem dos taludes rochosos, podendo apresentar diversos tamanhos. Para que esse fenômeno ocorra, as encostas devem possuir um certo grau de fraturamento, motivado pelo número de famílias de descontinuidades presentes, que, em conjunto com outros fatores, causam a instabilidade do maciço (BRITO, 2022).

A Figura 3 mostra uma tabela que relaciona o grau de fraturamento de um maciço e os espaçamentos das famílias de descontinuidades.

SÍMBOLOS	ESPAÇAMENTO (cm)	DESIGNAÇÃO		
F1	>200	MUITO AFASTADAS		
F ₂	60-200	AFASTADAS		
F ₃	20-60	MEDIANAMENTE AFASTADAS		
F ₄	6-20	PRÓXIMAS		
Fs	(6	MUITO PRÓXIMAS		

Figura 3-Grau de fraturamento de um maciço GRAU DE FRATURAMENTO DE UM MACIÇO

As rupturas ocorrem de forma rápida e podem ocorrer por queda livre, salto, rolamento ou deslizamento (AHRENDT, 2005). De acordo com a ISRM (1978), essas quedas apresentam dimensões geométricas que variam de acordo com a disposição das famílias de descontinuidades e possuem formatos distintos, como cubo, placa e lascas.

O fenômeno de queda de blocos em um talude rochoso é causado pelas condições iniciais de instabilidade, levando a um movimento de massa condicionado pela ruptura dos taludes (GIANI, 1992). Brito (2022) enfatiza que essas condições são caracterizadas pela presença de planos de fraqueza ou descontinuidades, percolação de água nas descontinuidades causando pressão hidrostática, intemperismo físico e químico, surgimento de vegetação, ação do vento, além de atividade sísmicas e vibrações. A ação da chuva, por exemplo, pode aumentar a percolação de água nas

descontinuidades, resultando em um aumento da poropressão nas mesmas, gerando predição da resistência ao cisalhamento que desencadeiam o movimento de queda de blocos.

Outra causa comum de ruptura por queda de blocos, conforme mencionado por Carvalho (1991), ocorre em rochas sedimentares, como siltito e argilito, que sofrem desagregação, resultando na exposição de blocos de rochas mais resistentes que se desprendem do talude.

Fonte: CARVALHO (1991) apud SILVEIRA (2017)

4.5 AVALIAÇÃO DA TRAJETÓRIA

Augusto Filho (1994) destaca a grande preocupação com a trajetória dos blocos durante a ruptura, uma vez que eles se soltam de taludes rochosos, geralmente com considerável altura, alcançando alta velocidade e representando um perigo considerável.

Os fatores que influenciam a trajetória desses corpos estão relacionados à geometria do talude, a forma e o tamanho dos blocos, bem como à área de captação dos blocos onde o talude se encontra, ou seja, o local em que esses blocos irão colidir (RITCHIE, 1963).

Hoek (2000) enfatiza que a geometria do talude é o fator que mais influência na trajetória dos blocos. Esse fator leva em consideração a rugosidade da superfície, que pode ser marcada, por exemplo, por uma foliação. Além disso, superfícies muito irregulares geram uma componente horizontal na trajetória dos corpos, levando-os a saltar e, consequentemente, atingir maior velocidade e alcance.

As superfícies de impacto, também conhecidas como área de captação, absorvem o choque e a energia de maneira diferente, dependendo de sua resistência e dureza. Quanto maior a dureza e resistência, menor será a absorção de energia, ao contrário das superfícies menos resistentes ou mais alteradas, que absorvem grande quantidade de energia, podendo até cessar o movimento dos blocos. Essa capacidade de absorção é chamada de coeficiente de restituição e pode ser calculada matematicamente (HOEK, 2000).

Silveira (2017) menciona que a energia absorvida pela área de captação depende, além da superfície de captação, de dois fatores determinantes: a altura e a inclinação do talude. A altura pode ser classificada em uma escala de muito alta a baixa, variando de 80 metros a 10 metros.

Em taludes verticais, o bloco tende a cair em queda livre, e à medida que o ângulo da face do talude diminui, o salto se torna o movimento predominante, onde o bloco se choca com a superfície do talude. O rolamento se torna o principal movimento quando os ângulos são mais suaves, como ilustrado na Figura 5 (SILVEIRA, 2017).

Fonte: RITCHIE (1963).

4.5.1 COEFICIENTES DE REESTITUIÇÃO

Os coeficientes de restituição, que são expressos matematicamente referemse à capacidade de absorção de energia de uma superfície de impacto em relação aos blocos durante a colisão (HOEK, 2000).

Silveira (2017) enfatiza que conhecer as propriedades do material rochoso e os coeficientes de restituição são os maiores desafios ao analisar a trajetória de um corpo. Compreender esse valor de coeficiente é de extrema importância, pois ele traduz em números a velocidade e energia que podem ser recuperadas após uma colisão entre o bloco e a superfície de impacto.

Segundo Lima (2011), o coeficiente de restituição corresponde à energia cinética dissipada em sucessivos choques entre corpos sólidos e é obtido pela razão

entre as velocidades após e antes do impacto, como mostrado na equação a seguir:

$$e = \frac{v_{n+1}}{v_n}$$

Em que,

 v_n é a velocidade antes do impacto;

 v_{n+1} é a velocidade depois do impacto.

O coeficiente de restituição é um valor que varia de 0 a 1, indicando diferentes tipos de colisões. Quando o coeficiente é igual a 0, a colisão é perfeitamente inelástica, ou seja, o corpo se solta a uma altura h e colide com a superfície, permanecendo na mesma posição. Nesse caso, toda a energia é absorvida pela superfície de impacto. Por outro lado, quando o coeficiente é igual a 1, a colisão é perfeitamente elástica, o que significa que quando um corpo se desprende e cai a uma altura h e atinge a superfície de impacto, ele retorna à altura inicial, evidenciando que não houve perda de energia (DIAS E BARROSO, 2006; FERNANDES, 2010).

No apêndice, encontra-se a Tabela 3, disponibilizada pela Rocscience Inc. (2001), a qual apresenta os coeficientes de restituição estabelecidos para diversos tipos de materiais, originários de variados locais geográficos.

4.6 ROCFALL

O RocFall (Rocscience Inc., 2001) é programa computacional projetado para analisar a queda de blocos em ambientes bidimensionais. Desenvolvido para auxiliar na avaliação dos riscos relacionados à instabilidade das rochas, o programa é amplamente utilizado em diversas áreas, incluindo mineração, construção civil e urbanização.

Criado pela Rocscience, uma empresa reconhecida mundialmente por seus softwares geotécnicos, o RocFall consolidou-se como uma solução confiável e eficiente para a análise de estabilidade de maciços rochosos. Desde sua criação em 1992, o software tem sido amplamente adotado por profissionais e pesquisadores no estudo de problemas geotécnicos.

O RocFall permite a realização de simulações e modelagens computacionais detalhadas, levando em consideração as condições geológicas e geométricas específicas de cada talude rochoso.

Conforme destacado por Tavares (2015), as simulações realizadas no software podem variar desde as mais simples, envolvendo apenas um tipo de talude e um único bloco, até as mais complexas, que consideram variações nos parâmetros característicos do talude em diferentes pontos. A Figura 6 exemplifica uma simulação na interface do software, demonstrando a capacidade de visualização e análise proporcionada pelo RocFall.

Figura 6- RocFall

Fonte: (Rocscience Inc., 2001)

4.6.1 Métodos de análise

O programa Rocfall utiliza dois métodos principais para a avaliação da trajetória de blocos: o Lumped Mass *(massa concentrada)* e o Rigid Body *(corpo rígido)*. Esses métodos diferem na forma como fazem a análise e como cada um considera o bloco em queda.

No método *Lumped Mass*, o bloco é representado como uma massa concentrada em seu centro de gravidade, sem levar em conta a rotação. Essa abordagem simplificada trata o bloco como um corpo sem dimensões, sendo representado apenas por sua massa total. Esse método é adequado para análises rápidas e simplificadas, focando principalmente em determinar a trajetória do bloco e verificar se ele atinge objetos ou estruturas.

Por outro lado, o método *Rigid Body* considera a rotação do bloco durante a queda. Nessa abordagem, o bloco é modelado como um corpo rígido com dimensões e propriedades de inércia. Isso significa que a distribuição de massa do bloco e sua resposta à rotação são levadas em conta. O método *Rigid Body* é mais preciso do que o *Lumped Mass*, permitindo uma análise mais detalhada do comportamento do bloco.

Os métodos de análise do programa Rocfall simulam a queda de blocos e avaliam sua trajetória e impacto. Para isso, são utilizados alguns parâmetros principais:

Definição do bloco: São fornecidas as características geométricas e físicas do bloco, como forma, dimensões, volume e peso. Essas informações são inseridas no programa para criar o modelo do bloco.

Definição do terreno e das condições iniciais: Informações sobre a geometria do terreno onde ocorrerá a queda do bloco são fornecidas, incluindo a inclinação e geometria do talude. Além disso, as condições iniciais, como a posição inicial do bloco, também são especificadas.

Análise de trajetória: Com as informações fornecidas, o Rocfall utiliza equações matemáticas para calcular a trajetória do bloco ao longo do tempo.

Verificação de impacto: Durante a análise de trajetória, o programa verifica se o bloco atinge objetos ou estruturas no caminho. Isso é feito comparando as coordenadas do bloco em cada instante de tempo com as posições de objetos prédefinidos.

Resultados e avaliação: Ao final da análise, o Rocfall fornece informações sobre a trajetória do bloco, incluindo a distância percorrida, se houve colisão do bloco com alguma estrutura e o alcance final do bloco. Esses resultados são úteis para avaliar a segurança e tomar medidas de contenção em áreas suscetíveis a quedas de blocos.

5 ÁREA DE ESTUDO

4

A área selecionada para o desenvolvimento desse estudo foi um talude localizado na Rua Pandiá Calógeras, também conhecida informalmente como "Morro do Gambá" localizado no bairro Bauxita na cidade de Ouro Preto. A cidade de Ouro Preto está localizada no estado de Minas Gerais, na região central do estado, suas coordenadas geográficas são 20° 23' de latitude sul e 43° 30' de longitude oeste.

A geologia regional de Ouro Preto é influenciada pela Província Mineral do Quadrilátero Ferrífero, que se estende ao longo de várias centenas de quilômetros e é famosa por sua concentração de minerais metálicos, como o ouro, ferro, manganês, bauxita e muitos outros. A região faz parte do Complexo do Quadrilátero Ferrífero, uma das províncias minerais mais importantes do país. O Quadrilátero Ferrífero é caracterizado pela presença de rochas ígneas e metamórficas, formadas durante eventos geológicos de grande magnitude há bilhões de anos. Essas rochas compreendem um complexo conjunto de terrenos, incluindo o Grupo Nova Lima, Supergrupo Minas e o Supergrupo Rio das Velhas, com ampla distribuição de depósitos minerais.

A cidade está assentada sobre uma série de formações rochosas antigas, predominantemente associadas ao Supergrupo Minas e ao Supergrupo Rio das Velhas. Essas rochas foram afetadas por processos tectônicos, metamórficos e magmáticos ao longo das eras geológicas, resultando na formação de estruturas complexas e depósitos minerais significativos.

Segundo a Carta Geotécnica de Ouro Preto (Carvalho, 1982) grande parte dos maciços rochosos de Ouro Preto são caracterizados como metassedimentares de variado grau metamórfico e alto grau de alteração.

A Figura 7 está dividida em três partes, em que mostra a coluna estratigráfica do quadrilátero ferrífero, o mapa geológico do quadrilátero ferrífero e o mapa litológico de Ouro Preto

Figura 7- Mapa litológico de Ouro Preto e mapa geológico do quadrilátero ferrífero

Fonte: (FARINA, 2015)

O maciço rochoso do presente estudo possui por completo uma extensão aproximada de 140m e o trecho desse maciço em foco no presente estudo possui uma extensão de 2m. Esse talude possui uma inclinação íngreme e tem como principal rocha em sua composição o xisto, que é uma rocha metamórfica com foliações bem definidas ao longo de sua estrutura.

A Figuras 8 e 9 a seguir mostram a vista de cima desse talude, e a vista frontal atual do talude.

Figura 8- Área do talude

Fonte: Google Earth Pro (2023)

Figura 9- Vista frontal do talude

Fonte: Autoria própria (2023)

4

Neste capítulo estão descritos os materiais e procedimentos feitos para a realização da estimativa da trajetória de blocos do talude estudado. Na Figura 10 é apresentado um fluxograma que mostra como foi realizado o Trabalho de Conclusão de Curso.

6.1 REVISÃO BIBLIOGRÁFICA

No desenvolvimento deste trabalho, o primeiro passo consistiu na seleção da área a ser estudada. Uma vez definida a área, empreendeu-se uma investigação aprofundada do tema, com o objetivo de adquirir um conhecimento substancial e identificar lacunas potenciais na literatura existente. A pesquisa foi conduzida com base em diversas fontes, incluindo bancos de dados acadêmicos, revistas científicas, teses, dissertações e relatórios técnicos. A escolha dos trabalhos a serem incluídos no estudo foi pautada pela relevância de cada um para o tema em questão.

6.2 GEOMETRIA

A abordagem metodológica adotada para o levantamento dos parâmetros do talude foi dividida em etapas distintas. Inicialmente, foram determinados a altura e a inclinação do talude, bem como o tipo de rocha que o compõe. Além disso, foram mensuradas a distância do pé do talude até o fim da calçada de pedestres e a distância da calçada até o outro lado da via.

A altura do talude foi obtida por meio de uma trena a laser, que permitiu medir a distância vertical entre o pé do talude e o seu topo, utilizando um ponto fixo como referência. Esse procedimento garantiu uma medida confiável da altura total do talude, conforme pode ser visualizado nas figuras a seguir, que ilustram a trena utilizada e o resultado obtido a partir dela.

Fonte: Autoria própria (2023)

A fim de determinar a inclinação do talude, empregou-se uma bússola, cuidadosamente posicionada com a aresta alinhada à face do talude. A regulação precisa foi alcançada ao utilizar a bolha integrada na bússola, garantindo assim a identificação da inclinação. A Figura 12 ilustra a bússola utilizada e o momento preciso em que a aferição foi realizada.

Figura 12-Bússola

Fonte: Autoria própria (2023)

A fim de identificar o tipo de rocha presente no talude, foi realizada a coleta de uma amostra de tamanho médio. Essa amostra foi posteriormente encaminhada ao Departamento de Engenharia Geológica na UFOP, onde a mesma foi identificada.

A rocha foi identificada como xisto, revelando a presença de foliações em sua estrutura. A Figura 13 representa a amostra retirada do talude, contribuindo para uma melhor compreensão visual do tipo de rocha presente na área estudada.

Figura 13- Amostra retirada em campo

Fonte: Autoria própria (2023)

Para determinar a distância do pé do talude até a via, foi utilizada uma trena convencional com alcance de 30 metros. A trena foi posicionada a partir do pé do talude e cuidadosamente fixada no fim da calçada de pedestres, permitindo assim a obtenção da medida desejada.

A Figura 14 ilustra a trena utilizada para a medição.

Figura 13- Distância do pé do talude a via

Fonte: Autoria própria (2023)

6.3 DETERMINAÇÃO DA DENSIDADE DA ROCHA

A determinação da densidade relativa dos sólidos foi realizada através do método de picnometria. Para este propósito, empregou-se um picnômetro de vidro com capacidade de 50 ml, e o procedimento foi conduzido em duplicata para assegurar maior precisão, com a obtenção da média dos dois valores obtidos.

A Figura 15 retrata o picnômetro utilizado representando a medida do picnômetro + amostra.

Figura 14 - Picnômetro + amostra

Fonte: Autoria própria (2023)

Para a obtenção da densidade, via ensaio de picnometria, foi utilizada a Equação 1 (SAMPAIO e SILVA, 2007).

$$d_{s} = \frac{P_{2} - P_{1}}{(P_{4} + P_{2}) - (P_{1} + P_{3})}$$
(1)

Onde:

"

ds: densidade dos sólidos;

- P1: massa do picnômetro vazio
- P2: massa do picnômetro + amostra
- P3: massa do picnômetro + amostra + água

P4: massa do picnômetro + água

6.4 DETERMINAÇÃO DO VOLUME

Para determinação do volume e do peso médio dos blocos em um maciço rochoso, foram coletados em campo os espaçamentos das descontinuidades e as orientações das famílias de descontinuidades. Após isso o software *Dips Versão 8.08 da Rocscience Inc.* foi utilizado para determinação das famílias de descontinuidades e suas orientações médias. Por fim, o software Excel foi utilizado para realização de uma simulação via o Método de Montecarlo para o cálculo de 100 volumes de bloco. Para estimativa do volume dos blocos, foi utilizada a Equação 2 propostas por Palmström (1982):

$$Vb = \frac{S1 \times S2 \times S3}{(\text{sen}\gamma 1 \times \text{sen}\gamma 2 \times \text{sen}\gamma 3)}$$
(2)

Em que:

Vb é o Volume do bloco;

S1, S2 e S3 são o espaçamento das famílias 1, 2 e 3 respectivamente;

γ1, γ2, γ3 são os ângulos entre as famílias de descontinuidades.

Utilizando o peso específico médio da rocha ensaiada em laboratório e o volume do bloco, foi estimado o peso de cada bloco.

6.4.1 DIPS

4

Inicialmente, os dados sobre as descontinuidades, obtidos por meio de coleta em campo, tais como mergulho, orientação e espaçamento, foram inseridos no programa computacional *Dips Versão 8.08 da Rocscience Inc.* Esses dados foram representados em uma projeção hemisférica por meio de polos e as famílias de

descontinuidades com seus valores de orientação médios foram definidos. Isso permitiu a obtenção dos ângulos entre as famílias (γ1, γ2, γ3).

6.4.2 Minitab

4

Após a coleta dos dados em campo, os parâmetros de espaçamentos foram armazenados em uma planilha do Excel, em que foi realizada uma simulação para obter 100 espaçamentos de cada família de descontinuidades, uma vez que foram obtidos em campo somente 10 orientações para cada família. Assim, foi possível obter um número expressivo de espaçamentos, que possibilitou a obtenção de um número maior de possíveis volumes e peso dos blocos.

Com o uso do programa computacional *Minitab, LLC. (2021)*, um histograma dos pesos obtidos foi construído e uma função lognormal foi ajustada a essa distribuição. O conhecimento de distribuição de pesos possíveis permite que seja realizada a simulação da trajetória e alcance de blocos em queda.

6.5 ANÁLISE DA TRAJETÓRIA E ALCANCE DOS BLOCOS

O primeiro passo consistiu em construir o modelo bidimensional da área de estudo. Nesse modelo, foi representado o talude, a geometria e a distribuição dos blocos de rocha, bem como suas propriedades físicas relevantes, como massa, densidade e volume.

Com o modelo geotécnico bidimensional pronto, foram definidas as condições iniciais da simulação. Essas condições incluíram o ponto de lançamento dos blocos, a altura da queda, a massa média dos blocos, o desvio padrão com base na distribuição lognormal testada anteriormente e a forma da superfície de ruptura que permitiria a movimentação dos blocos.

Foram selecionados os parâmetros de simulação adequados para representar o comportamento físico dos blocos durante a queda. Esses parâmetros incluíram a superfície do talude, o formato dos blocos e o coeficiente de restituição do solo, ambos parâmetros já presentes na biblioteca do *Rocfall*.

Com o modelo e os parâmetros definidos, foram realizadas duas simulações computacionais. Cada simulação representou um cenário de queda de 100 blocos, com diferentes condições iniciais e geometrias das superfícies de ruptura. A diferença entre as simulações é o método de avaliação, sendo eles o *Lumped mass* e o *Rigid Body* que se diferenciam pelo primeiro método considerar os blocos como um centro de massa concentrada e o segundo por considerar os formatos dos blocos.

7 RESULTADOS E DISCUSSÕES

7.1 GEOMETRIA

A altura do talude foi mensurada utilizando uma trena a laser, registrando inicialmente a altura aparente de 13,6 metros. No entanto, é imprescindível considerar a altura do operador da ferramenta, o que resultou na medida corrigida da altura do talude de 15,4 metros.

Quanto à inclinação, obteve-se um ângulo de 85 graus, indicando um talude extremamente íngreme, o que representa um fator importante a ser considerado na análise da estabilidade.

Adicionalmente, a distância medida do pé do talude até a via, por onde transitam pedestres, foi de 1,30 metros, e a largura total da via foi de 6,5 metros, totalizando 7,80 metros do pé do talude ao outro lado da via. Essas dimensões são cruciais para avaliar o potencial impacto e alcance de uma possível queda de blocos, contribuindo para a avaliação dos riscos e para a implementação de medidas de segurança adequadas na área estudada. A Figura 15 apresenta a geometria do modelo do talude estudado.

A Figura 16 mostra a medida obtida para altura do talude, medida na trena a laser.

Figura 16-Bússola

Fonte: Autoria própria (2023)

7.2 DENSIDADE DA ROCHA

6

Os resultados obtidos foram considerados a partir da média de duas medições realizadas em laboratório por picnometria. Foi obtido o valor de 2,56 g/cm³ para o xisto, rocha predominante no talude estudado. O valor da densidade ficou na faixa do valor apresentado pela literatura de 2,4 a 2,8 g/cm³.

A Tabela 1 apresenta os valores obtidos em laboratório e o procedimento realizado para encontrar a densidade. Para obtenção da densidade foram utilizados os valores apresentados na Tabela 1 e a Equação 1 apresentada no capítulo de Metodologia.

Medidas	P1(g)	P2(g)	P3(g)	P4(g)

Tabela 1- Medidas obtidas na picnometria

1	25,37	37,15	89,13	82,03
2	27,08	36,78	83,34	77,35

Fonte: Autoria própria (2023)

7.3 VOLUME E PESO

4

Sabe-se que os espaçamentos das famílias de descontinuidades podem apresentar dispersão, levando a possibilidade da existência de blocos com diferentes volumes e pesos. Com intuito de se obter uma distribuição de possíveis pesos, com o uso do programa computacional Dips, foram definidas as famílias de descontinuidades com seus respectivos espaçamentos. A figura 17 apresenta a definição das famílias de descontinuidades e a tabela 2 apresenta as orientações medias dessas famílias.

Figura 17 - Definição das famílias de descontinuidades

Família	Mergulho	Orientação
1	73	92
2	29	16
3	61	27

Fonte: Autoria própria (2023)

Posteriormente, os espaçamentos médios das famílias de descontinuidades (S1, S2 e S3) e o ângulo entre as mesmas (γ 1, γ 2, γ 3) foram obtidos, conforme apresentado na tabela 3.

	S1	S2	S3			
Espaçamentos	0,10	0,20	0,11			
médios (m)						
Ângulos entre as	68	60				
famílias (graus)						
Volume médio (m ³)	0,059					
Massa média (kg)	15,10					

Tabela 3- Parâmetros das descontinuidades

Fonte: Autoria própria (2023)

Então, a Equação 2 foi utilizada para obtenção do volume médio dos blocos que podem ser formados no talude em estudo. O valor obtido para o volume médio dos blocos foi igual a 0.059 m³ e massa média foi igual a 15.10 Kg

7.4 MINITAB

Com o objetivo de se obter um número expressivo de volumes de blocos possíveis, uma simulação foi realizada para obtenção de 100 valores de espaçamento para cada uma das famílias de descontinuidades. Assim foram gerados 100 volumes e pesos de blocos possíveis. A distribuição dos dados e ajuste da curva de densidade de probabilidade é apresentada na Figura 18. Os dados apresentaram distribuição lognormal. O ajuste da curva foi realizado com auxílio *software* Minitab.

Figura 18- Histograma

Os cálculos de média e desvio padrão dos pesos, foram realizados utilizando as equações 3 e 4 abaixo, utilizando os valores definidos pelo Minitab nos histogramas.

$$\mu = e^{(\theta + \frac{w^2}{2})}$$
(3)
$$\delta^2 = e^{(2*\theta + w^2)}$$
(4)

Em que:

"

Θ é o valor local no histograma;

 ω é o valor da escala no histograma.

A tabela 4 apresenta o valor da média e desvio padrão obtidos para os pesos dos blocos.

Desvio Padrão (σ)	15,45
Média (μ)	19,27

Tabela 4- Média e desvio padrão

Fonte: Autoria própria (2023)

2,485

Loc Escala 0,7117 100

7.5 SIMULAÇÃO DA TRAJETÓRIA E ALCANCE

Após a coleta dos dados e inserção dos parâmetros geométricos, foi necessária a inserção dos coeficientes de restituição do talude e do solo no *software*. No caso do talude, foram determinados o coeficiente de restituição normal, denotado como "Rn", com valor de 0,32, e um coeficiente de restituição tangencial, identificado como "Rt", com um valor de 0,8. Para os blocos de xisto foram definidos os coeficientes de 0,35 para "Rn" e 0,85 para "Rt" Já para a calçada e o asfalto foi utilizado o coeficiente de 0,40. Todos os valores já determinados pelo *software* após a inserção do tipo de rocha e solo. O próximo passo envolveu a identificação do ponto inicial do bloco, seguido pela possibilidade de realizar uma simulação individual de um bloco ou de múltiplos blocos.

Os valores definidos para os coeficientes de restituição estão presente na Tabela 5.

	Restituição normal (Rn)	Restituição tangencial (Rt)
Talude	0,32	0,8
Xisto	0,35	0,85
Asfalto	0,4	
Calçada	0,4	

Tabela 5- Coeficientes de restituição utilizados pelo software

Fonte: Autoria própria (2023)

Nesse contexto, uma simulação utilizando o método *Lumped Mass* (massa concentrada) com 100 blocos foi escolhida.

A representação visual da queda dos blocos pode ser observada na Figura 19. Em que a parte vermelha representa o talude, a verde a calçada e a cinza o asfalto.

Após a conclusão da primeira simulação utilizando o método de massa concentrada, um gráfico foi produzido para ilustrar o alcance para diferentes pesos dos blocos. O gráfico gerado pelo software está apresentado na Figura 20.

6

Figura 20- Gráfico de ponto final de blocos (Lumped mass)

Dos 100 blocos simulados, 1 bloco teve o fim da trajetória ainda na calçada, a 1,30m do pé do talude, 2 blocos a 1,87 metros, 90 blocos entre 2,30 e 5,60m, 6 blocos a 6,10 e 1 bloco a 6.41m, tendo seu alcance máximo nesse ponto.

Na continuação da análise, a simulação pelo método *Rigid Body* foi conduzida, levando em conta o formato médio dos blocos. Para isso, foram simuladas trajetórias de 100 blocos. O formato dos blocos foi estabelecido com base em uma avaliação visual. Os detalhes do formato adotado e a visualização da simulação podem ser observados nas Figuras 21 e 22, respectivamente.

Figura 21- Formato dos blocos

Após a segunda simulação pelo método de corpo rígido, foi gerado um gráfico onde nele é possível ver o alcance dos blocos simulados. O gráfico gerado pelo software está representado na Figura 23.

Figura 23-Gráfico de ponto final de blocos (Rigid Body)

Entre as 100 simulações de blocos realizadas, foi constatado que 13 blocos finalizaram sua trajetória na calçada, a uma distância de 1,30 metros a partir da base

do talude. Adicionalmente, 66 blocos alcançaram posições variando entre 2,34 metros e 6,40 metros. Outros 3 blocos atingiram pontos entre 6,73 metros e 7,12 metros. Notavelmente, 18 blocos atingiram a distância máxima, colidindo com a estrutura do outro lado da via.

8 CONCLUSÃO

4

A avaliação da trajetória de blocos revelou informações valiosas para compreender e mitigar os riscos associados a quedas de rochas no estudo de caso em questão. Por meio da utilização das simulações no software Rocfall, foi possível analisar dois métodos distintos: o método *Lumped mass* e o método *Rigid Body*.

Os resultados das simulações destacaram que a abordagem que trata o bloco como um corpo rígido demonstrou um alcance significativamente maior dos blocos em comparação com o método *Lumped mass*. Essa discrepância de alcance pode ser atribuída, em grande parte, à consideração mais precisa do formato dos blocos no método de corpo rígido. A capacidade do software de modelar os blocos como entidades geométricas sólidas permitiu capturar de forma mais fiel as características da projeção e colisão dos blocos, resultando em trajetórias mais representativas.

Além disso, os resultados revelaram uma observação intrigante no método de corpo rígido, sugerindo que os blocos analisados poderiam possivelmente atingir a estrutura do outro lado da via. Essa observação ressalta a importância não apenas do alcance dos blocos, mas também da ameaça potencial que suas trajetórias podem representar para as infraestruturas próximas do local estudado e principalmente, as pessoas que geralmente usam a calçada para subir e descer a rua Pandiá Calógeras.

REFERÊNCIAS

SANTOS, Thayná Valeriano. **AVALIAÇÃO DO PERIGO DE QUEDA DE BLOCOS EM ENCOSTAS ROCHOSAS AO LONGO DA RODOVIA BR-262 ENTRE BETIM E NOVA SERRANA**. Orientador: Allan Erlikhman Medeiros Santos. 2019. 82 p. TRABALHO DE CONCLUSAO DE CURSO (BACHARELADO EM ENGENHARIA DE MINAS) - Centro Federal de Educação Tecnológica de Minas Gerais, ARAXÁ-MG, 2019.

GOMES, Guilherme José. Avaliação do Perigo de Queda de Blocos em Rodovias. **Rockfall Evaluation in Highways**, [s. *l*.], ano 2013, p. 27, 8 mar. 2013. Disponível em: www.anuario.igeo.ufrj.br. Acesso em: 7 jun. 2023.

6. Seismic analysis - **Seismic Risk Management Process**. Disponível em: https://acg.uwa.edu.au/srmp/6._Seismic_analysis>. Acesso em: 13 mai. 2023.

RAMÍREZ, Jorge Duenãs. **Mecanismos de Ruptura Bloco – Flexural em Maciços Rochosos**. 2006. 95 p. Dissertação (Mestre em Engenharia Civil, PUC - Rio) - Puc -Rio, [*S. I.*], 2006.

JAQUES, Daniel Silva. **CARACTERIZAÇÃO E CLASSIFICAÇÃO DE MACIÇOS ROCHOSOS DA MINA DE VOLTA GRANDE, NAZARENO, MINAS GERAIS**. 2014. 182 p. Dissertação (Pós-Graduação) - Pós graduação em Engenharia Civil, Universidade Federal de Viçosa, Viçosa-MG, 2014.

MATEUS, Camila Adriana. **ESTABILIDADE DE TALUDES: Estudo das condições de estabilização em taludes naturais**. 2018. 76 p. Trabalho de conclusão de curso (Bacharel em Engenharia Civil, Faculdade Doctum de João Monlevade) - Faculdade Doctum de João Monlevade, João Monlevade- Mg, 2018.

BRITO, Erika Santos. **COMPARAÇÃO ENTRE SIMULAÇÃO BIDIMENSIONAL E TRIDIMENSIONAL DE QUEDA DE BLOCOS**. 2022. 101 p. Dissertação (Mestre em Geotecnia) - Universidade Federal de Ouro Preto, Ouro Preto- MG, 2022.

RIBEIRO, Rafael Silva. **SIMULAÇÃO DO PROCESSO DE QUEDA DE BLOCOS EM ENCOSTAS COM APLICAÇÃO DA MECÂNICA DO CONTATO E DO MÉTODO DOS ELEMENTOS DISCRETOS**. 2013. 265 p. Tese de Doutorado (Doutor em Ciências) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2013.

DOS SANTOS, Tatiana Barreto. APLICABILIDADE DAS CLASSIFICAÇÕES GEOMECÂNICAS E RETROANÁLISES PARA ESTIMAÇÃO DAS PROPRIEDADES DOS MACIÇOS ROCHOSOS. 2015. 147 p. Dissertação (Mestre em Engenharia Mineral) - Universidade Federal de Ouro Preto, Ouro Preto, 2015.

BARTON, Nick Ryland. Suggested methods for the quantitative description of descontinuities in rock masses. **International society for rock mechanics**, [*S. l.*], p. 320-367, 1 jan. 1978

CUNHA, Harlem Enckel. CLASSIFICAÇÃO E CARACTERIZAÇÃO DE MACIÇOS ROCHOSOS NO ÂMBITO DA MINERAÇÃO. 2016. 119 p. Monografia (Especialista em Geologia de Minas) - Universidade Federal do Pará, Belém - Pa, 2016.

LOPES, Manoel da Conceição. CUNHA, Harlem Enckel. **CLASSIFICAÇÃO E CARACTERIZAÇÃO DE MACIÇOS ROCHOSOS NO ÂMBITO DA MINERAÇÃO**. 2016. 119 p. Monografia (Especialista em Geologia de Minas) - Universidade Federal do Pará, Belém - Pa, 2016. 2006. 94 p. Dissertação (Graduação em Engenharia Mineral) - Universidade Federal de Ouro Preto, Ouro Preto - MG, 2006.

ISRM. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014. Turquia: R. ULUSAY & J.A. HUDSON, 2015. 293 p. ISBN 978-3-319-07713-0.

ISRM. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. Turquia: R. ULUSAY & J.A. HUDSON, 2007. 628 p. ISBN 978-975-93675-4-1.

SILIVEIRA, Larissa Regina. **AVALIAÇÃO DO PERIGO DE QUEDA DE BLOCOS EM TALUDES URBANOS E FERROVIÁRIOS E SIMULAÇÃO DE SUA TRAJETÓRIA**. 2017. 156 p. Dissertação (Graduação em Engenharia Mineral) - Universidade Federal de Ouro Preto, Ouro Preto - MG, 2017.

ROCFALL2 **User Guide**. [*S. l.*], 2023. Disponível em: https://www.rocscience.com/help/rocfall/documentation/slope/materials/reference-tables/rocscience-coefficient-of-restitution-table-in-rocfall. Acesso em: 5 jul. 2023.

STEVENS, Warren Douglas. **ROCFALL: A TOOL FOR PROBABILISTIC ANALYSIS, DESIGN OF REMEDIAL MEASURES AND PREDICTION OF ROCKFALLS**. Toronto: Warren Douglas Stevens, 1998. Disponível em: https://static.rocscience.cloud/assets/verification-and-theory/RocFall/thesis_body.pdf. Acesso em: 6 jul. 2023.

SHAYER, Parham. **APPLICATION OF RIGID BODY IMPACT MECHANICS AND DISCRETE ELEMENT MODELING TO ROCKFALL SIMULATION**. Toronto: Parham Ashayer, 2007. Disponível em: https://static.rocscience.cloud/assets/verification-andtheory/RocFall/thesis_rigid.pdf. Acesso em: 6 jul. 2023.

PALMSTRÖM, A. (1982). The volumetric joint count - a useful and simple measure of the degree of jointing. Proc. IV Int. Congr. IAEG, New Delhi, pp.221-228.

55

Apêndice

Tabela 6- Coeficientes de restituição

RN (Norma	al)		RT (⁻	Tange	ncial)		Тіро	Verificação	Localização	Referência			
Min	Max	Significar	Desvio Padrão	Min	Max	Significar	Desvio Padrão							
0.370	0.420			0.870	0.920			Pavimentação superficial dura	Testado usando quedas de rochas simuladas	Testado usando quedas de rochas simuladas (Testado usando quedas de rochas simuladas Glenwood			
0.330	0.370			0.830	0.870			Rochas ou pedregulhos com pouco solo ou vegetação						
0.300	0.330			0.830	0.870			Talus com pouca vegetação				Glenwood	Pfeiffer, I.J., e Bowen, I.D., "Computer Simulation of Rockfalls".	
0.300	0.330			0.800	0.830			Talus com alguma vegetação	forma semelhantes	Colorado, EUA de Engenhar 135-146	de Engenharia. 26, nº 1. 1989. págs. 135-146			
0.280	0.320			0.800	0.830			Encosta de solo mole com pouca vegetação	a uma queda de rocha anterior.	de rocha anterior.	de rocha anterior.			
0.280	0.320			0.780	0.820			Encosta do solo vegetado						
		0.315	0.064			0.712	0.116	Face de calcário	Testado em					
		0.303	0.080			0.615	0.170	Calcário parcialmente vegetado	restauração- jateamento feitos de	Pedreira de calcário na	Robotnam, M.E., e Wang, H., e Walton, G., "Avaliação do risco de queda de rochas de encostas de pedreiras ativas e abandonadas".			
		0.315	0.064			0.712	0.116	Pilha de jateamento de calcário descoberta	quatro tipos de materiais; fragmentos de rocha	Inglaterra	Instituto das Minas e da Metalurgia, Secção A. 1995.104(Jan-Abril), pp A25-A33			

RN (Normal)			RT (Tangencial)		Tipo Verificação L		Localização	Referência			
	0.251	0.029		0.489	0.141	Pilha de calcário coberta vegetada	gerados poi explosão, scree				
	0.276	0.079		0.835	0.087	Cara de giz	parcialmente				
	0.271	0.018		0.596	0.085	Escória de giz vegetado	vegetado em bermas, pilhas de explosão descobertas e resíduos de pedreiras vegetadas.	Pedreira de giz em Inglaterra			
	0.384	0.133		0.687	0.130	A inclinação da plataforma de madeira a 45 graus foi usada como controle para os testes de campo que realizaram.	Testado como parâmetros de controle	Carolina do Norte Ocidental para a Interestadual 40.	Wu, Shie-Shin "Avaliação de queda de rocha por simulação computacional " Transportation Research Records. 1031 pp 1-5, 1985.		
	0.200			0.530		Rochas calcárias dolomíticas em superfícies rochosas e em depósitos de tálus	Consistiu em arremessos artesanais e testes de queda livre por fragmentação	Atrani, Campânia, Sul	Budetta, P., e Santo, A. "Evolução morfoestrutural e cinemática relacionada de quedas de rochas na		
	0.100			0.200		Piroclástico remoldado dos terraços situados na base da falésia	de rocha utilizando explosivos, de rochas calcárias	s	Engenharia. Vol.36 págs. 197-210.		

RN (N	Normal)	RT (Tar	igencial)	Tipo	Verificação	Localização	Referência		
	0.000		0.240	Impactos nos detritos dos torcedores presentes ao pé de um penhasco rochoso	dolomíticas sobre superfícies rochosas e sobre depósito de tálus dos leques de deslizamento. Também utilizou retro análise, e informações de Urciuoli.				
	0.393		0.567	Solo	Testado pela queda de	Hong Kong	Chau, K.T., and Wong, R.H.C., and Lee, C.F. "Rockfall Problems in Hong Kong and some new experimental results for coefficients of Restitution" International Journal of rock mechanics and mining sciences and geomechanics.		
	0.453		0.737	Concreto projetado	de rocha de granito				
	0.487		0.910	Talude rochoso	cuboide e angular de 3 a 5 cm em encostas				
	0.500		0.950	Base		Italcementi			
	0.350		0.850	Leito rochosc coberto por grandes blocos	Referenciado a partir de	trabalha em Castellammare di Stabia	Giani, G.P. "Análise de Estabilidade		
	0.300		0.700	Detritos formados por elementos uniformemente distribuídos	realizados por Barbieri et al.	(encosta norte da Península Sorrentina), e na área de Atrani.	de Taludes Rochosos" Rotterdam, Balkema 1992.		

RN (Normal)			RT (Ta	angencial)	Tipo	Verificação	Localização	Referência		
		0.250		0.550	Solo coberto po vegetação	r				
		0.530		0.990	Limpar o leito rochoso rígido	D				
		0.400		0.900	Rodovia asfáltica					
		0.350		0.850	Afloramentos rochosos con superfície dura, grandes pedregulhos	ר		Hoek, Evert. "Notas não publicadas" NSERC Industrial Research Professor of Rock Engineering, Departamento de Engenharia Civil, Universidade de		
		0.320		0.820	Capa Talus			Toronto, St George Street, Toronto,		
		0.320		0.800	Cobertura de talus con vegetação	9 1		Ontário, Canadá M5S 1A4		
		0.300		0.800	Solo mole alguma vegetação	5				
0.370	0.420				Superfícies lisas e duras e pavimentação		Colordado, Estados Unidos	Pfeiffer, T.J., e Higgens, J.D., "Análise		
0.330	0.370				A maioria dos campos de rochas e rochas	Desenvolvido por observação e		de Risco de Queda de Rocha Usando a Simulação de Queda de Rocha do Colorado". Transportation Research		
0.300	0.330				Talus e taludes de solo firme	literatura		Nacional de Pesquisa, Washington,		
0.280	0.300				Taludes de solos moles	6		D.C., 1990, pp117-126.		

RN (Normal)				RT (Tangencial)		Tipo	Verificação	Localização	Referência			
				0.870	0.920			Superfícies lisas e duras, como pavimento ou superfícies rochosas lisas				
				0.830	0.870			A maioria das superfícies rochosas e tálus sem vegetação				
				0.820	0.850			A maioria das encostas de talus com alguma vegetação baixa				
				0.800	0.830			Taludes vegetados e taludes de solo com vegetação sobressalente	- - -			
				0.780	0.820			Encosta de solo coberto por mato				
		0.530	0.040			0.990	0.040	Pedra dura limpa	a) rolaram	1		
		0.350	0.040			0.850	0.040	Afloramento rochoso	muitas rochas pela encosta	5		
		0.320	0.040			0.820	0.040	Capa Talus	para verificar	Estrada de	2	
		0.320	0.040			0.800	0.040	Talus com vegetação	utilizados b)	montanha, perto de	feedback do usuário do RocFall	
		0.400	0.040			0.900	0.040	Pavimentação asfáltica	com eventos históricos de queda de rochas no local	Bolzano, Sothtyrol, Itália		

RN (Normal)			RT (Tangencial)			Тіро	Verificação	Localização	Referência			
(0.530	0.040		0.990	0.040	Pedra dura limpa		170m de				
	0.350	0.040		0.850	0.040	Afloramento rochoso	Valores de programa padrão usados	profundidade a céu aberto, Tasmânia, Austrália (ângulo geral do poço entre 55 e 65 graus)	feedback versão 3	do usuári	o do	RocFall
0	0.480	0.190		0.530	0.170	Concreto	cálculo					
C).470	0.300		0.550	0.230	Rocha Intemperizada	inverso de trajetórias desvios- padrão pareceram grandes	•				
(0.480	0.000		0.530	0.000	Concreto	cálculo					
C	0.470	0.000		0.550	0.000	Rocha Intemperizada	inverso de trajetórias, rugosidade de 7,9 graus para concreto, 9,3 para rocha	Takamatsu, Japão	feedback versão 3	do usuári	o do	RocFall
(0.850	0.000		0.530	0.000	Concreto	cálculo					
1	1.000	0.000		0.550	0.000	Rocha Intemperizada	inverso de caminhos					
	0.530	0.040		0.990	0.040	Base	Ectimativa	Vale do fiorde,	foodback	do uquór	o do	DeeFell
	0.500	0.060		0.700	0.060	Campo de bloqueio	diâmetros	Estado de Sogn og	versão 3	uu usuan	0 00	RUUFAII

RN (Normal)				RT (Ta	angencial)		Tipo	Verificação	Localização	Referência
	0.5	00 (0.060		0.650	0.060	Campo de bloqueio com arbustos e árvores de pequeno porte	dos blocos 10 a 30 cm	DFjordane, Noruega	
	0.5	00 0	0.060		0.500	0.060	Campo de blocos com floresta			
	0.3	00 0	0.060		0.800	0.060	Solo superficial com vegetação			
	0.4	00 0	0.040		0.900	0.040	Pavimentação asfáltica			
	0.3	50 (0.040		0.850	0.040	Estrada de cascalho			
	0.5	00			0.800		A encosta esparsamente florestada é coberta por um verniz de talus intemperizado muito fino derivado de unidades de xistos fracas subjacentes à tampa de calcário.	Calculado a partir da queda histórica de rochas	a Sunnybrae, a (interior da) Colômbia e Britânica, Canadá	Hungr, O. e Evans, S.G. 1988. Avaliação de engenharia de riscos de queda de rochas fragmentadas. 5º Simpósio Internacional de Deslizamentos, Lusanne. Julho de 1988, Vol. 1, pp. 685-690.

RN (Normal)	RT (Tangencial)	Тіро	Verificação	Localização	Referência
0.500	0.800	Calcário sobre talude uniforme nu formado por fragmentos de basalto com tamanho modal de 5 cm.	Calculado a partir da queda histórica de rochas	Hedley, (interior sul da) Colômbia Britânica, Canadá	
0.700	0.900	retangular mais ousado de tufo metamorfoseado em rocha nua e uma plataforma coberta de neve íngreme.	Calculado a partir da queda histórica de rochas	Squamish Highway, ao norte de Vancouver British Colombia, Canadá	

Fonte: Rocscience (2001).